Composition operators on Hardy spaces

Episode I

VI Curso Internacional de Análisis Matemático en Andalucía

Antequera septiembre 2014

Pascal Lefèvre Université d'Artois, France

Program		Boundedness	Compactness
••	0000	000000	0000000000
Program			

Lecture 1

- Classical Hardy spaces on $\mathbb D$ Composition operators
- - Boundedness
 - Compactness

Program	HP	Boundedness	Compactness
00	0000	000000	0000000000
Program			

Lecture 1

- $\bullet\,$ Classical Hardy spaces on $\mathbb D$
- Composition operators
 - Boundedness
 - Compactness

2 Lecture 2

- *H*[∞]
- Hardy-Orlicz spaces and their composition operators
- Carleson versus Nevanlinna

Program	HP	Boundedness	Compactness
00	0000	000000	0000000000
Program			

Lecture 1

- Classical Hardy spaces on $\mathbb D$
- Composition operators
 - Boundedness
 - Compactness

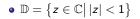
2 Lecture 2

- *H*[∞]
- Hardy-Orlicz spaces and their composition operators
- Carleson versus Nevanlinna

3 Lecture 3

- Schatten classes, approximation numbers
- Absolutely summing composition operators
- Some open problems...

Program		Boundedness	Compactness
00	0000	0000000	0000000000
Notations			



Program		Boundedness	Compactness
$\circ \bullet$	0000	0000000	000000000
Notations			

•
$$\mathbb{D} = \left\{ z \in \mathbb{C} \middle| |z| < 1 \right\}$$

Program		Boundedness	Compactness
$\circ \bullet$	0000	0000000	000000000
Notations			

•
$$\mathbb{D} = \left\{ z \in \mathbb{C} \middle| |z| < 1 \right\}$$

•
$$\mathbb{T} = \left\{ z \in \mathbb{C} \middle| |z| = 1 \right\} = \partial \mathbb{D} = \mathbb{R}/\mathbb{Z}$$

Program		Boundedness	Compactness
$\circ \bullet$	0000	0000000	000000000
Notations			

•
$$\mathbb{D} = \left\{ z \in \mathbb{C} \middle| |z| < 1 \right\}$$

•
$$\mathbb{T} = \left\{ z \in \mathbb{C} \middle| |z| = 1 \right\} = \partial \mathbb{D} = \mathbb{R}/\mathbb{Z}$$

 λ is the Haar measure on $\mathbb{T}.$

Program		Boundedness	Compactness
$\circ \bullet$	0000	0000000	000000000
Notations			

•
$$\mathbb{D} = \left\{ z \in \mathbb{C} \middle| |z| < 1 \right\}$$

•
$$\mathbb{T} = \left\{ z \in \mathbb{C} \middle| |z| = 1 \right\} = \partial \mathbb{D} = \mathbb{R}/\mathbb{Z}$$

 λ is the Haar measure on $\mathbb{T}.$

• $p \in [1, +\infty]$

н₽ ●000 Boundedness

Compactness

Classical Hardy spaces on the unit disk

•
$$p \in [1, +\infty)$$
: $H^p = \left\{ f \in \mathcal{H}(\mathbb{D}) | \sup_{r < 1} \int_{\mathbb{T}} |f(rz)|^p d\lambda < \infty \right\}$
and

H₽ ●000 Boundedness

Compactness

Classical Hardy spaces on the unit disk

•
$$p \in [1, +\infty)$$
:
and
 $\|f\|_{\rho} = \sup_{r < 1} \left(\int_{\mathbb{T}} |f(rz)|^{\rho} d\lambda < \infty \right)$
 $\|f\|_{\rho} = \sup_{r < 1} \left(\int_{\mathbb{T}} |f(rz)|^{\rho} d\lambda \right)^{1/\rho}$

н^р ●००० Boundedness

Compactness

Classical Hardy spaces on the unit disk

•
$$\underline{p \in [1, +\infty)}$$
: $H^p = \left\{ f \in \mathcal{H}(\mathbb{D}) | \sup_{r < 1} \int_{\mathbb{T}} |f(rz)|^p d\lambda < \infty \right\}$
and

$$\|f\|_{p} = \sup_{r<1} \left(\int_{\mathbb{T}} |f(rz)|^{p} d\lambda\right)^{1/p} = \sup_{r<1} \|f_{r}\|_{L^{p}(\mathbb{T})}$$

where $f_r(z) = f(rz)$ with $r \in (0,1)$ and $z \in \overline{\mathbb{D}}$.

H₽ ●○○○ Boundedness

Compactness

Classical Hardy spaces on the unit disk

•
$$p \in [1, +\infty)$$
: $H^p = \left\{ f \in \mathcal{H}(\mathbb{D}) \middle| \sup_{r < 1} \int_{\mathbb{T}} \left| f(rz) \right|^p d\lambda < \infty \right\}$
and
 $\|f\|_p = \sup_{r < 1} \left(\int_{\mathbb{T}} |f(rz)|^p d\lambda \right)^{1/p} = \sup_{r < 1} \|f_r\|_{L^p(\mathbb{T})}$

where $f_r(z) = f(rz)$ with $r \in (0,1)$ and $z \in \overline{\mathbb{D}}$.

•
$$\underline{p=2}$$
: let $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ be analytic on \mathbb{D} : $\|f\|_2 = \left(\sum_{n=0}^{+\infty} |a_n|^2\right)^{1/2}$

H^p ●○○○ Boundedness

Compactness

Classical Hardy spaces on the unit disk

•
$$p \in [1, +\infty)$$
: $H^p = \left\{ f \in \mathcal{H}(\mathbb{D}) \middle| \sup_{r < 1} \int_{\mathbb{T}} \left| f(rz) \right|^p d\lambda < \infty \right\}$
and
 $\|f\|_p = \sup_{r < 1} \left(\int_{\mathbb{T}} |f(rz)|^p d\lambda \right)^{1/p} = \sup_{r < 1} \|f_r\|_{L^p(\mathbb{T})}$

where $f_r(z) = f(rz)$ with $r \in (0,1)$ and $z \in \overline{\mathbb{D}}$.

•
$$\underline{p=2}$$
: let $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ be analytic on \mathbb{D} : $\|f\|_2 = \left(\sum_{n=0}^{+\infty} |a_n|^2\right)^{1/2}$

• $p = +\infty$: the space of bounded analytic functions on \mathbb{D} :

$$H^{\infty} = \left\{ f \in \mathcal{H}(\mathbb{D}) \Big| \, \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| < \infty \right\}$$

H^p ●○○○ Boundedness

Compactness

Classical Hardy spaces on the unit disk

•
$$p \in [1, +\infty)$$
: $H^{p} = \left\{ f \in \mathcal{H}(\mathbb{D}) \middle| \sup_{r < 1} \int_{\mathbb{T}} \left| f(rz) \right|^{p} d\lambda < \infty \right\}$
and
 $\|f\|_{p} = \sup_{r < 1} \left(\int_{\mathbb{T}} |f(rz)|^{p} d\lambda \right)^{1/p} = \sup_{r < 1} \|f_{r}\|_{L^{p}(\mathbb{T})}$

where $f_r(z) = f(rz)$ with $r \in (0,1)$ and $z \in \overline{\mathbb{D}}$.

•
$$\underline{p=2}$$
: let $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ be analytic on \mathbb{D} : $\|f\|_2 = \left(\sum_{n=0}^{+\infty} |a_n|^2\right)^{1/2}$

• $p = +\infty$: the space of bounded analytic functions on \mathbb{D} :

$$H^{\infty} = \left\{ f \in \mathcal{H}(\mathbb{D}) \Big| \, \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| < \infty \right\}$$

They are all Banach spaces...

VI Curso Internacional de Análisis Matemático en Andalucía

$$f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it}).$$

It is known that $f^* \in L^p(\mathbb{T})$ and $||f||_{H^p} = ||f^*||_{L^p(\mathbb{T})}$.

In fact, $f^* \in \{g \in L^p(\mathbb{T}) \mid \hat{g}(m) = 0 \text{ for every } m < 0\}.$

$$f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it}).$$

It is known that $f^* \in L^p(\mathbb{T})$ and $||f||_{H^p} = ||f^*||_{L^p(\mathbb{T})}$.

In fact, $f^* \in \{g \in L^p(\mathbb{T}) \mid \hat{g}(m) = 0 \text{ for every } m < 0\}.$

• Conversely, if $g \in L^{p}(\mathbb{T})$, with $\hat{g}(m) = 0$ for every m < 0, the Poisson integral of g at point $z = re^{2i\pi\theta}$

$$P[g](z) = P_r * g(\theta) = \int_0^1 P_r(\theta - t)g(e^{2i\pi t}) dt,$$

belongs to H^p . Moreover $(P[g])^* = g$.

$$f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it}).$$

It is known that $f^* \in L^p(\mathbb{T})$ and $||f||_{H^p} = ||f^*||_{L^p(\mathbb{T})}$.

In fact, $f^* \in \{g \in L^p(\mathbb{T}) \mid \hat{g}(m) = 0 \text{ for every } m < 0\}.$

Conversely, if g ∈ L^p(T), with ĝ(m) = 0 for every m < 0, the Poisson integral of g at point z = re^{2iπθ}

$$P[g](z) = P_r * g(\theta) = \int_0^1 P_r(\theta - t)g(e^{2i\pi t}) dt,$$

belongs to H^p . Moreover $(P[g])^* = g$.

• We have $H^p \sim \{g \in L^p(\mathbb{T}) \mid \hat{g}(m) = 0 \text{ for every } m < 0\}.$

$$f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it}).$$

It is known that $f^* \in L^p(\mathbb{T})$ and $||f||_{H^p} = ||f^*||_{L^p(\mathbb{T})}$.

In fact, $f^* \in \{g \in L^p(\mathbb{T}) \mid \hat{g}(m) = 0 \text{ for every } m < 0\}.$

Conversely, if g ∈ L^p(T), with ĝ(m) = 0 for every m < 0, the Poisson integral of g at point z = re^{2iπθ}

$$P[g](z) = P_r * g(\theta) = \int_0^1 P_r(\theta - t)g(e^{2i\pi t}) dt,$$

belongs to H^p . Moreover $(P[g])^* = g$.

- We have $H^p \sim \{g \in L^p(\mathbb{T}) \mid \hat{g}(m) = 0 \text{ for every } m < 0\}.$
- Hence we will consider that a function f ∈ H^p is defined, not only on D, but on the whole D = D ∪ T.

