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General setting

Q: Find most general f ’s s.t. e−tLf or e−t
√
Lf → f (x), a.e. x

Here L ∈ { −∆ , −∆ + |x |2 , −∆ + 2x · ∇ }
Formally u(t, x) = e−tLf or e−t

√
Lf solve{

ut + Lxu = 0
u(0) = f

and

{
utt − Lxu = 0, (t, x) ∈ Rd+1

+

u(0) = f

so we look for very general Fatou-type thms...

Usual strategy:

1 show e−tLf (x)→ f (x) for all f in a dense class
2 show bdedness h∗ : X −→ Lp,∞(v), where

h∗f (x) := sup
t>0
|e−tLf |(x)

... and similarly for p∗f (x) := supt>0 |e−t
√
Lf |(x)...
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Classical case: L = −∆

Consider ut = ∆xu (or utt + ∆xu = 0) in Rd+1
+ , with u(0) = f

kernels are explicit → ht(x) = e−
|x|2
4t /(4πt)d/2, pt(x) = ...

also h∗f ≈ p∗f ≈ Mf ,

so from classical theory

M : Lp(w) −→ Lp,∞(w) iff w ∈ Ap

Thus limt→0+ et∆f = f a.e. , ∀ f ∈ ∪w∈ApL
p(w)

... but this excludes f = 1, exp(|x |2−ε), 1
log(e+|x |) ...

Q: Can find larger class of Lp(w)’s containing all such f ’s?

One approach is to consider 2-weight ineq

M : Lp(w) −→ Lp

,∞

(v) for some v(x) > 0

Also need “local” maximal ops

h∗af (x) = sup
0<t<a

|ht ∗ f |(x) (for some a > 0)

...“sup0<t<∞” additionally implies limt→∞ et∆f = 0, a.e. x ...
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A “weak” 2-weight problem

Q: Given an operator T characterize all w > 0 such that

T : Lp(w) −→ Lp(v) for some v(x) > 0

→ Carleson-Jones, Rubio de Francia, Kerman-Sawyer,... around 1980s

Known cases: for T = M and T =Riesz transf one has

sup
R≥1

∥∥∥w− 1
p 1

Rd χBR(0)

∥∥∥
Lp′

<∞ and
∥∥∥ w−

1
p

(1 + |y |)d
∥∥∥
Lp′

<∞

less demanding than trivial NC

T (x , ·) ∈ (Lp(w))∗

⇐⇒
∥∥T (x , ·)w−

1
p

∥∥
Lp′ <∞ ∀ x

Eg, w(y) = (1 + |y |)−d and w(y) = (log+ |y |)
p
p′+ε(1 + |y |)−d

−→6∈ Ap!!

Eg, Lp(w) contains f = 1/ log(e + |x |)...

constructive proof (CJ): suitable “truncations” of M + Ap theory...

non-constr proof (RdF): use VV ineq + abstract factorization thms...
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Known cases: for T = M and T =Riesz transf one has

sup
R≥1

∥∥∥w− 1
p 1

Rd χBR(0)

∥∥∥
Lp′

<∞ and
∥∥∥ w−

1
p

(1 + |y |)d
∥∥∥
Lp′

<∞

less demanding than trivial NC

T (x , ·) ∈ (Lp(w))∗ ⇐⇒
∥∥T (x , ·)w−

1
p

∥∥
Lp′ <∞ ∀ x

Eg, w(y) = (1 + |y |)−d and w(y) = (log+ |y |)
p
p′+ε(1 + |y |)−d−→6∈ Ap!!

Eg, Lp(w) contains f = 1/ log(e + |x |)...

constructive proof (CJ): suitable “truncations” of M + Ap theory...

non-constr proof (RdF): use VV ineq + abstract factorization thms...
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The “local” 2-weight problem

Consider now

h∗af (x) = sup
0<t<a

|ht ∗ f |(x) and p∗a f (x) = sup
0<t<a

|pt ∗ f |(x)

Theorem [HTV’13]:

∀ a > 0 it holds that h∗a (or p∗a) : Lp(w)→ Lp(v) for some v iff

∥∥∥w− 1
p e−δ|y |

2
∥∥∥
Lp′

<∞ ∀ δ > 0 or
∥∥∥ w−

1
p

(1 + |y |)d+1

∥∥∥
Lp′

<∞

Eg, f = exp(|x |2−ε) or f = (1 + |x |)1−ε are in Lp(w) for suitable w ...

