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Program Hp Boundedness Compactness

Notations

D =
{

z ∈ C
∣∣ |z | < 1

}

A is the normalized area measure on D.

T =
{

z ∈ C
∣∣ |z | = 1

}
= ∂D = R/Z

λ is the Haar measure on T.

p ∈ [1,+∞]
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Classical Hardy spaces on the unit disk

p ∈ [1,+∞): Hp =

{
f ∈ H(D)

∣∣ sup
r<1

∫
T

∣∣f (rz)∣∣p dλ <∞
}

and

‖f ‖p = sup
r<1

(∫
T
|f (rz)|p dλ

)1/p

= sup
r<1
‖fr‖Lp(T)

where fr (z) = f (rz) with r ∈ (0, 1) and z ∈ D.

p = 2: let f (z) =
+∞∑
n=0

anzn be analytic on D: ‖f ‖2 =

(
+∞∑
n=0

|an|2
)1/2

p = +∞: the space of bounded analytic functions on D:

H∞ =

{
f ∈ H(D)

∣∣∣ ‖f ‖∞ = sup
z∈D
|f (z)| <∞

}

They are all Banach spaces...
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Program Hp Boundedness Compactness

Classical Hardy spaces on the unit disk

p ∈ [1,+∞): Hp =

{
f ∈ H(D)

∣∣ sup
r<1

∫
T

∣∣f (rz)∣∣p dλ <∞
}

and

‖f ‖p = sup
r<1

(∫
T
|f (rz)|p dλ

)1/p

= sup
r<1
‖fr‖Lp(T)

where fr (z) = f (rz) with r ∈ (0, 1) and z ∈ D.

p = 2: let f (z) =
+∞∑
n=0

anzn be analytic on D: ‖f ‖2 =

(
+∞∑
n=0

|an|2
)1/2

p = +∞: the space of bounded analytic functions on D:

H∞ =

{
f ∈ H(D)

∣∣∣ ‖f ‖∞ = sup
z∈D
|f (z)| <∞

}

They are all Banach spaces...

VI Curso Internacional de Análisis Matemático en Andalućıa



Program Hp Boundedness Compactness

Some (useful) properties...

Every f ∈ Hp has almost everywhere radial limit f ∗

f ∗(e it) = lim
r→1−

f
(
re it) .

It is known that f ∗ ∈ Lp(T) and ‖f ‖Hp = ‖f ∗‖Lp(T).

In fact, f ∗ ∈ {g ∈ Lp(T) | ĝ(m) = 0 for every m < 0}.

Conversely, if g ∈ Lp(T), with ĝ(m) = 0 for every m < 0, the Poisson
integral of g at point z = re2iπθ

P[g ](z) = Pr ∗ g(θ) =

∫ 1

0

Pr

(
θ − t

)
g
(
e2iπt) dt ,

belongs to Hp. Moreover (P[g ])∗ = g .

We have Hp ∼ {g ∈ Lp(T) | ĝ(m) = 0 for every m < 0}.

Hence we will consider that a function f ∈ Hp is defined, not only on D,
but on the whole D = D ∪ T.
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Conversely, if g ∈ Lp(T), with ĝ(m) = 0 for every m < 0, the Poisson
integral of g at point z = re2iπθ

P[g ](z) = Pr ∗ g(θ) =

∫ 1

0

Pr

(
θ − t

)
g
(
e2iπt) dt ,

belongs to Hp. Moreover (P[g ])∗ = g .

We have Hp ∼ {g ∈ Lp(T) | ĝ(m) = 0 for every m < 0}.
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Some (useful) properties...

Factorization: we can write f ∈ Hp as f = B.g where B is inner (i.e.
|B∗| = 1 a.e.) and g does not vanish on D.

Since |f ∗| = |g∗| (a.e. on T), we have ‖f ‖Hp = ‖g‖Hp .

For every z ∈ D, the point evaluation at z ∈ D, is defined on Hp by

δz(f ) = f (z).

δz is a continuous linear functional and

On the Hilbert space H2, the functional δz is associated to the reproducing

kernel w ∈ D 7−→ 1

1− z̄w
·

∥∥δz∥∥(Hp)∗ =

(
1

1− |z|2

)1/p

≈
1

(1− |z|)1/p
.
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Some (useful) properties...