• Factorization: we can write $f \in H^p$ as f = B.g where B is inner (*i.e.* $|B^*| = 1$ *a.e.*) and g does not vanish on \mathbb{D} .

• Factorization: we can write $f \in H^p$ as f = B.g where B is inner (*i.e.* $|B^*| = 1$ a.e.) and g does not vanish on \mathbb{D} . Since $|f^*| = |g^*|$ (a.e. on \mathbb{T}), we have $||f||_{H^p} = ||g||_{H^p}$.

- Factorization: we can write $f \in H^p$ as f = B.g where B is inner (*i.e.* $|B^*| = 1$ a.e.) and g does not vanish on \mathbb{D} . Since $|f^*| = |g^*|$ (a.e. on \mathbb{T}), we have $||f||_{H^p} = ||g||_{H^p}$.
- For every $z \in \mathbb{D}$, the point evaluation at $z \in \mathbb{D}$, is defined on H^p by

$$\delta_z(f)=f(z).$$

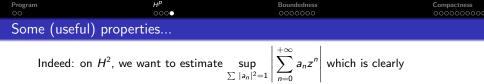
 δ_{z} is a continuous linear functional and

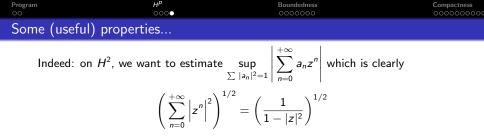
- Factorization: we can write $f \in H^p$ as f = B.g where B is inner (*i.e.* $|B^*| = 1$ a.e.) and g does not vanish on \mathbb{D} . Since $|f^*| = |g^*|$ (a.e. on \mathbb{T}), we have $||f||_{H^p} = ||g||_{H^p}$.
- For every $z \in \mathbb{D}$, the point evaluation at $z \in \mathbb{D}$, is defined on H^p by

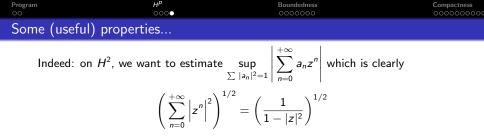
$$\delta_z(f)=f(z).$$

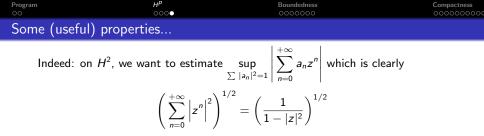
- δ_z is a continuous linear functional and
 - On the Hilbert space H^2 , the functional δ_z is associated to the reproducing kernel $w \in \overline{\mathbb{D}} \longmapsto \frac{1}{1 \overline{z}w}$.

•
$$\|\delta_z\|_{(H^p)^*} = \left(\frac{1}{1-|z|^2}\right)^{1/p} \approx \frac{1}{(1-|z|)^{1/p}}$$





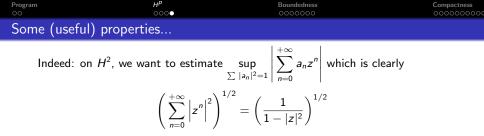




Hence,

$$\left|\delta_{z}(f)\right|^{p} = |f(z)|^{p} \leq |g^{p/2}(z)|^{2} \leq \left\|\delta_{z}\right\|_{(H^{2})^{*}}^{2} \left\|g^{p/2}\right\|_{H^{2}}^{2} = \frac{\left\|g\right\|_{H^{p}}^{p}}{1-|z|^{2}}.$$

so

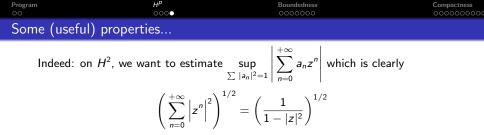


Hence,

$$\left| \delta_z(f) \right|^p = |f(z)|^p \le |g^{p/2}(z)|^2 \le \left\| \delta_z \right\|_{(H^2)^*}^2 \|g^{p/2}\|_{H^2}^2 = \frac{\|g\|_{H^p}^p}{1 - |z|^2}.$$

so

$$\|\delta_z\|_{(H^p)^*} \le \left(rac{1}{1-|z|^2}
ight)^{1/p}.$$



Hence,

$$\left|\delta_{z}(f)
ight|^{p}=\left|f(z)
ight|^{p}\leq\left|g^{p/2}(z)
ight|^{2}\leq\left\|\delta_{z}
ight\|^{2}_{(H^{2})^{*}}\left\|g^{p/2}
ight\|^{2}_{H^{2}}=rac{\left\|g
ight\|^{p}_{H^{p}}}{1-|z|^{2}}.$$

so

$$\|\delta_z\|_{(H^p)^*} \leq \left(\frac{1}{1-|z|^2}\right)^{1/p}.$$

For the reverse inequality: consider $w \in \overline{\mathbb{D}} \mapsto \left(\frac{1}{1-\overline{z}w}\right)^{2/p}$.

Program			Boundednes	55	Compactness
00	0000		000000)	000000000
Composition	operators				
These are al		C . C	6		D :-

They are the operators of type: $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

A few natural questions:

Program	H ^p	Boundedness	Compactness
		000000	
Composition o	perators		

They are the operators of type: $C_{\varphi}: f \longrightarrow$ analytic.

$$f : f \longrightarrow f \circ \varphi$$
 where $\varphi : \mathbb{D} \to \mathbb{D}$ is

- A few natural questions:
 - When is it bounded ?

Program	H^{p}	Boundedness	Compactness
00	0000	000000	000000000
Composition ope	rators		

They are the operators of type: analytic.

$$C_{\varphi}: f \longrightarrow f \circ \varphi$$
 where $\varphi : \mathbb{D} \to \mathbb{D}$ is

- A few natural questions:
 - When is it bounded ?
 - When is it compact ?

Program	H^p	Boundedness	Compactness
		000000	
Composition o	perators		

They are the operators of type: analytic.

$$C_{\varphi}: f \longrightarrow f \circ \varphi$$
 where $\varphi : \mathbb{D} \to \mathbb{D}$ is

- A few natural questions:
 - When is it bounded ?
 - When is it compact ?
 - When is it very compact ?

Program	HP	Boundedness	Compactness			
		000000				
Composition operators						

They are the operators of type: $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi : \mathbb{D} \to \mathbb{D}$ is analytic.

- A few natural questions:
 - When is it bounded ?
 - When is it compact ?
 - When is it very compact ?
 - Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

Program		Boundedness	Compactness			
00	0000	000000	000000000			
Composition operators						

They are the operators of type: $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi : \mathbb{D} \to \mathbb{D}$ is analytic.

- A few natural questions:
 - When is it bounded ?
 - When is it compact ?
 - When is it very compact ?
 - Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

The composition operators $C_{\varphi}: H^p \longrightarrow H^p$ are always bounded.

Program	H ^r	Boundedness	Compactness			
		000000				
Composition operators						

They are the operators of type: $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

- A few natural questions:
 - When is it bounded ?
 - When is it compact ?
 - When is it very compact ?
 - Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

The composition operators $C_{\varphi}: H^p \longrightarrow H^p$ are always bounded.

There are several ways to see/understand this statement !

Program	HP	Boundedness	Compactness
00	0000	000000	000000000
Composition op	erators		

 $\begin{array}{ll} \text{They are the operators of type:} & \textit{$C_{\varphi}:f\longrightarrow f\circ \varphi$} & \text{where $\varphi:\mathbb{D}\to\mathbb{D}$ is analytic.} \end{array}$

A few natural questions:

- When is it bounded ?
- When is it compact ?
- When is it very compact ?
- Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

The composition operators $C_{\varphi}: H^p \longrightarrow H^p$ are always bounded.

There are several ways to see/understand this statement !

• A simple hilbertian proof (cf Shapiro's monograph).

Program	HF	Boundedness	Compactness
		•••••	
Composition o	perators		

 $\begin{array}{ll} \text{They are the operators of type:} & \textit{$\mathcal{C}_{\varphi}:f\longrightarrow f\circ \varphi$} & \text{where $\varphi:\mathbb{D}\to\mathbb{D}$ is analytic.} \end{array}$

A few natural questions:

- When is it bounded ?
- When is it compact ?
- When is it very compact ?
- Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

The composition operators $C_{\varphi}: H^{p} \longrightarrow H^{p}$ are always bounded.

There are several ways to see/understand this statement !

- A simple hilbertian proof (cf Shapiro's monograph).
- The Littlewood subordination principle.

Program	HF	Boundedness	Compactness
		•••••	
Composition o	perators		

They are the operators of type: $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi : \mathbb{D} \to \mathbb{D}$ is analytic.

A few natural questions:

- When is it bounded ?
- When is it compact ?
- When is it very compact ?
- Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

The composition operators $C_{\varphi}: H^{p} \longrightarrow H^{p}$ are always bounded.

There are several ways to see/understand this statement !

- A simple hilbertian proof (cf Shapiro's monograph).
- The Littlewood subordination principle.
- **2** Using the Nevanlinna counting function N_{φ} .

Program		Boundedness	Compactness
00	0000	000000	000000000
Composition c	perators		

They are the operators of type: $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi : \mathbb{D} \to \mathbb{D}$ is analytic.

A few natural questions:

- When is it bounded ?
- When is it compact ?
- When is it very compact ?
- Understand the link: "Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

The composition operators $C_{\varphi}: H^p \longrightarrow H^p$ are always bounded.

There are several ways to see/understand this statement !

- A simple hilbertian proof (cf Shapiro's monograph).
- The Littlewood subordination principle.
- **2** Using the Nevanlinna counting function N_{φ} .
- The Carleson embedding point of view, in terms of Carleson measures.