Proof uses

global part: sharp decay of ht(x − y) and pt(x − y)
local part: factoriz theory of RdF

Can do something similar for Hermite operator?
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The Hermite operator: L = −∆ + |x |2

Now ut = ∆xu − |x |2u and utt + ∆xu = |x |2u in Rd+1
+ , with u(0) = f

kernels are explicit, but more complicated

e−tL → ht(x , y) = e
− |x−y|2

2 th (2t)
−th t 〈x ,y〉

/(2πsh (2t))d/2

e−t
√
L = t√

4π

∫∞
0 e−uL e−

t2

4u
du
u3/2 −→ pt(x , y) =

∫∞
0

hu(x , y)...du

Theorem 1:

∀ a > 0 it holds that h∗a or p∗a : Lp(w)→ Lp(v) for some v iff

1
∥∥w− 1

p e−( 1
2 +δ)|y |2∥∥

Lp′ <∞, ∀ δ > 0

2

∥∥∥ w−
1
p e−

|y|2
2

(1 + |y |)d/2(log+ |y |)3/2

∥∥∥
Lp′

<∞

Corollary: for all f ∈ Lp(w) ⇒ limt→0+ u(t, x) = f (x), a.e. x

Eg, f = P(x)e
|x|2

2 for heat, and f = e
|x|2

2 /(1 + |x |)d/2 for Poisson...
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The Orns-Uhl operator L = −∆ + 2x · ∇

Similar results hold for Orns-Uhl L = −∆ + 2x · ∇...

Theorem 2

∀ a > 0 it holds that h∗a or p∗a : Lp(w)→ Lp(v) for some v iff

1

∥∥w− 1
p e−(1+δ)|y |2∥∥

Lp′
<∞, ∀ δ > 0

2

∥∥∥ w−
1
p e−|y |

2

(log+ |y |)1/2

∥∥∥
Lp′

<∞

Corollary: for all f ∈ Lp(w) ⇒ limt→0+ u(t, x) = f (x), a.e. x

Example:

f = P(x)e|x|
2

or f =
e|x|

2

(1 + |x |)d log+ |x |
...
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Proofs: Hermite-heat eqn

Ae conv has simple elegant proof using Arnold transform:

it says that us = ∆zu ⇐⇒ Ut = ∆xU − |x |2U

if we set U(t, x) = e−
|x|2

2 th 2t

(ch 2t)
d
2

u( th 2t
2 , x

ch 2t ), ie s = th 2t
2 , z = x

ch 2t

Therefore

lim
t→0

U(t, x) = lim
s→0

u(s,
√
1− 4s2 x) = f (x), a.e.

by non-tang conv of classical heat eqn.

because of th 2t
2 ∈ (0, 1

2 ) only need
∫
|f | e−( 1

2
+δ)|y |2dy <∞

Bdedness of h∗a : Lp(w)→ Lp(v) holds similarly (with a few extra

arguments...)
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Proofs: Hermite-Poisson eqn

Need precise pointwise estimates of

pt(x , y) = t√
4π

∫ ∞
0

hu(x , y) e−
t2

4u du
u3/2

s = th u = ct

∫ 1

0
e−

1
4

( |x−y|2
s

+s|x+y |2) e
− t2/2

log 1+s
1−s

(1−s2)
d
2−1

s
d
2 (log 1+s

1−s
)3/2

ds

Lemma 1: For fixed t, x it holds

pt(x , y) ≈ ct,x
e−|y |

2/2

(1 + |y |)d/2(log+ |y |)3/2

= ϕ(y)

Proof needs careful analysis of integral

0 < s ≤ 1
2 is easier −→ O(e−( 1

2 +δ)|y |2 ) , if |y | > cδ|x |
1
2 ≤ s < 1 is tricky −→ main contrib near s = 1− 1

|y | ...

This gives NC:
∫
pt(x , y)f (y)dy <∞ ⇔ f ∈ L1(ϕ)

...and Lp(w) ⊂ L1(ϕ)⇔
∥∥w− 1

pϕ
∥∥
p′
<∞
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Proof of p∗a : Lp(w)→ Lp(v)

...needs bounds of pt(x , y) indep of t

Lemma 2: For fixed x it holds

pt(x , y) . cx
[
p∆
t (x − y) e−|y |

2/2 χ{|y |≤2|x |} + t ϕ(y)
]

thus p∗a f (x) . cx Mloc(e−|y |
2/2f ) +

∫
f ϕ

“global” part controlled by
∫
f ϕ ≤ ‖f ‖Lp(w)‖w

− 1
pϕ‖p′ ...

“local” part needs 2-weight thm for Mloc

→ can prove adapting RdF
method (only using w−

1
p ∈ Lp

′

loc...)

Finally, contants cx absorbed by weight v ...

...in fact, from precise
bounds on cx can get size estimate ‖v−

1−ε
p ϕ‖p′ <∞
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Further extensions

Lα = −∆ + |x |2 + α −→ similar proof...

Relevant when α = d since Ld [e−
|x|2

2 u] = e−
|x|2

2

(
Ou
)

... so Thm 2 follows from e−t
√
Of = e

|x|2
2 e−t

√
Ld [e−

|x|2
2 f ]...

Fractional laplacian operator: utt + 1−2σ
t ut = Lu

...proof can be adapted since u(t, x) = t2σ
∫∞

0 e−uL e−
t2

4u
du

u1+σ

Interesting example since Lσf (x) = limt→0 t
1−2σ ∂u

∂t (t, x) (∗)
Q: find most general f ’s : (∗) holds a.e. x

−→ non-positive
operator!!

THANKS
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