Indeed: on H2, we want to estimate sup∑
|an|2=1

∣∣∣∣∣
+∞∑
n=0

anzn

∣∣∣∣∣ which is clearly

(
+∞∑
n=0

∣∣∣zn
∣∣∣2)1/2

=

(
1

1− |z |2

)1/2

Now for p 6= 2, let us write f ∈ Hp as f = B.g where B is inner and g does
not vanish on D.

Hence, ∣∣∣δz(f )
∣∣∣p = |f (z)|p ≤ |gp/2(z)|2 ≤

∥∥δz∥∥2

(H2)∗
‖gp/2‖2

H2 =
‖g‖pHp

1− |z |2 ·

so ∥∥δz∥∥(Hp)∗
≤
(

1

1− |z |2

)1/p

.

For the reverse inequality: consider w ∈ D 7→

(
1

1− z̄w

)2/p

·
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Program Hp Boundedness Compactness

Some (useful) properties...

Indeed: on H2, we want to estimate sup∑
|an|2=1

∣∣∣∣∣
+∞∑
n=0

anzn

∣∣∣∣∣ which is clearly

(
+∞∑
n=0

∣∣∣zn
∣∣∣2)1/2

=

(
1

1− |z |2

)1/2

Now for p 6= 2, let us write f ∈ Hp as f = B.g where B is inner and g does
not vanish on D.

Hence, ∣∣∣δz(f )
∣∣∣p = |f (z)|p ≤ |gp/2(z)|2 ≤

∥∥δz∥∥2

(H2)∗
‖gp/2‖2

H2 =
‖g‖pHp

1− |z |2 ·

so ∥∥δz∥∥(Hp)∗
≤
(

1

1− |z |2

)1/p

.

For the reverse inequality: consider w ∈ D 7→

(
1

1− z̄w

)2/p

·

VI Curso Internacional de Análisis Matemático en Andalućıa
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Composition operators

They are the operators of type: Cϕ : f −→ f ◦ ϕ where ϕ : D→ D is
analytic.

A few natural questions:

When is it bounded ?

When is it compact ?

When is it very compact ?

Understand the link: “Operator Cϕ”
??←→ “symbol ϕ”

The composition operators Cϕ : Hp −→ Hp are always bounded.

There are several ways to see/understand this statement !

0 A simple hilbertian proof (cf Shapiro’s monograph).

1 The Littlewood subordination principle.

2 Using the Nevanlinna counting function Nϕ.

3 The Carleson embedding point of view, in terms of Carleson measures.
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Program Hp Boundedness Compactness

Composition operators

They are the operators of type: Cϕ : f −→ f ◦ ϕ where ϕ : D→ D is
analytic.

A few natural questions:

When is it bounded ?

When is it compact ?

When is it very compact ?

Understand the link: “Operator Cϕ”
??←→ “symbol ϕ”

The composition operators Cϕ : Hp −→ Hp are always bounded.

There are several ways to see/understand this statement !

0 A simple hilbertian proof (cf Shapiro’s monograph).

1 The Littlewood subordination principle.

2 Using the Nevanlinna counting function Nϕ.

3 The Carleson embedding point of view, in terms of Carleson measures.

VI Curso Internacional de Análisis Matemático en Andalućıa
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Program Hp Boundedness Compactness

Boundedness

Let us treat the case of the special (but important) case of Moebius
transformations, which are automorphisms of the disk. Consider the Moebius

transformation qa(z) =
a− z

1− āz
, where a ∈ D.

For every polynomial f , we have

‖f ◦ qa‖pHp =

∫
T
|f (z)|p 1− |a|2

|1− āz |2 dλ ≤ 1 + |a|
1− |a| ‖f ‖

p
Hp .
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Program Hp Boundedness Compactness

ϕ(0) = 0

We can now reduce the problem to ϕ(0) = 0.
Indeed,

Write a = ϕ(0) and consider φ = qa ◦ ϕ⇐⇒ qa ◦ φ = ϕ

we have φ(0) = 0.

Hence if we prove that Cφ is bounded (with ‖Cφ‖ = 1):

Cϕ = Cφ ◦ Cqa is bounded as well !
And

‖Cϕ‖ ≤

(
1 + |ϕ(0)|
1− |ϕ(0)|

)1/p
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Program Hp Boundedness Compactness

Boundedness via the subordination principle

Let ϕ : D→ D be an analytic function with ϕ(0) = 0, and g : D→ [0,+∞) a
subharmonic function. We have for every r ∈ (0, 1)∫ 2π

0

g
(
ϕ(re it)

)
dt ≤

∫ 2π

0

g(re it) dt .

Indeed,
let G be an harmonic function such that G = g on rT and g ≤ G on rD.