Program	HP	Boundedness	Compactness
00	0000	000000	0000000000
Boundedness			

Program	Н ^р	Boundedness	Compactness
		000000	
Boundedness			

For every polynomial f, we have

$$\|f\circ q_a\|_{H^p}^p = \int_{\mathbb{T}} |f(z)|^p rac{1-|a|^2}{|1-ar{a}z|^2} \, d\lambda \leq rac{1+|a|}{1-|a|} \|f\|_{H^p}^p.$$

Program	Н ^р	Boundedness	Compactness
		000000	
Boundedness			

For every polynomial f, we have

$$\|f\circ q_{a}\|_{H^{p}}^{p}=\int_{\mathbb{T}}|f(z)|^{p}rac{1-|a|^{2}}{|1-ar{a}z|^{2}}\,d\lambda\leqrac{1+|a|}{1-|a|}\|f\|_{H^{p}}^{p}.$$

Hence

$$\|C_{q_{\boldsymbol{a}}}\| \leq \left(rac{1+|\boldsymbol{a}|}{1-|\boldsymbol{a}|}
ight)^{1/p}$$

Program	Н ^р	Boundedness	Compactness
		000000	
Boundedness			

For every polynomial f, we have

$$\|f\circ q_{a}\|_{H^{p}}^{p}=\int_{\mathbb{T}}|f(z)|^{p}rac{1-|a|^{2}}{|1-ar{a}z|^{2}}\,d\lambda\leqrac{1+|a|}{1-|a|}\|f\|_{H^{p}}^{p}.$$

Actually

$$\|C_{q_a}\| = \left(\frac{1+|a|}{1-|a|}\right)^{1/p}$$

Program		Boundedness	Compactness
00	0000	000000	000000000
arphi(0)=0			

Program		Boundedness	Compactness
00	0000	000000	000000000
$\varphi(0)=0$			

Write $a = \varphi(0)$ and consider $\phi = q_a \circ \varphi \iff q_a \circ \phi = \varphi$

Program		Boundedness	Compactness
00	0000	000000	000000000
arphi(0)=0			

Write $a = \varphi(0)$ and consider $\phi = q_a \circ \varphi \iff q_a \circ \phi = \varphi$ we have $\phi(0) = 0$.

Program		Boundedness	Compactness
00	0000	000000	000000000
arphi(0)=0			

Write $a = \varphi(0)$ and consider $\phi = q_a \circ \varphi \iff q_a \circ \phi = \varphi$ we have $\phi(0) = 0$.

Hence if we prove that C_{ϕ} is bounded (with $\|C_{\phi}\| = 1$):

 $C_{\varphi} = C_{\phi} \circ C_{q_a}$ is bounded as well !

And

Program		Boundedness	Compactness
00	0000	000000	000000000
arphi(0)=0			

Write $a = \varphi(0)$ and consider $\phi = q_a \circ \varphi \iff q_a \circ \phi = \varphi$ we have $\phi(0) = 0$.

Hence if we prove that C_{ϕ} is bounded (with $\|C_{\phi}\| = 1$):

 $C_{arphi} = C_{\phi} \circ C_{q_a}$ is bounded as well !

And

$$\|\mathcal{C}_{\varphi}\| \leq \left(rac{1+|arphi(\mathbf{0})|}{1-|arphi(\mathbf{0})|}
ight)^{1/p}$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} gig(arphi(\mathit{re}^{it})ig)\, dt \leq \int_0^{2\pi} g(\mathit{re}^{it})\, dt\, .$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} gig(arphi(\mathit{re}^{it})ig)\,dt \leq \int_0^{2\pi} g(\mathit{re}^{it})\,dt\,.$$

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} g\bigl(\varphi(re^{it})\bigr)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt\,.$$

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

Think to the Schwarz lemma !

$$rac{1}{2\pi}\int_{0}^{2\pi}gig(arphi(\mathit{re}^{\mathit{it}})ig)\,\mathit{dt} \quad \leq rac{1}{2\pi}\int_{0}^{2\pi}Gig(arphi(\mathit{re}^{\mathit{it}})ig)\,\mathit{dt} =$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} g\bigl(\varphi(re^{it})\bigr)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt\,.$$

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$rac{1}{2\pi}\int_{0}^{2\pi}gig(arphi(\mathsf{re}^{it})ig)\,dt \quad \leq rac{1}{2\pi}\int_{0}^{2\pi}Gig(arphi(\mathsf{re}^{it})ig)\,dt = G\circarphi(0) =$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} g\bigl(\varphi(re^{it})\bigr)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt\,.$$

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\frac{1}{2\pi} \int_0^{2\pi} g\left(\varphi(re^{it})\right) dt \quad \leq \frac{1}{2\pi} \int_0^{2\pi} G\left(\varphi(re^{it})\right) dt = G \circ \varphi(0) = G(0)$$

$$\leq G(0) =$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} g\bigl(\varphi(re^{it})\bigr)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt\,.$$

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} g\left(\varphi(re^{it})\right) dt &\leq \frac{1}{2\pi} \int_0^{2\pi} G\left(\varphi(re^{it})\right) dt = G \circ \varphi(0) = G(0) \\ &\leq G(0) = \frac{1}{2\pi} \int_0^{2\pi} G\left(re^{it}\right) dt = \end{aligned}$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} g\bigl(\varphi(re^{it})\bigr)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt\,.$$

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} g\left(\varphi(re^{it})\right) dt &\leq \frac{1}{2\pi} \int_0^{2\pi} G\left(\varphi(re^{it})\right) dt = G \circ \varphi(0) = G(0) \\ &\leq G(0) = \frac{1}{2\pi} \int_0^{2\pi} G\left(re^{it}\right) dt = \frac{1}{2\pi} \int_0^{2\pi} g\left(re^{it}\right) dt. \end{split}$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} gig(arphi(re^{it})ig)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt$$
 .

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} g\big(\varphi(re^{it})\big) \, dt &\leq \frac{1}{2\pi} \int_0^{2\pi} G\big(\varphi(re^{it})\big) \, dt = G \circ \varphi(0) = G(0) \\ &\leq G(0) = \frac{1}{2\pi} \int_0^{2\pi} G\big(re^{it}\big) \, dt = \frac{1}{2\pi} \int_0^{2\pi} g\big(re^{it}\big) \, dt. \end{split}$$

Now apply this to $g(z) = |f(z)|^p$, where $f \in H^p$.

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} gig(arphi(re^{it})ig)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt$$
 .

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} g\big(\varphi(\mathsf{r} \mathsf{e}^{it})\big) \, dt &\leq \frac{1}{2\pi} \int_0^{2\pi} G\big(\varphi(\mathsf{r} \mathsf{e}^{it})\big) \, dt = G \circ \varphi(0) = G(0) \\ &\leq G(0) = \frac{1}{2\pi} \int_0^{2\pi} G\big(\mathsf{r} \mathsf{e}^{it}\big) \, dt = \frac{1}{2\pi} \int_0^{2\pi} g\big(\mathsf{r} \mathsf{e}^{it}\big) \, dt. \end{split}$$

Now apply this to $g(z) = |f(z)|^p$, where $f \in H^p$. Letting $r \nearrow 1^-$, we get

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} gig(arphi(re^{it})ig)\,dt \leq \int_0^{2\pi} gig(re^{it})\,dt$$
 .

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} g\big(\varphi(\mathsf{r} \mathsf{e}^{it})\big) \, dt &\leq \frac{1}{2\pi} \int_0^{2\pi} G\big(\varphi(\mathsf{r} \mathsf{e}^{it})\big) \, dt = G \circ \varphi(0) = G(0) \\ &\leq G(0) = \frac{1}{2\pi} \int_0^{2\pi} G\big(\mathsf{r} \mathsf{e}^{it}\big) \, dt = \frac{1}{2\pi} \int_0^{2\pi} g\big(\mathsf{r} \mathsf{e}^{it}\big) \, dt. \end{split}$$

Now apply this to $g(z) = |f(z)|^p$, where $f \in H^p$. Letting $r \nearrow 1^-$, we get

$$\|f\circ\varphi\|_{H^p}^p\leq\|f\|_{H^p}^p\qquad i.e.$$

Boundedness via the subordination principle

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be an analytic function with $\varphi(0) = 0$, and $g \colon \mathbb{D} \to [0, +\infty)$ a subharmonic function. We have for every $r \in (0, 1)$

$$\int_0^{2\pi} gig(arphi(re^{it})ig)\,dt \leq \int_0^{2\pi} g(re^{it})\,dt$$
 .

Indeed,

let G be an harmonic function such that G = g on $r\mathbb{T}$ and $g \leq G$ on $r\mathbb{D}$.

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} g\left(\varphi(re^{it})\right) dt &\leq \frac{1}{2\pi} \int_0^{2\pi} G\left(\varphi(re^{it})\right) dt = G \circ \varphi(0) = G(0) \\ &\leq G(0) = \frac{1}{2\pi} \int_0^{2\pi} G\left(re^{it}\right) dt = \frac{1}{2\pi} \int_0^{2\pi} g\left(re^{it}\right) dt. \end{split}$$

Now apply this to $g(z) = |f(z)|^p$, where $f \in H^p$. Letting $r \nearrow 1^-$, we get

$$\|f \circ \varphi\|_{H^p}^p \le \|f\|_{H^p}^p \qquad i.e. \qquad \|C_{\varphi}\| = 1$$

The boundedness is proved !!

Program	Boundedness	Compactness
	0000000	

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \\ (every \ \alpha \ occurs \ as \ many \ times \ as \ its \ multiplicity) \end{cases}$$

Program		Boundedness	Compactness
00	0000	0000000	000000000
	1 1 NI II C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \end{cases}$$

(every lpha occurs as many times as its multiplicity)

(Littlewood) $\forall w \neq \varphi(0), \quad N_{\varphi}(w) \leq \log \left| \frac{1 - \overline{\varphi(0)} w}{\varphi(0) - w} \right| \qquad = O\Big((1 - |w|)\Big) \quad \text{when } |w| \to 1^{-}.$

Program		Boundedness	Compactness
00	0000	0000000	000000000
D	the close Mission Provide Com	and an	

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \\ (every \ \alpha \ occurs \ as \ many \ times \ as \ its \ multiplicity) \end{cases}$$

(Littlewood) $\forall w \neq \varphi(0), \quad N_{\varphi}(w) \leq \log \left| \frac{1 - \overline{\varphi(0)} w}{\varphi(0) - w} \right| \qquad = O\left((1 - |w|)\right) \quad \text{when } |w| \to 1^{-}.$

This very nice inequality is a "super Schwarz" lemma: it means, when $\varphi(0) = 0$

Program		Boundedness	Compactness
00	0000	0000000	000000000
	1 1 NI II C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \\ (every \ \alpha \ occurs \ as \ many \ times \ as \ its \ multiplicity) \end{cases}$$

(Littlewood)

$$orall w
eq arphi(0) \,, \quad N_{arphi}(w) \leq \log \left| rac{1-\overline{arphi(0)}w}{arphi(0)-w}
ight| \qquad = O\Big((1-|w|)\Big) \quad ext{when } |w|
ightarrow 1^- \,.$$

