Maximal functions, weights and ae convergence of Poisson integrals

Gustavo Garrigós

Universidad de Murcia
(joint work with Harzstein, Signes, Torrea, Viviani)

General setting

Q: Find most general f's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

General setting

Q: Find most general f 's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$

General setting

Q: Find most general f^{\prime} 's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$
- Formally $u(t, x)=e^{-t L} f$ or $e^{-t \sqrt{L}} f$ solve

$$
\left\{\begin{array} { l }
{ u _ { t } + L _ { x } u = 0 } \\
{ u (0) = f }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t t}-L_{x} u=0, \\
u(0)=f
\end{array} \quad(t, x) \in \mathbb{R}_{+}^{d+1}\right.\right.
$$

General setting

Q: Find most general f^{\prime} 's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$
- Formally $u(t, x)=e^{-t L} f$ or $e^{-t \sqrt{L}} f$ solve

$$
\left\{\begin{array} { l }
{ u _ { t } + L _ { x } u = 0 } \\
{ u (0) = f }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t t}-L_{x} u=0, \quad(t, x) \in \mathbb{R}_{+}^{d+1} \\
u(0)=f
\end{array}\right.\right.
$$

- so we look for very general Fatou-type thms...

General setting

Q: Find most general f 's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$
- Formally $u(t, x)=e^{-t L} f$ or $e^{-t \sqrt{L}} f$ solve

$$
\left\{\begin{array} { l }
{ u _ { t } + L _ { x } u = 0 } \\
{ u (0) = f }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t t}-L_{x} u=0, \quad(t, x) \in \mathbb{R}_{+}^{d+1} \\
u(0)=f
\end{array}\right.\right.
$$

- so we look for very general Fatou-type thms...
- Usual strategy:

General setting

Q: Find most general f 's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$
- Formally $u(t, x)=e^{-t L} f$ or $e^{-t \sqrt{L}} f$ solve

$$
\left\{\begin{array} { l }
{ u _ { t } + L _ { x } u = 0 } \\
{ u (0) = f }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t t}-L_{x} u=0, \quad(t, x) \in \mathbb{R}_{+}^{d+1} \\
u(0)=f
\end{array}\right.\right.
$$

- so we look for very general Fatou-type thms...
- Usual strategy:
(1) show $e^{-t L} f(x) \rightarrow f(x)$ for all f in a dense class

General setting

Q: Find most general f^{\prime} 's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$
- Formally $u(t, x)=e^{-t L} f$ or $e^{-t \sqrt{L}} f$ solve

$$
\left\{\begin{array} { l }
{ u _ { t } + L _ { x } u = 0 } \\
{ u (0) = f }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t t}-L_{x} u=0, \\
u(0)=f
\end{array} \quad(t, x) \in \mathbb{R}_{+}^{d+1}\right.\right.
$$

- so we look for very general Fatou-type thms...
- Usual strategy:
(1) show $e^{-t L} f(x) \rightarrow f(x)$ for all f in a dense class
(2) show bdedness $h^{*}: \mathbb{X} \longrightarrow L^{p, \infty}(v)$, where

$$
h^{*} f(x):=\sup _{t>0}\left|e^{-t L} f\right|(x)
$$

General setting

Q: Find most general f's s.t. $e^{-t L} f$ or $e^{-t \sqrt{L}} f \rightarrow f(x)$, a.e. x

- Here $L \in\left\{-\Delta,-\Delta+|x|^{2},-\Delta+2 x \cdot \nabla\right\}$
- Formally $u(t, x)=e^{-t L} f$ or $e^{-t \sqrt{L}} f$ solve

$$
\left\{\begin{array} { l }
{ u _ { t } + L _ { x } u = 0 } \\
{ u (0) = f }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t t}-L_{x} u=0, \quad(t, x) \in \mathbb{R}_{+}^{d+1} \\
u(0)=f
\end{array}\right.\right.
$$

- so we look for very general Fatou-type thms...
- Usual strategy:
(1) show $e^{-t L} f(x) \rightarrow f(x)$ for all f in a dense class
(2) show bdedness $h^{*}: \mathbb{X} \longrightarrow L^{p, \infty}(v)$, where

$$
h^{*} f(x):=\sup _{t>0}\left|e^{-t L} f\right|(x)
$$

\ldots and similarly for $p^{*} f(x):=\sup _{t>0}\left|e^{-t \sqrt{L}} f\right|(x) \ldots$