Think to the Schwarz lemma ! Do not forget that G ◦ ϕ is harmonic !

1

2π

∫ 2π

0

g
(
ϕ(re it)

)
dt ≤ 1

2π

∫ 2π

0

G
(
ϕ(re it)

)
dt = G ◦ ϕ(0) = G(0)

≤ G(0) =
1

2π

∫ 2π

0

G
(
re it) dt =

1

2π

∫ 2π

0

g
(
re it) dt.

Now apply this to g(z) = |f (z)|p, where f ∈ Hp. Letting r ↗ 1−, we get

‖f ◦ ϕ‖pHp ≤ ‖f ‖pHp i.e. ‖Cϕ‖ = 1

The boundedness is proved !!
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1

2π

∫ 2π

0

g
(
ϕ(re it)

)
dt ≤ 1

2π

∫ 2π

0

G
(
ϕ(re it)

)
dt = G ◦ ϕ(0) = G(0)

≤ G(0) =
1

2π

∫ 2π

0

G
(
re it) dt =

1

2π

∫ 2π

0

g
(
re it) dt.

Now apply this to g(z) = |f (z)|p, where f ∈ Hp. Letting r ↗ 1−, we get

‖f ◦ ϕ‖pHp ≤ ‖f ‖pHp i.e. ‖Cϕ‖ = 1

The boundedness is proved !!
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Program Hp Boundedness Compactness

Boundedness via the Nevanlinna function

Nϕ(w) =


∑

ϕ(α)=w

log
1

|α| if w 6= ϕ(0) and w ∈ ϕ(D)

0 else.

(every α occurs as many times as its multiplicity)

(Littlewood)

∀w 6= ϕ(0) , Nϕ(w) ≤ log
∣∣∣ 1−ϕ(0)w
ϕ(0)−w

∣∣∣ = O
(

(1− |w |)
)

when |w | → 1−.

This very nice inequality is a “super Schwarz” lemma: it means, when ϕ(0) = 0∣∣ϕ(z)
∣∣ ≤ ∏

ϕ(α)=ϕ(z)

|α|
(
≤ |z |

)
.

Now, the Littewood-Paley formula (p = 2)

‖f ‖2
2 =

∣∣f (0)
∣∣2 + 2

∫
D
|f ′|2 log

1

|z | dA

implies again the boundedness of Cϕ is bounded on H2.
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Boundedness via the Nevanlinna function

Indeed:

‖f ◦ ϕ‖2
2 =

∣∣f ◦ ϕ(0)
∣∣2 + 2

∫
D
|(f ◦ ϕ)′|2 log

1

|z | dA

=
∣∣f ◦ ϕ(0)

∣∣2 + 2

∫
D

(
|f ′|2 ◦ ϕ

)
×
∣∣ϕ′∣∣2 log

1

|z | dA

=
∣∣f ◦ ϕ(0)

∣∣2 + 2

∫
D
|f ′|2Nϕ dA

Now, in the case ϕ(0) = 0, using the majorization Nϕ(w) ≤ log
∣∣∣ 1

w

∣∣∣, we get

‖f ◦ ϕ‖2
2 ≤

∣∣f (0)
∣∣2 + 2

∫
D
|f ′|2 log

∣∣∣ 1

w

∣∣∣ dA = ‖f ‖2
2

and ∥∥Cϕ
∥∥ ≤ 1
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Program Hp Boundedness Compactness

Boundedness via the Nevanlinna function

Indeed:

‖f ◦ ϕ‖2
2 =

∣∣f ◦ ϕ(0)
∣∣2 + 2

∫
D
|(f ◦ ϕ)′|2 log

1

|z | dA

=
∣∣f ◦ ϕ(0)

∣∣2 + 2

∫
D

(
|f ′|2 ◦ ϕ

)
×
∣∣ϕ′∣∣2 log

1

|z | dA

=
∣∣f ◦ ϕ(0)

∣∣2 + 2

∫
D
|f ′|2Nϕ dA

Now, in the case ϕ(0) = 0, using the majorization Nϕ(w) ≤ log
∣∣∣ 1

w

∣∣∣, we get

‖f ◦ ϕ‖2
2 ≤

∣∣f (0)
∣∣2 + 2

∫
D
|f ′|2 log

∣∣∣ 1

w

∣∣∣ dA = ‖f ‖2
2

and ∥∥Cϕ
∥∥ ≤ 1

VI Curso Internacional de Análisis Matemático en Andalućıa



Program Hp Boundedness Compactness

Boundedness from the Carleson embedding point of view

Point out that∥∥f ◦ ϕ
∥∥p

p
=

∫
D
|f |p dλϕ with λϕ(E) = λ

(
ϕ∗
−1

(E)
)

where E ⊂ D (Borel).