This very nice inequality is a "super Schwarz" lemma: it means, when arphi(0)=0

$$\left| arphi(z)
ight| \leq \prod_{arphi(lpha) = arphi(z)} \left| lpha
ight|$$

Program		Boundedness	Compactness
00	0000	0000000	000000000
	1 1 NI II C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \\ (every \ \alpha \ occurs \ as \ many \ times \ as \ its \ multiplicity) \end{cases}$$

(Littlewood)

$$orall w
eq arphi(0) \,, \quad N_{arphi}(w) \leq \log \left| rac{1-\overline{arphi(0)}w}{arphi(0)-w}
ight| \qquad = O\Big((1-|w|)\Big) \quad ext{when } |w|
ightarrow 1^-.$$

This very nice inequality is a "super Schwarz" lemma: it means, when arphi(0)=0

$$ig|arphi(z)ig|\leq \prod_{arphi(lpha)=arphi(z)} ert lphaig|\quadig(\leq ert zertig).$$

Program		P	Boundedness	Compactness
			0000000	
	1 . I NI			

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \\ (every \ \alpha \ occurs \ as \ many \ times \ as \ its \ multiplicity) \end{cases}$$

(Littlewood)

$$orall w
eq arphi(0) \,, \quad N_{arphi}(w) \leq \log \left| rac{1-\overline{arphi(0)}w}{arphi(0)-w}
ight| \qquad = O\Bigl((1-|w|)\Bigr) \quad ext{when } |w|
ightarrow 1^-.$$

This very nice inequality is a "super Schwarz" lemma: it means, when arphi(0)=0

$$|\varphi(z)| \leq \prod_{\varphi(\alpha)=\varphi(z)} |\alpha| \quad (\leq |z|).$$

Now, the Littewood-Paley formula (p = 2)

Program		P	Boundedness	Compactness
			0000000	
	1 . I NI			

$$N_{\varphi}(w) = \begin{cases} \sum_{\varphi(\alpha)=w} \log \frac{1}{|\alpha|} & \text{if } w \neq \varphi(0) \text{ and } w \in \varphi(\mathbb{D}) \\ 0 & \text{else.} \\ (every \ \alpha \ occurs \ as \ many \ times \ as \ its \ multiplicity) \end{cases}$$

(Littlewood)

$$orall w
eq arphi(0) \,, \quad N_arphi(w) \leq \log \left| rac{1-\overline{arphi(0)}w}{arphi(0)-w}
ight| \qquad = O\Bigl((1-|w|)\Bigr) \quad ext{when } |w|
ightarrow 1^- \,.$$

This very nice inequality is a "super Schwarz" lemma: it means, when arphi(0)=0

$$ig| arphi(z) ig| \leq \prod_{arphi(lpha) = arphi(z)} ert lpha ig| \quad ig(\leq ert z ert ig).$$

Now, the Littewood-Paley formula (p = 2)

$$||f||_{2}^{2} = |f(0)|^{2} + 2 \int_{\mathbb{D}} |f'|^{2} \log \frac{1}{|z|} d\mathcal{A}$$

implies again the boundedness of C_{φ} is bounded on H^2 .

VI Curso Internacional de Análisis Matemático en Andalucía

Program		Boundedness	Compactness
00	0000	0000000	0000000000
Boundedness via the N	Vevanlinna function		

$$\|f \circ \varphi\|_2^2 = |f \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |(f \circ \varphi)'|^2 \log \frac{1}{|z|} d\mathcal{A}$$

Program		Boundedness	Compactness
00	0000	0000000	000000000
Boundedness via	the Nevanlinna fu	nction	

$$\begin{split} \|f \circ \varphi\|_{2}^{2} &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} |(f \circ \varphi)'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} \left(|f'|^{2} \circ \varphi \right) \times |\varphi'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \end{split}$$

Program		Boundedness	Compactness
00	0000	0000000	000000000
Boundedness via	the Nevanlinna fu	nction	

$$\begin{split} \|f \circ \varphi\|_{2}^{2} &= |f \circ \varphi(\mathbf{0})|^{2} + 2 \int_{\mathbb{D}} |(f \circ \varphi)'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(\mathbf{0})|^{2} + 2 \int_{\mathbb{D}} \left(|f'|^{2} \circ \varphi \right) \times |\varphi'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(\mathbf{0})|^{2} + 2 \int_{\mathbb{D}} |f'|^{2} N_{\varphi} \, d\mathcal{A} \end{split}$$

Program		Boundedness	Compactness
00	0000	0000000	000000000
Boundedness via	a the Nevanlinna fu	nction	

$$\begin{split} \|f \circ \varphi\|_{2}^{2} &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} |(f \circ \varphi)'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} \left(|f'|^{2} \circ \varphi \right) \times |\varphi'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} |f'|^{2} N_{\varphi} \, d\mathcal{A} \end{split}$$

Now, in the case $\varphi(0) = 0$, using the majorization $N_{\varphi}(w) \leq \log \Big| \frac{1}{w} \Big|$, we get

Program		Boundedness	Compactness
00	0000	0000000	000000000
Boundedness via	a the Nevanlinna fu	nction	

$$\begin{split} \|f \circ \varphi\|_{2}^{2} &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} |(f \circ \varphi)'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} \left(|f'|^{2} \circ \varphi \right) \times |\varphi'|^{2} \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(0)|^{2} + 2 \int_{\mathbb{D}} |f'|^{2} N_{\varphi} \, d\mathcal{A} \end{split}$$

Now, in the case $\varphi(0) = 0$, using the majorization $N_{\varphi}(w) \le \log \left|\frac{1}{w}\right|$, we get $\|f \circ \varphi\|_2^2 \le |f(0)|^2 + 2 \int_{\mathbb{D}} |f'|^2 \log \left|\frac{1}{w}\right| d\mathcal{A}$

Program		Boundedness	Compactness
00	0000	0000000	000000000
Boundedness via the	Nevanlinna function		

$$\begin{split} \|f \circ \varphi\|_2^2 &= |f \circ \varphi(\mathbf{0})|^2 + 2 \int_{\mathbb{D}} |(f \circ \varphi)'|^2 \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(\mathbf{0})|^2 + 2 \int_{\mathbb{D}} \left(|f'|^2 \circ \varphi \right) \times |\varphi'|^2 \log \frac{1}{|z|} \, d\mathcal{A} \\ &= |f \circ \varphi(\mathbf{0})|^2 + 2 \int_{\mathbb{D}} |f'|^2 N_{\varphi} \, d\mathcal{A} \end{split}$$

Now, in the case $\varphi(0) = 0$, using the majorization $N_{\varphi}(w) \le \log \left|\frac{1}{w}\right|$, we get $\|f \circ \varphi\|_2^2 \le |f(0)|^2 + 2\int_{\mathbb{D}} |f'|^2 \log \left|\frac{1}{w}\right| d\mathcal{A} = \|f\|_2^2$

and

Program H^P Boundedness compactness compa

Point out that

$$\left\|f\circ\varphi\right\|_{p}^{p}=\int_{\overline{\mathbb{D}}}|f|^{p}\,d\lambda_{\varphi}\quad\text{with }\lambda_{\varphi}(E)=\lambda\left(\varphi^{*-1}(E)
ight)$$

where $E \subset \overline{\mathbb{D}}$ (Borel).

Point out that

$$\left\|f\circ\varphi\right\|_{p}^{p}=\int_{\overline{\mathbb{D}}}|f|^{p}\,d\lambda_{arphi}\quad ext{with }\lambda_{arphi}(E)=\lambdaig(arphi^{*-1}(E)ig)$$

where $E \subset \overline{\mathbb{D}}$ (Borel). The measure λ_{φ} is the pullback measure associated to φ .

Point out that

$$\left\|f\circ\varphi\right\|_{p}^{p}=\int_{\overline{\mathbb{D}}}\left|f\right|^{p}d\lambda_{\varphi}\quad\text{with }\lambda_{\varphi}(E)=\lambda\left(\varphi^{*-1}(E)
ight)$$

where $E \subset \overline{\mathbb{D}}$ (Borel). The measure λ_{φ} is the pullback measure associated to φ .

The boundedness of C_{φ} on H^{p} is equivalent to the boundedness of

 $f \in H^p \longmapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$

Program H^P Boundedness compactness comp

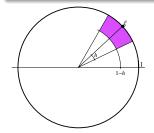
Point out that

$$\left\|f\circ\varphi\right\|_{p}^{p}=\int_{\overline{\mathbb{D}}}\left|f
ight|^{p}d\lambda_{arphi}\quad ext{with }\lambda_{arphi}(E)=\lambda\left(arphi^{*-1}(E)
ight)$$

where $E \subset \overline{\mathbb{D}}$ (Borel). The measure λ_{φ} is the pullback measure associated to φ .

The boundedness of C_{φ} on H^{p} is equivalent to the boundedness of

$$f \in H^p \longmapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$$



Thanks to the Carleson embedding theorem, it means that we control the size of the Carleson window $W(\xi, h)$

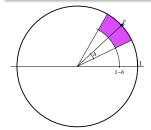
Point out that

$$\left\|f\circ\varphi\right\|_{p}^{p}=\int_{\overline{\mathbb{D}}}\left|f
ight|^{p}d\lambda_{arphi}\quad ext{with }\lambda_{arphi}(E)=\lambda\left(arphi^{*-1}(E)
ight)$$

where $E \subset \overline{\mathbb{D}}$ (Borel). The measure λ_{φ} is the pullback measure associated to φ .

The boundedness of C_{φ} on H^{p} is equivalent to the boundedness of

$$f \in H^p \longmapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$$



Thanks to the Carleson embedding theorem, it means that we control the size of the Carleson window $W(\xi, h)$

$$\rho_{\varphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{\varphi} (\mathcal{W}(\xi, h)) = O(h) \quad \text{when } h \to 0$$

VI Curso Internacional de Análisis Matemático en Andalucía

OO Progra	m	HF 0000	OOOOOOO	••••••
Cor	npactness			
	Definition			
	An operator $T: X -$	→ Y is compa	ct if $T(B_X)$ is relatively compact in Y	<i>.</i>

Program		н ^р 0000	Boundedness 0000000	Compactness
Con	npactness			
	Definition			
	Definition	V.		
	An operator $I: X \rightarrow$	Y is compact	t if $T(B_X)$ is relatively compact in Y	•

First remarks (H.Schwartz,'68)

O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n ◦ φ → 0 in H^p.