Classical Case: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

Classical case: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$

CLASSICAL CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$,

CLASSICAL CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

CLASSICAL CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

- Thus $\lim _{t \rightarrow 0^{+}} e^{t \Delta} f=f$ a.e., $\quad \forall f \in \cup_{w \in A_{p}} L^{p}(w)$

CLASSICAL CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

- Thus $\lim _{t \rightarrow 0^{+}} e^{t \Delta} f=f$ a.e., $\quad \forall f \in \cup_{w \in A_{p}} L^{p}(w)$
\ldots but this excludes $f=\mathbf{1}, \quad \exp \left(|x|^{2-\varepsilon}\right), \frac{1}{\log (e+|x|)} \cdots$

Classical CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

- Thus $\lim _{t \rightarrow 0^{+}} e^{t \Delta} f=f$ a.e., $\quad \forall f \in \cup_{w \in A_{p}} L^{p}(w)$
\ldots but this excludes $f=\mathbf{1}, \quad \exp \left(|x|^{2-\varepsilon}\right), \frac{1}{\log (e+|x|)} \cdots$
- Q: Can find larger class of $L^{p}(w)$'s containing all such $f^{\prime} s$?

Classical CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

- Thus $\lim _{t \rightarrow 0^{+}} e^{t \Delta} f=f$ a.e., $\quad \forall f \in \cup_{w \in A_{p}} L^{p}(w)$
\ldots but this excludes $f=\mathbf{1}, \quad \exp \left(|x|^{2-\varepsilon}\right), \frac{1}{\log (e+|x|)} \cdots$
- Q: Can find larger class of $L^{p}(w)$'s containing all such f 's?
- One approach is to consider 2-weight ineq

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(v) \quad \text { for some } v(x)>0
$$

Classical CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

- Thus $\lim _{t \rightarrow 0^{+}} e^{t \Delta} f=f$ a.e., $\quad \forall f \in \cup_{w \in A_{p}} L^{p}(w)$
\ldots but this excludes $f=\mathbf{1}, \quad \exp \left(|x|^{2-\varepsilon}\right), \frac{1}{\log (e+|x|)} \cdots$
- Q: Can find larger class of $L^{p}(w)$'s containing all such f^{\prime} '?
- One approach is to consider 2-weight ineq

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(v) \text { for some } v(x)>0
$$

- Also need "local" maximal ops

$$
h_{\mathrm{a}}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad(\text { for some } a>0)
$$

Classical CASE: $L=-\Delta$

Consider $u_{t}=\Delta_{x} u\left(\right.$ or $\left.u_{t t}+\Delta_{x} u=0\right)$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit $\rightarrow h_{t}(x)=e^{-\frac{|x|^{2}}{4 t}} /(4 \pi t)^{d / 2}, \quad p_{t}(x)=\ldots$
- also $h^{*} f \approx p^{*} f \approx M f$, so from classical theory

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(w) \quad \text { iff } \quad w \in A_{p}
$$

- Thus $\lim _{t \rightarrow 0^{+}} e^{t \Delta} f=f$ a.e., $\quad \forall f \in \cup_{w \in A_{p}} L^{p}(w)$
\ldots but this excludes $f=\mathbf{1}, \quad \exp \left(|x|^{2-\varepsilon}\right), \frac{1}{\log (e+|x|)} \cdots$
- Q: Can find larger class of $L^{p}(w)$'s containing all such f^{\prime} s?
- One approach is to consider 2-weight ineq

$$
M: L^{p}(w) \longrightarrow L^{p, \infty}(v) \quad \text { for some } v(x)>0
$$

- Also need "local" maximal ops

$$
h_{a}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad(\text { for some } a>0)
$$

... "sup $\mathrm{p}_{0<t<\infty}$ " additionally implies $\lim _{t \rightarrow \infty} e^{t \Delta} f=0$, ase. e. . . .

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

less demanding than trivial NC

$$
T(x, \cdot) \in\left(L^{p}(w)\right)^{*} \Longleftrightarrow\left\|T(x, \cdot) w^{-\frac{1}{p}}\right\|_{L^{p^{\prime}}}<\infty \forall x
$$

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

less demanding than trivial NC

$$
T(x, \cdot) \in\left(L^{p}(w)\right)^{*} \Longleftrightarrow\left\|T(x, \cdot) w^{-\frac{1}{p}}\right\|_{L^{p^{\prime}}}<\infty \forall x
$$

- Eg, $w(y)=(1+|y|)^{-d}$ and $w(y)=\left(\log _{+}|y|\right)^{\frac{p}{p^{\prime}}+\varepsilon}(1+|y|)^{-d}$

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

less demanding than trivial NC

$$
T(x, \cdot) \in\left(L^{p}(w)\right)^{*} \Longleftrightarrow\left\|T(x, \cdot) w^{-\frac{1}{p}}\right\|_{L^{p^{\prime}}}<\infty \forall x
$$

- Eg, $w(y)=(1+|y|)^{-d}$ and $w(y)=\left(\log _{+}|y|\right)^{\frac{p}{p^{\prime}}+\varepsilon}(1+|y|)^{-d} \longrightarrow \notin A_{p}!$!