The measure λϕ is the pullback measure associated to ϕ.

The boundedness of Cϕ on Hp is equivalent to the boundedness of

f ∈ Hp 7−→ f ∈ Lp(D, λϕ)
Ξ

h

1
1�h

Thanks to the Carleson embedding
theorem, it means that we control
the size of the Carleson window
W(ξ, h)

ρϕ(h) = sup
ξ∈T

λϕ
(
W(ξ, h)

)
= O (h) when h→ 0
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Program Hp Boundedness Compactness

Compactness

Definition

An operator T : X → Y is compact if T (BX ) is relatively compact in Y .

First remarks (H.Schwartz,’68)
1 The operator Cϕ : Hp → Hp is compact if and only if for every bounded

sequence {fn}n in Hp converging to 0 uniformly on compact subsets of D,
we have fn ◦ ϕ→ 0 in Hp.

2 If Cϕ is compact on Hp, then λϕ(T) = 0, i.e. |ϕ∗| < 1 a.e..

3 If Cϕ is compact on Hp, then lim
|z|→1−

1− |z |
1− |ϕ(z)| = 0

Indeed
1 Exercice with the help of Montel’s theorem (or use weak-star compactness).
2 The sequence (zn) uniformly converges to 0 on compact subsets of D, so∥∥Cϕ

(
zn)∥∥p

p
=
∥∥ϕn

∥∥p

p
−→ 0

but ∥∥ϕn
∥∥p

p
=

∫
T

∣∣ϕ∗∣∣np
dλ −→ λϕ(T).
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Program Hp Boundedness Compactness

Compactness

Definition

An operator T : X → Y is compact if T (BX ) is relatively compact in Y .

First remarks (H.Schwartz,’68)
1 The operator Cϕ : Hp → Hp is compact if and only if for every bounded

sequence {fn}n in Hp converging to 0 uniformly on compact subsets of D,
we have fn ◦ ϕ→ 0 in Hp.

2 If Cϕ is compact on Hp, then λϕ(T) = 0, i.e. |ϕ∗| < 1 a.e..

3 If Cϕ is compact on Hp, then lim
|z|→1−

1− |z |
1− |ϕ(z)| = 0

Indeed
1 Exercice with the help of Montel’s theorem (or use weak-star compactness).
2 The sequence (zn) uniformly converges to 0 on compact subsets of D, so∥∥Cϕ

(
zn)∥∥p

p
=
∥∥ϕn

∥∥p

p
−→ 0

but ∥∥ϕn
∥∥p

p
=

∫
T

∣∣ϕ∗∣∣np
dλ −→ λϕ(T).

VI Curso Internacional de Análisis Matemático en Andalućıa
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Program Hp Boundedness Compactness

Compactness

3 If Cϕ is compact on Hp, then lim
|z|→1−

1− |z |
1− |ϕ(z)| = 0

Indeed

Remember that the functional δz has norm
1

(1− |z |2)1/p
and point out that

C∗ϕ(δz) = δϕ(z).

Then for any sequence zn ∈ D such that |zn| −→ 1−, the sequence

µn = (1− |zn|2)1/pδzn lies in the unit sphere of the dual of Hp.

Since C∗ϕ is compact on (Hp)∗ and µn is weakstar convergent to 0, we have

‖C∗ϕ
(
µn

)
‖(Hp)∗ −→ 0.

but

‖C∗ϕ
(
µn

)
‖(Hp)∗ = (1− |zn|2)1/p

∥∥δϕ(zn)

∥∥
(Hp)∗

=
(1− |zn|2)1/p(

1− |ϕ(zn)|2
)1/p
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Program Hp Boundedness Compactness

Compactness

(Shapiro-Taylor ’73) The problem reduces to the hilbertian case:

Cϕ is compact on Hp if and only if Cϕ is compact on H2.

If p, q ≥ 1 and Cϕ is compact on Hq then Cϕ is compact on Hp. Indeed,

Take {fn}n ∈ BHp uniformly converging to 0 on compact subsets of D.

Write fn = Bn.gn with |B∗n | = 1 a.e. and gn ∈ Hp without zeros in D.