Program 00	Н ^р 0000	Boundedness 0000000	Compactness
Compactness			
Definition			

An operator $T: X \to Y$ is *compact* if $T(B_X)$ is relatively compact in Y.

First remarks (H.Schwartz,'68)

- O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n φ → 0 in H^p.
- 3 If C_{φ} is compact on H^{p} , then $\lambda_{\varphi}(\mathbb{T}) = 0$, *i.e.* $|\varphi^{*}| < 1$ a.e..

Program	HP	Boundedness	Compactness
			000000000
Compactness			
D C III			

An operator $T: X \to Y$ is *compact* if $T(B_X)$ is relatively compact in Y.

First remarks (H.Schwartz,'68)

- O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n φ → 0 in H^p.
- 3 If C_{φ} is compact on H^{p} , then $\lambda_{\varphi}(\mathbb{T}) = 0$, *i.e.* $|\varphi^{*}| < 1$ a.e..
- 3 If C_{φ} is compact on H^p , then $\lim_{|z| \to 1^-} \frac{1 |z|}{1 |\varphi(z)|} = 0$

Program	HP	Boundedness	Compactness
			000000000
Compactness			
D C III			

An operator $T: X \to Y$ is *compact* if $T(B_X)$ is relatively compact in Y.

First remarks (H.Schwartz,'68)

O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n ◦ φ → 0 in H^p.

2 If
$$C_{\varphi}$$
 is compact on H^{p} , then $\lambda_{\varphi}(\mathbb{T}) = 0$, *i.e.* $|\varphi^{*}| < 1$ a.e..

() If
$$C_{\varphi}$$
 is compact on H^p , then $\lim_{|z| \to 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Indeed

Exercice with the help of Montel's theorem

Program	HP	Boundedness	Compactness
			000000000
Compactness			

An operator $T: X \to Y$ is *compact* if $T(B_X)$ is relatively compact in Y.

First remarks (H.Schwartz,'68)

O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n ◦ φ → 0 in H^p.

2 If
$$C_{\varphi}$$
 is compact on H^p , then $\lambda_{\varphi}(\mathbb{T}) = 0$, *i.e.* $|\varphi^*| < 1$ a.e..

③ If
$$C_{arphi}$$
 is compact on H^p , then $\lim_{|z| o 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Indeed

Q Exercice with the help of Montel's theorem (or use weak-star compactness).

Program	HP	Boundedness	Compactness
			000000000
Compactness			

An operator $T: X \to Y$ is *compact* if $T(B_X)$ is relatively compact in Y.

First remarks (H.Schwartz,'68)

O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n ◦ φ → 0 in H^p.

2 If
$$C_{\varphi}$$
 is compact on H^{p} , then $\lambda_{\varphi}(\mathbb{T}) = 0$, *i.e.* $|\varphi^{*}| < 1$ a.e..

$$\hbox{ If } C_{\varphi} \hbox{ is compact on } H^p, \hbox{ then } \lim_{|z| \to 1^-} \frac{1-|z|}{1-|\varphi(z)|} = 0 \\$$

Indeed

- **O** Exercice with the help of Montel's theorem (or use weak-star compactness).
- **2** The sequence (z^n) uniformly converges to 0 on compact subsets of \mathbb{D} , so

$$\left\| C_{\varphi}(z^{n}) \right\|_{p}^{p} = \left\| \varphi^{n} \right\|_{p}^{p} \longrightarrow 0$$

Program	HP	Boundedness	Compactness
			000000000
Compactness			

An operator $T: X \to Y$ is *compact* if $T(B_X)$ is relatively compact in Y.

First remarks (H.Schwartz,'68)

O The operator C_φ: H^p → H^p is compact *if and only if* for every bounded sequence {f_n}_n in H^p converging to 0 uniformly on compact subsets of D, we have f_n ◦ φ → 0 in H^p.

2 If
$$C_{\varphi}$$
 is compact on H^{p} , then $\lambda_{\varphi}(\mathbb{T}) = 0$, *i.e.* $|\varphi^{*}| < 1$ a.e..

$${f 0}$$
 If C_{arphi} is compact on H^p , then $\lim_{|z| o 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Indeed

- **Q** Exercice with the help of Montel's theorem (or use weak-star compactness).
- **2** The sequence (z^n) uniformly converges to 0 on compact subsets of \mathbb{D} , so

$$\left\| C_{\varphi}(z^{n}) \right\|_{p}^{p} = \left\| \varphi^{n} \right\|_{p}^{p} \longrightarrow 0$$

$$\left\|\varphi^{n}\right\|_{\rho}^{\rho} = \int_{\mathbb{T}} \left|\varphi^{*}\right|^{n\rho} d\lambda \longrightarrow \lambda_{\varphi}(\mathbb{T}).$$

Program	H ^p 0000	Boundedness	Compactness •••••••••
Compactness			
3 If C_{arphi} is co	mpact on H^p , then $ ^z$	$\lim_{ \rightarrow 1^-} \frac{1- z }{1- \varphi(z) }=0$	

Program	HP	Boundedness	Compactness
00	0000	0000000	000000000
Compactness			

3 If
$$C_{\varphi}$$
 is compact on H^p , then $\lim_{|z| \to 1^-} \frac{1 - |z|}{1 - |\varphi(z)|} = 0$

Remember that the functional δ_z has norm $\frac{1}{(1-|z|^2)^{1/p}}$ and point out that $C^*_{\varphi}(\delta_z) = \delta_{\varphi(z)}.$

Program	H ^p	Boundedness	Compactness
00	0000	000000	000000000
Compactness			

③ If
$$C_{arphi}$$
 is compact on H^p , then $\lim_{|z|
ightarrow 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Remember that the functional δ_z has norm $\frac{1}{(1-|z|^2)^{1/\rho}}$ and point out that $C^*_{\varphi}(\delta_z) = \delta_{\varphi(z)}$.

Then for any sequence $z_n \in \mathbb{D}$ such that $|z_n| \longrightarrow 1^-$, the sequence $\mu_n = (1 - |z_n|^2)^{1/p} \delta_{z_n}$ lies in the unit sphere of the dual of H^p .

Program	H ^p	Boundedness	Compactness
00	0000	000000	000000000
Compactness			

③ If
$$C_{arphi}$$
 is compact on H^p , then $\lim_{|z|
ightarrow 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Remember that the functional δ_z has norm $\frac{1}{(1-|z|^2)^{1/\rho}}$ and point out that $C^*_{\varphi}(\delta_z) = \delta_{\varphi(z)}$.

Then for any sequence $z_n \in \mathbb{D}$ such that $|z_n| \longrightarrow 1^-$, the sequence $\mu_n = (1 - |z_n|^2)^{1/p} \delta_{z_n}$ lies in the unit sphere of the dual of H^p .

Since C_{φ}^* is compact on $(H^p)^*$ and μ_n is weakstar convergent to 0,

00 0000 000000	Compactness
	000000000
Compactness	

3 If
$$C_{arphi}$$
 is compact on H^p , then $\lim_{|z|
ightarrow 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Remember that the functional δ_z has norm $\frac{1}{(1-|z|^2)^{1/p}}$ and point out that $C^*_{\varphi}(\delta_z) = \delta_{\varphi(z)}$.

Then for any sequence $z_n \in \mathbb{D}$ such that $|z_n| \longrightarrow 1^-$, the sequence $\mu_n = (1 - |z_n|^2)^{1/p} \delta_{z_n}$ lies in the unit sphere of the dual of H^p .

Since C_{φ}^* is compact on $(H^{\rho})^*$ and μ_n is weakstar convergent to 0, we have

$$\|C^*_{\varphi}(\mu_n)\|_{(H^p)^*}\longrightarrow 0.$$

00 0000 000000	Compactness
	000000000
Compactness	

3 If
$$C_{arphi}$$
 is compact on H^p , then $\lim_{|z|
ightarrow 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Remember that the functional δ_z has norm $\frac{1}{(1-|z|^2)^{1/p}}$ and point out that $C^*_{\varphi}(\delta_z) = \delta_{\varphi(z)}$.

Then for any sequence $z_n \in \mathbb{D}$ such that $|z_n| \longrightarrow 1^-$, the sequence $\mu_n = (1 - |z_n|^2)^{1/p} \delta_{z_n}$ lies in the unit sphere of the dual of H^p .

Since C_{φ}^* is compact on $(H^p)^*$ and μ_n is weakstar convergent to 0, we have

$$\|C^*_{\varphi}(\mu_n)\|_{(H^p)^*} \longrightarrow 0.$$

$$\|C_{\varphi}^{*}(\mu_{n})\|_{(H^{p})^{*}} = (1 - |z_{n}|^{2})^{1/p} \|\delta_{\varphi(z_{n})}\|_{(H^{p})^{*}} =$$

Program	н ^р 0000	Boundedness	Compactness ○●○○○○○○○○
Compactness			

3 If
$$C_{arphi}$$
 is compact on H^p , then $\lim_{|z|
ightarrow 1^-} rac{1-|z|}{1-|arphi(z)|} = 0$

Remember that the functional δ_z has norm $\frac{1}{(1-|z|^2)^{1/p}}$ and point out that $C^*_{\varphi}(\delta_z) = \delta_{\varphi(z)}$.

Then for any sequence $z_n \in \mathbb{D}$ such that $|z_n| \longrightarrow 1^-$, the sequence $\mu_n = (1 - |z_n|^2)^{1/p} \delta_{z_n}$ lies in the unit sphere of the dual of H^p .

Since C_{φ}^* is compact on $(H^{\rho})^*$ and μ_n is weakstar convergent to 0, we have

$$\|C^*_{\varphi}(\mu_n)\|_{(H^p)^*} \longrightarrow 0.$$

$$\|C_{\varphi}^{*}(\mu_{n})\|_{(H^{p})^{*}} = (1 - |z_{n}|^{2})^{1/p} \|\delta_{\varphi(z_{n})}\|_{(H^{p})^{*}} = \frac{(1 - |z_{n}|^{2})^{1/p}}{(1 - |\varphi(z_{n})|^{2})^{1/p}}$$

Program 00	HP 0000	Boundedness 0000000	Compactness
Compactness			
(Shapiro-Taylor	'73) The problem re	duces to the hilbertian case:	

Program 00	Н ^р 0000	Boundedness	Compactness
Compactness			
(Shapiro-Taylor	'73) The problem re	duces to the hilbertian case:	

If $p,q \geq 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed,

Program	0000	Boundedness	Compactness
Compactness			
(Shapiro-Taylor	· '73) The problem re	duces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} .