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

less demanding than trivial NC

$$
T(x, \cdot) \in\left(L^{p}(w)\right)^{*} \Longleftrightarrow\left\|T(x, \cdot) w^{-\frac{1}{p}}\right\|_{L^{p^{\prime}}}<\infty \forall x
$$

- Eg, $w(y)=(1+|y|)^{-d}$ and $w(y)=\left(\log _{+}|y|\right)^{\frac{p}{p^{\prime}}+\varepsilon}(1+|y|)^{-d} \longrightarrow \notin A_{p}!$!
- Eg, $L^{p}(w)$ contains $f=1 / \log (e+|x|) \ldots$

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

less demanding than trivial NC

$$
T(x, \cdot) \in\left(L^{p}(w)\right)^{*} \Longleftrightarrow\left\|T(x, \cdot) w^{-\frac{1}{p}}\right\|_{L^{p^{\prime}}}<\infty \forall x
$$

- Eg, $w(y)=(1+|y|)^{-d}$ and $w(y)=\left(\log _{+}|y|\right)^{\frac{p}{p^{\prime}}+\varepsilon}(1+|y|)^{-d} \longrightarrow \notin A_{p}!$!
- Eg, $L^{p}(w)$ contains $f=1 / \log (e+|x|) \ldots$
- constructive proof (CJ): suitable "truncations" of $M+A_{p}$ theory...

A "WEAK" 2-WEIGHT PROBLEM

Q: Given an operator T characterize all $w>0$ such that

$$
T: L^{p}(w) \longrightarrow L^{p}(v) \text { for some } v(x)>0
$$

\rightarrow Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

- Known cases: for $T=M$ and $T=$ Riesz transf one has

$$
\sup _{R \geq 1}\left\|w^{-\frac{1}{p}} \frac{1}{R^{d}} \chi_{B_{R}(0)}\right\|_{L^{p^{\prime}}}<\infty \quad \text { and } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d}}\right\|_{L p^{\prime}}<\infty
$$

less demanding than trivial NC

$$
T(x, \cdot) \in\left(L^{p}(w)\right)^{*} \Longleftrightarrow\left\|T(x, \cdot) w^{-\frac{1}{p}}\right\|_{L^{p^{\prime}}}<\infty \forall x
$$

- Eg, $w(y)=(1+|y|)^{-d}$ and $w(y)=\left(\log _{+}|y|\right)^{\frac{p}{p^{\prime}}+\varepsilon}(1+|y|)^{-d} \longrightarrow \notin A_{p}!$!
- Eg, $L^{p}(w)$ contains $f=1 / \log (e+|x|) \ldots$
- constructive proof (CJ): suitable "truncations" of $M+A_{p}$ theory...
- non-constr proof (RdF): use VV ineq + abstract factorization thms...

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{a}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{a}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

THEOREM [HTV'13]:

$\forall a>0$ it holds that $h_{a}^{*}\left(\right.$ or $\left.p_{a}^{*}\right): L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{a}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

THEOREM [HTV'13]:

$\forall a>0$ it holds that $h_{a}^{*}\left(\right.$ or $\left.p_{a}^{*}\right): L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

$$
\left\|w^{-\frac{1}{p}} e^{-\delta|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty \forall \delta>0 \quad \text { or } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d+1}}\right\|_{L^{p^{\prime}}}<\infty
$$

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{a}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

THEOREM [HTV'13]:

$\forall a>0$ it holds that $h_{a}^{*}\left(\right.$ or $\left.p_{a}^{*}\right): L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

$$
\left\|w^{-\frac{1}{p}} e^{-\delta|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty \forall \delta>0 \quad \text { or } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d+1}}\right\|_{L^{p^{\prime}}}<\infty
$$

- Eg, $f=\exp \left(|x|^{2-\varepsilon}\right)$ or $f=(1+|x|)^{1-\varepsilon}$ are in $L^{p}(w)$ for suitable $w \ldots$