The sequence Gn = g
p/q
n is defined and lies in BHq .

Up to (enough) subsequences, we may assume that

Gn −→ G ∈ BHq , Bn −→ B ∈ BH∞ uniformly on compact subsets of D

and the sequence
(
Gn ◦ ϕ

)
converges to G ◦ ϕ in Hq (since Cϕ ∈ K(Hq))

∀z ∈ D , |fn(z)|p = |Gn(z)|q|Bn(z)|p −→ 0, hence |G(z)|q|B(z)|p = 0

Do not forget that λϕ(T) = 0

The dominated convergence theorem gives that the second term converges to 0.
The compactness of Cϕ on Hp is proved.
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Program Hp Boundedness Compactness

Compactness

(Shapiro-Taylor ’73) The problem reduces to the hilbertian case:

Cϕ is compact on Hp if and only if Cϕ is compact on H2.

If p, q ≥ 1 and Cϕ is compact on Hq then Cϕ is compact on Hp. Indeed,

Take {fn}n ∈ BHp uniformly converging to 0 on compact subsets of D.

Write fn = Bn.gn with |B∗n | = 1 a.e. and gn ∈ Hp without zeros in D.

The sequence Gn = g
p/q
n is defined and lies in BHq .

Up to (enough) subsequences, we may assume that

Gn −→ G ∈ BHq , Bn −→ B ∈ BH∞ uniformly on compact subsets of D

and the sequence
(
Gn ◦ ϕ

)
converges to G ◦ ϕ in Hq (since Cϕ ∈ K(Hq))

∀z ∈ D , |fn(z)|p = |Gn(z)|q|Bn(z)|p −→ 0, hence |G(z)|q|B(z)|p = 0

Do not forget that λϕ(T) = 0∫
T

∣∣fn ◦ϕ∗∣∣p dλ .
∫

T

∣∣(Gn −G) ◦ϕ∗
∣∣q dλ +

∫
T

∣∣G ◦ϕ∗∣∣q∣∣Bn ◦ϕ∗
∣∣p dλ

The dominated convergence theorem gives that the second term converges to 0.
The compactness of Cϕ on Hp is proved.

VI Curso Internacional de Análisis Matemático en Andalućıa
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Program Hp Boundedness Compactness

Compactness

Definition

An operator T : H → H is Hilbert-Schmidt if for an (any) orthonormal basis
(bn), we have ∥∥T

∥∥2

HS
=
∑∥∥T (bn)

∥∥2

H
< +∞

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor ’73) Hilbert-Schmidt composition operators

Cϕ is Hilbert-Schmidt if and only if
∥∥Cϕ

∥∥2

HS
=

∫
T

1

1− |ϕ∗|2 dλ <∞.

The sequence bn(z) = zn (where n ∈ N) is an orthonormal basis of H2...
Let us compute

‖Cϕ‖2
HS =

∞∑
n=0

‖ϕn‖2
H2 =

∞∑
n=0

∫
T
|ϕ∗|2n dλ =

∫
T

1

1− |ϕ∗|2 dλ.

It can be also written ∫
D

1

1− |z |2 dλϕ
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Program Hp Boundedness Compactness

Compactness

Definition

An operator T : H → H is Hilbert-Schmidt if for an (any) orthonormal basis
(bn), we have ∥∥T

∥∥2

HS
=
∑∥∥T (bn)

∥∥2

H
< +∞

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor ’73) Hilbert-Schmidt composition operators

Cϕ is Hilbert-Schmidt if and only if
∥∥Cϕ

∥∥2

HS
=

∫
T

1

1− |ϕ∗|2 dλ <∞.

The sequence bn(z) = zn (where n ∈ N) is an orthonormal basis of H2...
Let us compute

‖Cϕ‖2
HS =

∞∑
n=0

‖ϕn‖2
H2 =

∞∑
n=0

∫
T
|ϕ∗|2n dλ =

∫
T

1

1− |ϕ∗|2 dλ.

It can be also written ∫
D

1

1− |z |2 dλϕ

VI Curso Internacional de Análisis Matemático en Andalućıa
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Program Hp Boundedness Compactness

Compactness on Hardy spaces: two examples

ϕ(z) =
1 + z

2

10

Πa

Lens map (0 < a < 1)
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Program Hp Boundedness Compactness

Some characterizations of compactness

Theorem(Power 80, Mac-Cluer 85)

Cϕ is compact if and only if λϕ is a vanishing Carleson measure i.e.