Program	HP		Boundedness	Compactne	ess
	000	00		000000	
Com	pactness				
	Shapiro-Taylor '73) The	problem reduce	es to the hilbertian case:		
(\mathcal{C}_{arphi} is compact on $H^{ ho}$	if and only if	C_{φ} is compact on H^2 .		

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} .

Program 00	Н ^р 0000	Boundedness	Compactness
Compactness			
(Shapiro-Taylo	or '73) The problem rea	luces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Program ○○	Hr 0000	OOOOOOO	Compactness
Compactness			
(Shapiro-Taylo	r '73) The problem red	luces to the hilbertian case:	

If $p,q \geq 1$ and C_{arphi} is compact on H^q then C_{arphi} is compact on $H^p.$ Indeed,

Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} .

Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q} \,, \quad B_n \longrightarrow B \in B_{H^\infty} \quad \text{uniformly on compact subsets of } \mathbb{D}$ and

Program ○○	Hr 0000	Boundedness 0000000	Compactness
Compactness			
(Shapiro-Taylo	r '73) The problem rec	luces to the hilbertian case:	

If $p,q \geq 1$ and C_{arphi} is compact on H^q then C_{arphi} is compact on $H^p.$ Indeed,

Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} .

Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q}$, $B_n \longrightarrow B \in B_{H^{\infty}}$ uniformly on compact subsets of \mathbb{D} and the sequence $(G_n \circ \varphi)$ converges to $G \circ \varphi$ in H^q (since $C_{\varphi} \in \mathcal{K}(H^q)$)

OO	0000	0000000	Compactness ○○●○○○○○○○
Compactness			
(Shapiro-Taylo	r '73) The problem rec	luces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q}$, $B_n \longrightarrow B \in B_{H^{\infty}}$ uniformly on compact subsets of \mathbb{D} and the sequence $(G_n \circ \varphi)$ converges to $G \circ \varphi$ in H^q (since $C_{\varphi} \in \mathcal{K}(H^q)$)

 $\forall z \in \mathbb{D}, \quad |f_n(z)|^p = |G_n(z)|^q |B_n(z)|^p \longrightarrow 0$, hence $|G(z)|^q |B(z)|^p = 0$

00	0000	0000000	Compactness ○○●○○○○○○○
Compactness			
(Shapiro-Taylo	or '73) The problem red	luces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q}$, $B_n \longrightarrow B \in B_{H^{\infty}}$ uniformly on compact subsets of \mathbb{D} and the sequence $(G_n \circ \varphi)$ converges to $G \circ \varphi$ in H^q (since $C_{\varphi} \in \mathcal{K}(H^q)$)

 $orall z\in\mathbb{D}\,,\quad |f_n(z)|^p=|G_n(z)|^q|B_n(z)|^p\longrightarrow 0, ext{ hence } |G(z)|^q|B(z)|^p=0$

Do not forget that $\lambda_{\varphi}(\mathbb{T}) = 0$

$$\int_{\mathbb{T}} \left| f_n \circ \varphi^* \right|^p d\lambda \lesssim \int_{\mathbb{T}} \left| (G_n - G) \circ \varphi^* \right|^q \left| B_n \circ \varphi^* \right|^p d\lambda + \int_{\mathbb{T}} \left| G \circ \varphi^* \right|^q \left| B_n \circ \varphi^* \right|^p d\lambda$$

00	0000	000000	Compactness
Compactness			
(Shapiro-Taylo	or '73) The problem rea	luces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q}$, $B_n \longrightarrow B \in B_{H^{\infty}}$ uniformly on compact subsets of \mathbb{D} and the sequence $(G_n \circ \varphi)$ converges to $G \circ \varphi$ in H^q (since $C_{\varphi} \in \mathcal{K}(H^q)$)

 $orall z\in\mathbb{D}\,,\quad |f_n(z)|^p=|G_n(z)|^q|B_n(z)|^p\longrightarrow 0, ext{ hence } |G(z)|^q|B(z)|^p=0$

Do not forget that $\lambda_{\varphi}(\mathbb{T}) = 0$

$$\int_{\mathbb{T}} \left| f_n \circ \varphi^* \right|^p d\lambda \lesssim \int_{\mathbb{T}} \left| (G_n - G) \circ \varphi^* \right|^q d\lambda \qquad \qquad + \int_{\mathbb{T}} \left| G \circ \varphi^* \right|^q \left| B_n \circ \varphi^* \right|^p d\lambda$$

00	0000	000000	00000000
Compactness			
(Shapiro-Taylo	r '73) The problem rec	luces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n \sigma_n$ with $|B^*| = 1$ as and $\sigma_n \in H^p$ without zeros in \mathbb{D} .

Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q}, \quad B_n \longrightarrow B \in B_{H^{\infty}}$ uniformly on compact subsets of \mathbb{D} and the sequence $(G_n \circ \varphi)$ converges to $G \circ \varphi$ in H^q (since $C_{\varphi} \in \mathcal{K}(H^q)$)

 $\forall z\in \mathbb{D}\,,\quad \left|f_n(z)\right|^p=\left|G_n(z)\right|^q\left|B_n(z)\right|^p\longrightarrow 0, \text{ hence } \left|G(z)\right|^q\left|B(z)\right|^p=0$

Do not forget that $\lambda_{\varphi}(\mathbb{T}) = 0$

$$\int_{\mathbb{T}} \left| f_n \circ \varphi^* \right|^p d\lambda \lesssim \int_{\mathbb{T}} \left| (G_n - G) \circ \varphi^* \right|^q d\lambda \qquad \qquad + \int_{\mathbb{T}} \left| G \circ \varphi^* \right|^q \left| B_n \circ \varphi^* \right|^p d\lambda$$

The dominated convergence theorem gives that the second term converges to 0.

00	0000	000000	000000000
Compactness			
(Shapiro-Taylo	r '73) The problem red	duces to the hilbertian case:	

If $p, q \ge 1$ and C_{φ} is compact on H^q then C_{φ} is compact on H^p . Indeed, Take $\{f_n\}_n \in B_{H^p}$ uniformly converging to 0 on compact subsets of \mathbb{D} . Write $f_n = B_n g_n$ with $|B_n^*| = 1$ a.e. and $g_n \in H^p$ without zeros in \mathbb{D} . The sequence $G_n = g_n^{p/q}$ is defined and lies in B_{H^q} .

Up to (enough) subsequences, we may assume that

 $G_n \longrightarrow G \in B_{H^q}, \quad B_n \longrightarrow B \in B_{H^{\infty}}$ uniformly on compact subsets of \mathbb{D} and the sequence $(G_n \circ \varphi)$ converges to $G \circ \varphi$ in H^q (since $C_{\varphi} \in \mathcal{K}(H^q)$)

$$orall z\in\mathbb{D}\,,\quad |f_n(z)|^p=|G_n(z)|^q|B_n(z)|^p\longrightarrow 0, ext{ hence }|G(z)|^q|B(z)|^p=0$$

Do not forget that $\lambda_{\varphi}(\mathbb{T}) = 0$

$$\int_{\mathbb{T}} \left| f_n \circ \varphi^* \right|^p d\lambda \lesssim \int_{\mathbb{T}} \left| (G_n - G) \circ \varphi^* \right|^q d\lambda \qquad \qquad + \int_{\mathbb{T}} \left| G \circ \varphi^* \right|^q \left| B_n \circ \varphi^* \right|^p d\lambda$$

The dominated convergence theorem gives that the second term converges to 0. The compactness of C_{φ} on H^{ρ} is proved.

00	0000	0000000	000000000
Compactness			
Definition			

Roundedness

Compactness

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\left\|T\right\|_{HS}^{2} = \sum \left\|T(b_{n})\right\|_{H}^{2} < +\infty$$

Program

00		0000	0000000	0000000
Cor	npactness			
	Definition			
	An operator <i>T</i> (<i>b_n</i>), we have	$: H \rightarrow H$ is <i>Hilbert-S</i>	<i>chmidt</i> if for an (any) ortho	normal basis
		$\ T\ _{HS}^2 = \sum$	$\int \left\ T(b_n) \right\ _{H}^{2} < +\infty$	

Boundedness

Compactness

Hilbert-Schmidt operators are compact !

Program

00	0000	000000	000000000
Compactness			

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\|T\|_{HS}^{2} = \sum \|T(b_{n})\|_{H}^{2} < +\infty$$

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor '73) Hilbert-Schmidt composition operators

$$C_{arphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{arphi}\|_{HS}^2 = \int_{\mathbb{T}} rac{1}{1-|arphi^*|^2} \, d\lambda < \infty.$

00	0000	0000000	000000000
Compactness			

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\|T\|_{HS}^{2} = \sum \|T(b_{n})\|_{H}^{2} < +\infty$$

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor '73) Hilbert-Schmidt composition operators

$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

The sequence $b_n(z) = z^n$ (where $n \in \mathbb{N}$) is an orthonormal basis of H^2 ...

Filograffi		Boundedness	Compactness
00	0000	0000000	000000000
Compactness			

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\|T\|_{HS}^{2} = \sum \|T(b_{n})\|_{H}^{2} < +\infty$$

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor '73) Hilbert-Schmidt composition operators

$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

The sequence $b_n(z) = z^n$ (where $n \in \mathbb{N}$) is an orthonormal basis of H^2 ... Let us compute

$$\|C_{\varphi}\|_{HS}^2 = \sum_{n=0}^{\infty} \|\varphi^n\|_{H^2}^2 =$$

Flogram		Doulideulless	Compactness
00	0000	0000000	000000000
Compactness			

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\|T\|_{HS}^{2} = \sum \|T(b_{n})\|_{H}^{2} < +\infty$$

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor '73) Hilbert-Schmidt composition operators

$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

The sequence $b_n(z) = z^n$ (where $n \in \mathbb{N}$) is an orthonormal basis of H^2 ... Let us compute

$$\|C_{\varphi}\|_{HS}^{2} = \sum_{n=0}^{\infty} \|\varphi^{n}\|_{H^{2}}^{2} = \sum_{n=0}^{\infty} \int_{\mathbb{T}} |\varphi^{*}|^{2n} d\lambda =$$

Flogram		Doulideulless	Compactness
00	0000	0000000	000000000
Compactness			

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\|T\|_{HS}^{2} = \sum \|T(b_{n})\|_{H}^{2} < +\infty$$

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor '73) Hilbert-Schmidt composition operators

$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

The sequence $b_n(z) = z^n$ (where $n \in \mathbb{N}$) is an orthonormal basis of H^2 ... Let us compute

$$\|C_{\varphi}\|_{HS}^2 = \sum_{n=0}^{\infty} \|\varphi^n\|_{H^2}^2 = \sum_{n=0}^{\infty} \int_{\mathbb{T}} |\varphi^*|^{2n} d\lambda = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda.$$

Flogram		Doulideulless	Compactness
00	0000	0000000	000000000
Compactness			

An operator $T: H \rightarrow H$ is *Hilbert-Schmidt* if for an (any) orthonormal basis (b_n) , we have

$$\|T\|_{HS}^{2} = \sum \|T(b_{n})\|_{H}^{2} < +\infty$$

Hilbert-Schmidt operators are compact !