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{\mathrm{a}}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

THEOREM [HTV'13]:

$\forall a>0$ it holds that $h_{a}^{*}\left(\right.$ or $\left.p_{a}^{*}\right): L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

$$
\left\|w^{-\frac{1}{p}} e^{-\delta|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty \forall \delta>0 \quad \text { or } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d+1}}\right\|_{L^{p^{\prime}}}<\infty
$$

- Eg, $f=\exp \left(|x|^{2-\varepsilon}\right)$ or $f=(1+|x|)^{1-\varepsilon}$ are in $L^{p}(w)$ for suitable $w \ldots$
- Proof uses

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{\mathrm{a}}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

THEOREM [HTV'13]:

$\forall a>0$ it holds that $h_{a}^{*}\left(\right.$ or $\left.p_{a}^{*}\right): L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

$$
\left\|w^{-\frac{1}{p}} e^{-\delta|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty \forall \delta>0 \quad \text { or } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d+1}}\right\|_{L^{p^{\prime}}}<\infty
$$

- Eg, $f=\exp \left(|x|^{2-\varepsilon}\right)$ or $f=(1+|x|)^{1-\varepsilon}$ are in $L^{p}(w)$ for suitable $w \ldots$
- Proof uses
- global part: sharp decay of $h_{t}(x-y)$ and $p_{t}(x-y)$
- local part: factoriz theory of RdF

The "LOCAL" 2-WEIGHT PROBLEM

Consider now

$$
h_{a}^{*} f(x)=\sup _{0<t<a}\left|h_{t} * f\right|(x) \quad \text { and } \quad p_{a}^{*} f(x)=\sup _{0<t<a}\left|p_{t} * f\right|(x)
$$

THEOREM [HTV'13]:

$\forall a>0$ it holds that $h_{a}^{*}\left(\right.$ or $\left.p_{a}^{*}\right): L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

$$
\left\|w^{-\frac{1}{p}} e^{-\delta|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty \forall \delta>0 \quad \text { or } \quad\left\|\frac{w^{-\frac{1}{p}}}{(1+|y|)^{d+1}}\right\|_{L^{p^{\prime}}}<\infty
$$

- Eg, $f=\exp \left(|x|^{2-\varepsilon}\right)$ or $f=(1+|x|)^{1-\varepsilon}$ are in $L^{p}(w)$ for suitable $w \ldots$
- Proof uses
- global part: sharp decay of $h_{t}(x-y)$ and $p_{t}(x-y)$
- local part: factoriz theory of RdF
- Can do something similar for Hermite operator?

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 \operatorname{th}(2 t)}-\operatorname{th} t\langle x, y\rangle} /(2 \pi \operatorname{sh}(2 t))^{d / 2}
$$

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
\begin{aligned}
& e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 t h}(2 t)}-\operatorname{th} t\langle x, y\rangle \\
& e^{-t \sqrt{L}}=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \quad \longrightarrow \quad p_{t}(x, y)=\int_{0}^{\infty} h_{u}(x, y) \ldots d u
\end{aligned}
$$

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
\begin{aligned}
& e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 \operatorname{th}(2 t)}-\operatorname{th} t\langle x, y\rangle} /(2 \pi \operatorname{sh}(2 t))^{d / 2} \\
& e^{-t \sqrt{L}}=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \quad \longrightarrow \quad p_{t}(x, y)=\int_{0}^{\infty} h_{u}(x, y) \ldots d u
\end{aligned}
$$

Theorem 1:

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
\begin{aligned}
& e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 t h}(2 t)}-\operatorname{th} t\langle x, y\rangle \\
& e^{-t \sqrt{L}}=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \quad \longrightarrow \quad p_{t}(x, y)=\int_{0}^{\infty} h_{u}(x, y) \ldots d u
\end{aligned}
$$

Theorem 1:

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{\rho}} e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right\|_{L p^{\prime}}<\infty, \forall \delta>0$

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
\begin{aligned}
& e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 t h}(2 t)}-\operatorname{th} t\langle x, y\rangle \\
& e^{-t \sqrt{L}}=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \quad \longrightarrow \quad p_{t}(x, y)=\int_{0}^{\infty} h_{u}(x, y) \ldots d u
\end{aligned}
$$

Theorem 1:

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{\rho}} e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-\frac{|y|^{2}}{2}}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}\right\|_{L^{p^{\prime}}}<\infty$