ρϕ(h) = sup
ξ∈T

λϕ
(
W (ξ, h)

)
= o (h) when h→ 0

Theorem(Shapiro ’87)

Cϕ is compact if and only if νϕ(h) = sup
|w|≥1−h

Nϕ(w) = o(h) when h→ 0

Actually:

‖Cϕ‖e = lim sup
|w|→1−

(
Nϕ(w)

1− |w |

)1/2

= lim
h→0

(
νϕ(h)

h

)1/2

.

(Ackeroyd ’10)

‖Cϕ‖e = lim sup
|a|→1−

∥∥∥Cϕ
( ka

‖ka‖H2

)∥∥∥
H2
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Program Hp Boundedness Compactness

Some characterizations of compactness

Let us prove that Cϕ is compact when sup
|w|≥1−h

Nϕ(w) = o(h) when h→ 0

Consider {fn}n ∈ BH2 uniformly converging to 0 on compact subsets of D, and
remember the Littlewood-Paley formula

‖fn ◦ ϕ‖2
2 =

∣∣fn ◦ ϕ(0)
∣∣2 + 2

∫
D
|f ′n |2Nϕ(z) dA

=
∣∣fn ◦ ϕ(0)

∣∣2 + 2

∫
rD
|f ′n |2Nϕ(z) dA+ 2

∫
D\rD
|f ′n |2Nϕ(z) dA

for any r ∈ (0, 1).

But, fixing ε > 0, we may consider some r ∈ (0, 1) (now fixed) such that

∀z /∈ rD , Nϕ(z) ≤ ε log(1/|z |)

On the other hand, both fn ◦ ϕ(0) −→ 0 and

∫
rD
|f ′n |2Nϕ(z) dA −→ 0.

Hence, for n large enough

‖fn ◦ ϕ‖2
2 ≤ ε+ 2ε

∫
D\rD
|f ′n |2 log(1/|z |) dA ≤ ε+ 2ε‖fn‖2

2 = 3ε.

ok
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Program Hp Boundedness Compactness

Back to non-angular derivative

As a corollary, we get

Cϕ is compact on Hp <=⇒ lim
|z|→1−

1− |ϕ(z)|
1− |z | =∞

if ϕ univalent (or finitely valent)

Indeed, if ϕ is p-valent:

Nϕ(w)

1− |w | ≤ p
max{log(1/|z |) | ϕ(z) = w}

1− |w | ≈ p max
{ 1− |z |

1− |ϕ(z)| : ϕ(z) = w
}
−→ 0

The converse is false in general: McCluer-Shapiro (’86) constructed inner
functions ϕ admitting no angular derivatives at any point of the circle.
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Angular derivative

We shall say that ϕ satisfies (NC) if lim
|z|→1−

1− |ϕ(z)|
1− |z | =∞.

We say that ϕ has an angular derivative at ξ ∈ T, if for some a ∈ T the
following non-tangential limit exists in C:

∠ lim
z→ξ

ϕ(z)− a

z − ξ (AD)

Theorem (Julia–Carathéodory)

ϕ satisfies (NC) if and only ϕ has angular derivative at no point ξ ∈ T.

Observe that, if ϕ has angular derivative at ξ and a ∈ T is like in (AD), then

∠ lim
z→ξ

ϕ(z) = a.

This allowed MacCluer and Shapiro (’86) to construct an example of a (finitely
valent) symbol ϕ : D→ D such that Cϕ is compact, but ϕ is onto: ϕ(D) = D.
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Construction of the McCluer-Shapiro’s example

Let g : (0,+∞)→ R be a continuous decreasing function such that
lim

x→0+
g(x) = +∞ (for instance g(x) = 1/x). And consider the domain

Ω = {x + iy : g(x) < y < g(x) + 4π}

ai�4Πi

ai

�

Let f : D→ Ω be a Riemann mapping (a conformal representation) and define

ϕ1(z) = exp
(
− f (z)

)
, z ∈ D .

and keep in mind that

|ϕ1(z)| −→ 1− ⇐⇒ Re(f (z)) −→ 0+
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Angular derivative

ϕ1 is 2-valent and

has no point in T as radial limit (the only way to approach T
is turning and turning inside the disk D).

ϕ1 is almost onto: ϕ1(D) = D \ {0}.

Take a ∈ D \ {0} and consider ϕ = Qa ◦ ϕ1, where Qa(z) =
( a− z

1− āz

)2

.

ϕ is onto and Cϕ = Cϕ1 ◦ CQa is compact.
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Merci !
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