(Shapiro-Taylor '73) Hilbert-Schmidt composition operators

$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

The sequence $b_n(z) = z^n$ (where $n \in \mathbb{N}$) is an orthonormal basis of H^2 ... Let us compute

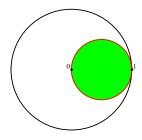
$$\|C_{\varphi}\|_{HS}^2 = \sum_{n=0}^{\infty} \|\varphi^n\|_{H^2}^2 = \sum_{n=0}^{\infty} \int_{\mathbb{T}} |\varphi^*|^{2n} d\lambda = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda.$$

It can be also written

$$\int_{\overline{\mathbb{D}}} \frac{1}{1-|z|^2} \, d\lambda_{\varphi}$$

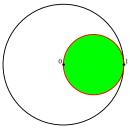
Compactness on Hardy spaces: two examples

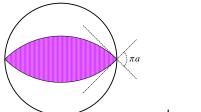
$$\varphi(z)=\frac{1+z}{2}$$



ಂಂ	0000	000000	000000000
Commonstration	on Hardy snaces two	au como ma lo co	

Compactness on Hardy spaces: two examples





Lens map (0 < a < 1)

 $\underline{\text{Theorem}}(\text{Power 80, Mac-Cluer 85})$ $C_{\varphi} \text{ is compact} \quad \text{if and only if} \quad \lambda_{\varphi} \text{ is a vanishing Carleson measure i.e.}$ $\rho_{\varphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{\varphi} (W(\xi, h)) = o(h) \quad \text{when } h \to 0$

 $\underline{\text{Theorem}}(\text{Power 80, Mac-Cluer 85})$ $C_{\varphi} \text{ is compact} \quad \text{if and only if} \quad \lambda_{\varphi} \text{ is a vanishing Carleson measure i.e.}$ $\rho_{\varphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{\varphi} (W(\xi, h)) = o(h) \quad \text{when } h \to 0$

Theorem(Shapiro '87)

 C_{φ} is compact if and only if $\nu_{\varphi}(h) = \sup_{|w| \ge 1-h} N_{\varphi}(w) = o(h)$ when $h \to 0$ Actually:

$$\|C_{\varphi}\|_{e} = \limsup_{|w| \to 1^{-}} \left(\frac{N_{\varphi}(w)}{1-|w|}\right)^{1/2} = \lim_{h \to 0} \left(\frac{\nu_{\varphi}(h)}{h}\right)^{1/2}.$$

Theorem(Power 80, Mac-Cluer 85)

 C_{arphi} is compact if and only if λ_{arphi} is a vanishing Carleson measure i.e.

$$ho_{arphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{arphi} (W(\xi, h)) = o(h) \qquad ext{ when } h o 0$$

Theorem(Shapiro '87)

 C_{φ} is compact if and only if $\nu_{\varphi}(h) = \sup_{|w| \ge 1-h} N_{\varphi}(w) = o(h)$ when $h \to 0$ Actually:

$$\|C_{\varphi}\|_{e} = \limsup_{|w| \to 1^{-}} \left(\frac{N_{\varphi}(w)}{1-|w|}\right)^{1/2} = \lim_{h \to 0} \left(\frac{\nu_{\varphi}(h)}{h}\right)^{1/2}$$

(Ackeroyd '10)

$$\|C_{\varphi}\|_{e} = \limsup_{|\mathbf{a}| \to 1^{-}} \left\|C_{\varphi}\left(\frac{k_{\mathbf{a}}}{\|k_{\mathbf{a}}\|_{H^{2}}}\right)\right\|_{H^{2}}$$

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h}N_{arphi}(w)=o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} ,

Let us prove that C_{φ} is compact when $\sup_{|w|\geq 1-h} N_{\varphi}(w) = o(h)$ when $h \to 0$

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\|f_n \circ \varphi\|_2^2 = |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A}$$

=

 Program
 H^p
 Boundedness
 Compactness

 00
 0000
 0000000
 00000000

Some characterizations of compactness

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h} N_{arphi}(w) = o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\begin{split} \|f_n \circ \varphi\|_2^2 &= |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \\ &= |f_n \circ \varphi(0)|^2 + 2 \int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} + 2 \int_{\mathbb{D} \setminus r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \end{split}$$

for any $r \in (0, 1)$.

But

 Program
 HP
 Boundedness
 Compactness

 00
 0000
 0000000
 0000000

 Some characterizations of compactness
 0000000
 0000000

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h}N_{arphi}(w)=o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\begin{split} \|f_n \circ \varphi\|_2^2 &= |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \\ &= |f_n \circ \varphi(0)|^2 + 2 \int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} + 2 \int_{\mathbb{D} \setminus r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \end{split}$$

for any $r \in (0, 1)$.

But, fixing $\varepsilon > 0$, we may consider some $r \in (0, 1)$ (now fixed) such that

$$orall z
otin r \mathbb{D}$$
 , $N_arphi(z) \leq arepsilon \log(1/|z|)$

 Program
 H^P
 Boundedness
 Compactness

 00
 0000
 0000000
 000000

 Some characterizations of compactness

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h}N_{arphi}(w)=o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\begin{split} \|f_n \circ \varphi\|_2^2 &= |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \\ &= |f_n \circ \varphi(0)|^2 + 2 \int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} + 2 \int_{\mathbb{D} \setminus r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \end{split}$$

for any $r \in (0, 1)$.

On the

But, fixing $\varepsilon > 0$, we may consider some $r \in (0, 1)$ (now fixed) such that

$$orall z
otin r \mathbb{D}$$
, $N_{arphi}(z) \leq \varepsilon \log(1/|z|)$
other hand, both $f_n \circ \varphi(0) \longrightarrow 0$ and $\int_{r \mathbb{D}} |f'_n|^2 N_{arphi}(z) \, d\mathcal{A} \longrightarrow 0.$

 Program
 HP
 Boundedness
 Compactness

 00
 0000
 000000
 000000

 Some characterizations of compactness

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h}N_{arphi}(w)=o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\begin{split} \|f_n \circ \varphi\|_2^2 &= |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \\ &= |f_n \circ \varphi(0)|^2 + 2 \int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} + 2 \int_{\mathbb{D} \setminus r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \end{split}$$

for any $r \in (0, 1)$.

But, fixing $\varepsilon > 0$, we may consider some $r \in (0, 1)$ (now fixed) such that

$$orall z
otin r \mathbb{D}$$
 , $N_arphi(z) \leq arepsilon \log(1/|z|)$

On the other hand, both $f_n \circ \varphi(0) \longrightarrow 0$ and $\int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \longrightarrow 0.$

Hence, for n large enough

$$\|f_n \circ \varphi\|_2^2 \leq \varepsilon + 2\varepsilon \int_{\mathbb{D} \setminus r\mathbb{D}} |f_n'|^2 \log(1/|z|) \, d\mathcal{A}$$

 Program
 H^P
 Boundedness
 Compactness

 00
 0000
 0000000
 000000

 Some characterizations of compactness
 0000000
 000000

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h}N_{arphi}(w)=o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\begin{split} \|f_n \circ \varphi\|_2^2 &= |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \\ &= |f_n \circ \varphi(0)|^2 + 2 \int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} + 2 \int_{\mathbb{D} \setminus r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \end{split}$$

for any $r \in (0, 1)$.

But, fixing $\varepsilon > 0$, we may consider some $r \in (0, 1)$ (now fixed) such that

$$orall z
otin r \mathbb{D}$$
 , $N_arphi(z) \leq arepsilon \log(1/|z|)$

On the other hand, both $f_n \circ \varphi(0) \longrightarrow 0$ and $\int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \longrightarrow 0.$

Hence, for n large enough

$$\|f_n\circ \varphi\|_2^2\leq \varepsilon+2arepsilon\int_{\mathbb{D}\setminus r\mathbb{D}}|f_n'|^2\log(1/|z|)\,d\mathcal{A}\leq arepsilon+2arepsilon\|f_n\|_2^2=3arepsilon.$$

Some characterizations of compactness

Let us prove that C_{arphi} is compact when $\sup_{|w|\geq 1-h} N_{arphi}(w) = o(h)$ when h
ightarrow 0

Consider $\{f_n\}_n \in B_{H^2}$ uniformly converging to 0 on compact subsets of \mathbb{D} , and remember the Littlewood-Paley formula

$$\begin{split} \|f_n \circ \varphi\|_2^2 &= |f_n \circ \varphi(0)|^2 + 2 \int_{\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \\ &= |f_n \circ \varphi(0)|^2 + 2 \int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} + 2 \int_{\mathbb{D} \setminus r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \end{split}$$

for any $r \in (0, 1)$.