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
\begin{aligned}
& e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 t h}(2 t)}-\operatorname{th} t\langle x, y\rangle \\
& e^{-t \sqrt{L}}=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \quad \longrightarrow \quad p_{t}(x, y)=\int_{0}^{\infty} h_{u}(x, y) \ldots d u
\end{aligned}
$$

Theorem 1:

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{\rho}} e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right\|_{L p^{\prime}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-\frac{|y|^{2}}{2}}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}\right\|_{L^{p^{\prime}}}<\infty$

- Corollary: for all $f \in L^{p}(w) \Rightarrow \quad \lim _{t \rightarrow 0^{+}} u(t, x)=f(x)$, a.e. x

The Hermite operator: $L=-\Delta+|x|^{2}$

Now $u_{t}=\Delta_{x} u-|x|^{2} u$ and $u_{t t}+\Delta_{x} u=|x|^{2} u$ in \mathbb{R}_{+}^{d+1}, with $u(0)=f$

- kernels are explicit, but more complicated

$$
\begin{aligned}
& e^{-t L} \rightarrow h_{t}(x, y)=e^{-\frac{|x-y|^{2}}{2 t h}(2 t)}-\operatorname{th} t\langle x, y\rangle \\
& e^{-t \sqrt{L}}=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \quad \longrightarrow \quad p_{t}(x, y)=\int_{0}^{\infty} h_{u}(x, y) \ldots d u
\end{aligned}
$$

Theorem 1:

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{\rho}} e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-\frac{|y|^{2}}{2}}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}\right\|_{L p^{\prime}}<\infty$

- Corollary: for all $f \in L^{p}(w) \Rightarrow \quad \lim _{t \rightarrow 0^{+}} u(t, x)=f(x)$, a.e. x
- Eg, $f=P(x) e^{\frac{|x|^{2}}{2}}$ for heat, and $f=e^{\frac{|x|^{2}}{2}} /(1+|x|)^{d / 2}$ for Poisson...

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$
Theorem 2
$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$

Theorem 2

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{p}} e^{-(1+\delta)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$

Theorem 2

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{p}} e^{-(1+\delta)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-|y|^{2}}}{\left(\log ^{+}|y|\right)^{1 / 2}}\right\|_{L p^{\prime}}<\infty$

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$

Theorem 2

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{p}} e^{-(1+\delta)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-|y|^{2}}}{\left(\log ^{+}|y|\right)^{1 / 2}}\right\|_{L^{p^{\prime}}}<\infty$

- Corollary: for all $f \in L^{p}(w) \Rightarrow \lim _{t \rightarrow 0^{+}} u(t, x)=f(x)$, a.e. x

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$

Theorem 2

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{p}} e^{-(1+\delta)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-|y|^{2}}}{\left(\log ^{+}|y|\right)^{1 / 2}}\right\|_{L^{p^{\prime}}}<\infty$

- Corollary: for all $f \in L^{p}(w) \Rightarrow \lim _{t \rightarrow 0^{+}} u(t, x)=f(x)$, a.e. x
- Example:

$$
f=P(x) e^{|x|^{2}} \text { or } f=\frac{e^{|x|^{2}}}{(1+|x|)^{d} \log ^{+}|x|} \cdots
$$

The Orns-Uhl operator $L=-\Delta+2 x \cdot \nabla$

Similar results hold for Orns-Uhl $L=-\Delta+2 x \cdot \nabla \ldots$

Theorem 2

$\forall a>0$ it holds that h_{a}^{*} or $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ for some v iff
(1) $\left\|w^{-\frac{1}{p}} e^{-(1+\delta)|y|^{2}}\right\|_{L^{p^{\prime}}}<\infty, \forall \delta>0$
(2) $\left\|\frac{w^{-\frac{1}{p}} e^{-|y|^{2}}}{\left(\log ^{+}|y|\right)^{1 / 2}}\right\|_{L^{p^{\prime}}}<\infty$

- Corollary: for all $f \in L^{p}(w) \Rightarrow \lim _{t \rightarrow 0^{+}} u(t, x)=f(x)$, a.e. x
- Example:

$$
f=P(x) e^{|x|^{2}} \text { or } f=\frac{e^{|x|^{2}}}{(1+|x|)^{d} \log ^{+}|x|} \ldots \text { which are not in } L^{1}(d \gamma)!
$$

Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:

Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:
it says that

$$
u_{s}=\Delta_{z} u
$$

\Longleftrightarrow
$U_{t}=\Delta_{x} U-|x|^{2} U$

Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:
it says that $\quad u_{s}=\Delta_{z} u \quad \Longleftrightarrow \quad U_{t}=\Delta_{x} U-|x|^{2} U$
if we set $\quad U(t, x)=\frac{e^{-\frac{|x|^{2}}{2} \operatorname{th} 2 t}}{(\operatorname{ch} 2 t)^{\frac{d}{2}}} u\left(\frac{\operatorname{th} 2 t}{2}, \frac{x}{\operatorname{ch} 2 t}\right), \quad$ ie $s=\frac{\operatorname{th} 2 t}{2}, z=\frac{x}{\operatorname{ch} 2 t}$

Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:
it says that $\quad u_{s}=\Delta_{z} u \quad \Longleftrightarrow \quad U_{t}=\Delta_{x} U-|x|^{2} U$
if we set $\quad U(t, x)=\frac{e^{-\frac{|x|^{2}}{2} \text { th } 2 t}}{(\operatorname{ch} 2 t)^{\frac{d}{2}}} u\left(\frac{\operatorname{th} 2 t}{2}, \frac{x}{\operatorname{ch} 2 t}\right), \quad$ ie $s=\frac{\operatorname{th} 2 t}{2}, z=\frac{x}{\operatorname{ch} 2 t}$
Therefore

$$
\lim _{t \rightarrow 0} U(t, x)=\lim _{s \rightarrow 0} u\left(s, \sqrt{1-4 s^{2}} x\right)=f(x), \quad \text { a.e. }
$$

by non-tang conv of classical heat eqn.

Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:
it says that $\quad u_{s}=\Delta_{z} u \quad \Longleftrightarrow \quad U_{t}=\Delta_{x} U-|x|^{2} U$
if we set $\quad U(t, x)=\frac{e^{-\frac{|x|^{2}}{2} \text { th } 2 t}}{(\operatorname{ch} 2 t)^{\frac{d}{2}}} u\left(\frac{\operatorname{th} 2 t}{2}, \frac{x}{\operatorname{ch} 2 t}\right), \quad$ ie $s=\frac{\operatorname{th} 2 t}{2}, z=\frac{x}{\operatorname{ch} 2 t}$
Therefore

$$
\lim _{t \rightarrow 0} U(t, x)=\lim _{s \rightarrow 0} u\left(s, \sqrt{1-4 s^{2}} x\right)=f(x), \quad \text { a.e. }
$$

by non-tang conv of classical heat eqn.

- because of $\frac{\text { th } 2 t}{2} \in\left(0, \frac{1}{2}\right)$ only need $\int|f| e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}} d y<\infty$

Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:
it says that $u_{s}=\Delta_{z} u \quad \Longleftrightarrow \quad U_{t}=\Delta_{x} U-|x|^{2} U$
if we set $\quad U(t, x)=\frac{e^{-\frac{|x|^{2}}{2} \operatorname{th} 2 t}}{(\operatorname{ch} 2 t)^{\frac{d}{2}}} u\left(\frac{\operatorname{th} 2 t}{2}, \frac{x}{\operatorname{ch} 2 t}\right), \quad$ ie $s=\frac{\operatorname{th} 2 t}{2}, z=\frac{x}{\operatorname{ch} 2 t}$
Therefore

$$
\lim _{t \rightarrow 0} U(t, x)=\lim _{s \rightarrow 0} u\left(s, \sqrt{1-4 s^{2}} x\right)=f(x), \quad \text { a.e. }
$$

by non-tang conv of classical heat eqn.

- because of $\frac{\text { th } 2 t}{2} \in\left(0, \frac{1}{2}\right)$ only need $\int|f| e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}} d y<\infty$
- Bdedness of $h_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$ holds similarly (with a few extra arguments...)

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
p_{t}(x, y)=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}}
$$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\text { th } u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+5}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\text { th } u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+5}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}
$$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\operatorname{th} u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+s}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}=\varphi(y)
$$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\operatorname{th} u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+s}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}=\varphi(y)
$$

- Proof needs careful analysis of integral

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\operatorname{th} u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+s}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}=\varphi(y)
$$

- Proof needs careful analysis of integral
$\bullet 0<s \leq \frac{1}{2}$ is easier $\longrightarrow O\left(e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right)$, if $|y|>c_{\delta}|x|$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\text { th } u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+5}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}=\varphi(y)
$$

- Proof needs careful analysis of integral
- $0<s \leq \frac{1}{2}$ is easier $\longrightarrow O\left(e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right)$, if $|y|>c_{\delta}|x|$
- $\frac{1}{2} \leq s<1$ is tricky \longrightarrow main contrib near $s=1-\frac{1}{|y|} \ldots$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\operatorname{th} u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+s}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}=\varphi(y)
$$

- Proof needs careful analysis of integral
- $0<s \leq \frac{1}{2}$ is easier $\longrightarrow O\left(e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right)$, if $|y|>c_{\delta}|x|$
- $\frac{1}{2} \leq s<1$ is tricky \longrightarrow main contrib near $s=1-\frac{1}{|y|} \ldots$
- This gives NC: $\int p_{t}(x, y) f(y) d y<\infty \Leftrightarrow f \in L^{1}(\varphi)$

Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

$$
\begin{aligned}
p_{t}(x, y) & =\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} h_{u}(x, y) e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{3 / 2}} \\
s=\operatorname{th} u & =c t \int_{0}^{1} e^{-\frac{1}{4}\left(\frac{|x-y|^{2}}{s}+s|x+y|^{2}\right)} e^{-\frac{t^{2} / 2}{\log \frac{1+s}{1-s}}} \frac{\left(1-s^{2}\right)^{\frac{d}{2}-1}}{s^{\frac{d}{2}}\left(\log \frac{1+s}{1-s}\right)^{3 / 2}} d s
\end{aligned}
$$

Lemma 1: For fixed t, x it holds

$$
p_{t}(x, y) \approx c_{t, x} \frac{e^{-|y|^{2} / 2}}{(1+|y|)^{d / 2}\left(\log ^{+}|y|\right)^{3 / 2}}=\varphi(y)
$$

- Proof needs careful analysis of integral
- $0<s \leq \frac{1}{2}$ is easier $\longrightarrow O\left(e^{-\left(\frac{1}{2}+\delta\right)|y|^{2}}\right)$, if $|y|>c_{\delta}|x|$
- $\frac{1}{2} \leq s<1$ is tricky \longrightarrow main contrib near $s=1-\frac{1}{|y|} \cdots$
- This gives NC: $\int p_{t}(x, y) f(y) d y<\infty \Leftrightarrow f \in L^{1}(\varphi)$
\ldots and $L^{p}(w) \subset L^{1}(\varphi) \Leftrightarrow\left\|w^{-\frac{1}{p}} \varphi\right\|_{p^{\prime}}<\infty$

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

- thus $p_{a}^{*} f(x) \lesssim c_{x} M_{\text {loc }}\left(e^{-|y|^{2} / 2} f\right)+\int f \varphi$

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

- thus $p_{a}^{*} f(x) \lesssim c_{x} M_{\mathrm{loc}}\left(e^{-|y|^{2} / 2} f\right)+\int f \varphi$
- "global" part controlled by $\int f \varphi \leq\|f\|_{L^{p}(w)}\left\|w^{-\frac{1}{p}} \varphi\right\|_{p^{\prime}} \ldots$

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

- thus $p_{a}^{*} f(x) \lesssim c_{x} M_{\text {loc }}\left(e^{-|y|^{2} / 2} f\right)+\int f \varphi$
- "global" part controlled by $\int f \varphi \leq\|f\|_{L^{p}(w)}\left\|w^{-\frac{1}{p}} \varphi\right\|_{p^{\prime} \ldots}$
- "local" part needs 2-weight thm for $M_{\text {loc }}$

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

- thus $p_{a}^{*} f(x) \lesssim c_{x} M_{\mathrm{loc}}\left(e^{-|y|^{2} / 2} f\right)+\int f \varphi$
- "global" part controlled by $\int f \varphi \leq\|f\|_{L^{p}(w)}\left\|w^{-\frac{1}{p}} \varphi\right\|_{p^{\prime} \ldots}$
- "local" part needs 2-weight thm for $M_{\text {loc }} \rightarrow$ can prove adapting RdF method (only using $w^{-\frac{1}{\rho}} \in L_{\text {loc }}^{p^{\prime}} \ldots$)

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

- thus $p_{a}^{*} f(x) \lesssim c_{x} M_{\mathrm{loc}}\left(e^{-|y|^{2} / 2} f\right)+\int f \varphi$
- "global" part controlled by $\int f \varphi \leq\|f\|_{L^{p}(w)}\left\|w^{-\frac{1}{p}} \varphi\right\|_{p^{\prime} \ldots}$
- "local" part needs 2-weight thm for $M_{\text {loc }} \rightarrow$ can prove adapting RdF method (only using $w^{-\frac{1}{\rho}} \in L_{\text {loc }}^{p^{\prime}} \ldots$)
- Finally, contants c_{x} absorbed by weight $v \ldots$