But, fixing $\varepsilon > 0$, we may consider some $r \in (0, 1)$ (now fixed) such that

$$orall z
otin r \mathbb{D}$$
 , $N_arphi(z) \leq arepsilon \log(1/|z|)$

On the other hand, both $f_n \circ \varphi(0) \longrightarrow 0$ and $\int_{r\mathbb{D}} |f'_n|^2 N_{\varphi}(z) \, d\mathcal{A} \longrightarrow 0.$

Hence, for n large enough

$$\|f_n\circ \varphi\|_2^2\leq \varepsilon+2arepsilon\int_{\mathbb{D}\setminus r\mathbb{D}}|f_n'|^2\log(1/|z|)\,d\mathcal{A}\leq arepsilon+2arepsilon\|f_n\|_2^2=3arepsilon.$$

Program		Boundedness	Compactness
00	0000	0000000	000000000000000000000000000000000000000
Back to non-ang	ular derivative		

$$C_{\varphi}$$
 is compact on $H^{\rho} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$
if φ univalent (or finitely valent)

VI Curso Internacional de Análisis Matemático en Andalucía

Program		Boundedness	Compactness
			000000000000000000000000000000000000000
Back to non-a	angular derivative		

$$C_{\varphi} \text{ is compact on } H^{\rho} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$$

if φ univalent (or finitely valent)

Indeed, if φ is *p*-valent:

 $\frac{\textit{N}_{\varphi}(w)}{1-|w|} \leq$

Program		Boundedness	Compactness
			000000000000000000000000000000000000000
Back to non-a	angular derivative		

$$C_{\varphi} \text{ is compact on } H^{\rho} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$$

if φ univalent (or finitely valent)

Indeed, if φ is *p*-valent:

$$rac{N_arphi(w)}{1-|w|} \leq prac{\max\{\log(1/|z|) \mid arphi(z)=w\}}{1-|w|}$$

Program		Boundedness	Compactness
			000000000000000000000000000000000000000
Back to non-a	angular derivative		

$$C_{\varphi} \text{ is compact on } H^{p} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$$

if φ univalent (or finitely valent)

Indeed, if φ is *p*-valent:

$$\frac{N_{\varphi}(w)}{1-|w|} \leq p \frac{\max\{\log(1/|z|) \mid \varphi(z) = w\}}{1-|w|} \approx p \max\left\{\frac{1-|z|}{1-|\varphi(z)|} : \varphi(z) = w\right\}$$

Program		Boundedness	Compactness
			000000000000000000000000000000000000000
Back to non-a	angular derivative		

$$C_{\varphi} \text{ is compact on } H^{
ho} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$$

if φ univalent (or finitely valent)

Indeed, if φ is *p*-valent:

$$\frac{N_{\varphi}(w)}{1-|w|} \leq p \frac{\max\{\log(1/|z|) \mid \varphi(z) = w\}}{1-|w|} \approx p \max\left\{\frac{1-|z|}{1-|\varphi(z)|} : \varphi(z) = w\right\} \longrightarrow 0$$

Program		Boundedness	Compactness
00	0000	0000000	000000000000000000000000000000000000000
Back to non-a	ngular derivative		

$$C_{\varphi} \text{ is compact on } H^{
ho} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$$

if φ univalent (or finitely valent)

Indeed, if φ is *p*-valent:

$$\frac{N_{\varphi}(w)}{1-|w|} \leq p \frac{\max\{\log(1/|z|) \mid \varphi(z) = w\}}{1-|w|} \approx p \max\left\{\frac{1-|z|}{1-|\varphi(z)|} : \varphi(z) = w\right\} \longrightarrow 0$$

The converse is false in general: McCluer-Shapiro ('86) constructed inner functions φ admitting no angular derivatives at any point of the circle.

Program		Boundedness	Compactness
00	0000	0000000	000000000
Angular derivativ			
Angular ucrivativ			

We shall say that φ satisfies (NC) if

$$\lim_{|z|\to 1^-}\frac{1-|\varphi(z)|}{1-|z|}=\infty.$$

Program	Н ^р	Boundedness	Compactness
00	0000	0000000	000000000
Angular derivative			

We shall say that φ satisfies (NC) if $\lim_{|z| \to 1^-} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty.$

We say that φ has an angular derivative at $\xi \in \mathbb{T}$, if for some $a \in \mathbb{T}$ the following non-tangential limit exists in \mathbb{C} :

$$\angle \lim_{z \to \xi} \frac{\varphi(z) - a}{z - \xi} \tag{AD}$$

Program	Н ^р	Boundedness	Compactness
00	0000	0000000	000000000
Angular derivative			

We shall say that
$$\varphi$$
 satisfies (*NC*) if $\lim_{|z|\to 1^-} \frac{1-|\varphi(z)|}{1-|z|} = \infty.$

We say that φ has an angular derivative at $\xi \in \mathbb{T}$, if for some $a \in \mathbb{T}$ the following non-tangential limit exists in \mathbb{C} :

$$\angle \lim_{z \to \xi} \frac{\varphi(z) - a}{z - \xi} \tag{AD}$$

Theorem (Julia–Carathéodory)

 φ satisfies (NC) if and only φ has angular derivative at no point $\xi \in \mathbb{T}$.

Program	Н ^р	Boundedness	Compactness
00	0000	0000000	000000000
Angular derivative			

We shall say that φ satisfies (*NC*) if $\lim_{|z|\to 1^-} \frac{1-|\varphi(z)|}{1-|z|} = \infty.$

We say that φ has an angular derivative at $\xi \in \mathbb{T}$, if for some $a \in \mathbb{T}$ the following non-tangential limit exists in \mathbb{C} :

$$\angle \lim_{z \to \xi} \frac{\varphi(z) - a}{z - \xi} \tag{AD}$$

Theorem (Julia–Carathéodory)

 φ satisfies (NC) if and only φ has angular derivative at no point $\xi \in \mathbb{T}$.

Observe that, if φ has angular derivative at ξ and $a \in \mathbb{T}$ is like in (AD), then

$$\angle \lim_{z \to \xi} \varphi(z) = a.$$

Program	Н ^р	Boundedness	Compactness
00	0000	0000000	000000000
Angular derivative			

We shall say that φ satisfies (*NC*) if $\lim_{|z|\to 1^-} \frac{1-|\varphi(z)|}{1-|z|} = \infty.$

We say that φ has an angular derivative at $\xi \in \mathbb{T}$, if for some $a \in \mathbb{T}$ the following non-tangential limit exists in \mathbb{C} :

$$\angle \lim_{z \to \xi} \frac{\varphi(z) - a}{z - \xi} \tag{AD}$$

Theorem (Julia–Carathéodory)

 φ satisfies (NC) if and only φ has angular derivative at no point $\xi \in \mathbb{T}$.

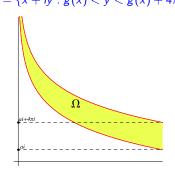
Observe that, if φ has angular derivative at ξ and $a \in \mathbb{T}$ is like in (AD), then

$$\angle \lim_{z \to \xi} \varphi(z) = a.$$

This allowed MacCluer and Shapiro ('86) to construct an example of a (finitely valent) symbol $\varphi \colon \mathbb{D} \to \mathbb{D}$ such that C_{φ} is compact, but φ is onto: $\varphi(\mathbb{D}) = \mathbb{D}$.

Construction of the McCluer-Shapiro's example

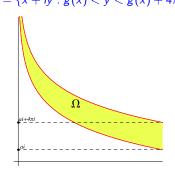
Let $g: (0, +\infty) \to \mathbb{R}$ be a continuous decreasing function such that $\lim_{x \to 0^+} g(x) = +\infty$ (for instance g(x) = 1/x). And consider the domain $\Omega = \{x + iy : g(x) < y < g(x) + 4\pi\}$



Let $f: \mathbb{D} \to \Omega$ be a Riemann mapping (a conformal representation) and define

Construction of the McCluer-Shapiro's example

Let $g: (0, +\infty) \to \mathbb{R}$ be a continuous decreasing function such that $\lim_{x \to 0^+} g(x) = +\infty$ (for instance g(x) = 1/x). And consider the domain $\Omega = \{x + iy : g(x) < y < g(x) + 4\pi\}$



Let $f: \mathbb{D} \to \Omega$ be a Riemann mapping (a conformal representation) and define $\varphi_1(z) = \exp(-f(z)), \qquad z \in \mathbb{D}.$

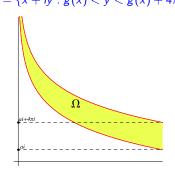
and keep in mind that

 Program
 H^P
 Boundedness
 Compactness

 00
 0000
 0000000
 00000000

Construction of the McCluer-Shapiro's example

Let $g: (0, +\infty) \to \mathbb{R}$ be a continuous decreasing function such that $\lim_{x \to 0^+} g(x) = +\infty$ (for instance g(x) = 1/x). And consider the domain $\Omega = \{x + iy : g(x) < y < g(x) + 4\pi\}$



Let $f: \mathbb{D} \to \Omega$ be a Riemann mapping (a conformal representation) and define $\varphi_1(z) = \exp(-f(z)), \qquad z \in \mathbb{D}.$

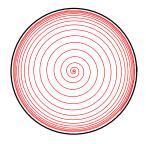
and keep in mind that

$$|\varphi_1(z)| \longrightarrow 1^- \quad \Longleftrightarrow \operatorname{Re}(f(z)) \longrightarrow 0^+$$

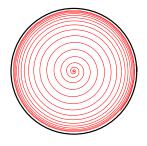
Program		Boundedness	Compactness
00	0000	000000	0000000000
Angular derivative			

 φ_1 is 2-valent and

Program	Н ^р	Boundedness	Compactness
Angular derivative			

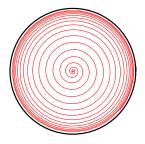


Program	Н ^р	Boundedness	Compactness
Angular derivative			



 φ_1 is almost onto: $\varphi_1(\mathbb{D}) = \mathbb{D} \setminus \{0\}.$

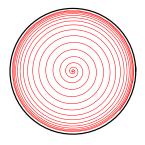
Program	HP	Boundedness	Compactness
Angular derivative			



 φ_1 is almost onto: $\varphi_1(\mathbb{D}) = \mathbb{D} \setminus \{0\}.$

Take
$$a \in \mathbb{D} \setminus \{0\}$$
 and consider $\varphi = Q_a \circ \varphi_1$, where $Q_a(z) = \left(rac{a-z}{1-ar{a}z}
ight)^2$.

Program	HP	Boundedness	Compactness
Angular derivative			



 φ_1 is almost onto: $\varphi_1(\mathbb{D}) = \mathbb{D} \setminus \{0\}.$

Take $a \in \mathbb{D} \setminus \{0\}$ and consider $\varphi = Q_a \circ \varphi_1$, where $Q_a(z) = \left(\frac{a-z}{1-\overline{a}z}\right)^2$. φ is onto and $C_{\varphi} = C_{\varphi_1} \circ C_{Q_a}$ is compact.

Program	Boundedness	Compactness

Merci !