Proof of $p_{a}^{*}: L^{p}(w) \rightarrow L^{p}(v)$

...needs bounds of $p_{t}(x, y)$ indep of t
Lemma 2: For fixed x it holds

$$
p_{t}(x, y) \lesssim c_{x}\left[p_{t}^{\Delta}(x-y) e^{-|y|^{2} / 2} \chi_{\{|y| \leq 2|x|\}}+t \varphi(y)\right]
$$

- thus $p_{a}^{*} f(x) \lesssim c_{x} M_{\text {loc }}\left(e^{-|y|^{2} / 2} f\right)+\int f \varphi$
- "global" part controlled by $\int f \varphi \leq\|f\|_{L^{p}(w)}\left\|w^{-\frac{1}{p}} \varphi\right\|_{p^{\prime} \ldots}$
- "local" part needs 2-weight thm for $M_{\text {loc }} \rightarrow$ can prove adapting RdF method (only using $w^{-\frac{1}{\rho}} \in L_{\text {loc }}^{p^{\prime}} \ldots$)
- Finally, contants c_{X} absorbed by weight v_{\ldots}....in fact, from precise bounds on c_{X} can get size estimate $\left\|v^{-\frac{1-\varepsilon}{p}} \varphi\right\|_{p^{\prime}}<\infty$

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{\mathcal{O}}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{\mathcal{O}}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$
- Fractional laplacian operator: $u_{t t}+\frac{1-2 \sigma}{t} u_{t}=L u$

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{\mathcal{O}}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$
- Fractional laplacian operator: $u_{t t}+\frac{1-2 \sigma}{t} u_{t}=L u$
- ...proof can be adapted since $u(t, x)=t^{2 \sigma} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{1+\sigma}}$

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{\mathcal{O}}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$
- Fractional laplacian operator: $u_{t t}+\frac{1-2 \sigma}{t} u_{t}=L u$
- ...proof can be adapted since $u(t, x)=t^{2 \sigma} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{1+\sigma}}$
- Interesting example since $L^{\sigma} f(x)=\lim _{t \rightarrow 0} t^{1-2 \sigma} \frac{\partial u}{\partial t}(t, x) \quad(*)$

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{\mathcal{O}}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$
- Fractional laplacian operator: $u_{t t}+\frac{1-2 \sigma}{t} u_{t}=L u$
- ...proof can be adapted since $u(t, x)=t^{2 \sigma} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{1+\sigma}}$
- Interesting example since $L^{\sigma} f(x)=\lim _{t \rightarrow 0} t^{1-2 \sigma} \frac{\partial u}{\partial t}(t, x) \quad(*)$
- Q: find most general f's : (*) holds a.e.x

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{O}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$
- Fractional laplacian operator: $u_{t t}+\frac{1-2 \sigma}{t} u_{t}=L u$
- ...proof can be adapted since $u(t, x)=t^{2 \sigma} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{1+\sigma}}$
- Interesting example since $L^{\sigma} f(x)=\lim _{t \rightarrow 0} t^{1-2 \sigma} \frac{\partial u}{\partial t}(t, x) \quad(*)$
- Q: find most general f 's: $(*)$ holds a.e. $x \longrightarrow$ non-positive operator!!

Further extensions

- $L_{\alpha}=-\Delta+|x|^{2}+\alpha \longrightarrow$ similar proof...
- Relevant when $\alpha=d$ since $L_{d}\left[e^{-\frac{|x|^{2}}{2}} u\right]=e^{-\frac{|x|^{2}}{2}}(\mathcal{O} u)$
- ... so Thm 2 follows from $e^{-t \sqrt{\mathcal{O}}} f=e^{\frac{|x|^{2}}{2}} e^{-t \sqrt{L_{d}}}\left[e^{-\frac{|x|^{2}}{2}} f\right] \ldots$
- Fractional laplacian operator: $u_{t t}+\frac{1-2 \sigma}{t} u_{t}=L u$
- ...proof can be adapted since $u(t, x)=t^{2 \sigma} \int_{0}^{\infty} e^{-u L} e^{-\frac{t^{2}}{4 u}} \frac{d u}{u^{1+\sigma}}$
- Interesting example since $L^{\sigma} f(x)=\lim _{t \rightarrow 0} t^{1-2 \sigma} \frac{\partial u}{\partial t}(t, x) \quad(*)$
- Q: find most general f's : $(*)$ holds a.e. $x \longrightarrow$ non-positive operator!!

THANKS

