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One-sided operators

What does it mean?

Let (X, M, 1) be a measure space andlet T : X — X be a
measurable transformation.
The orbit of a point x € X is

{x, Tx, T?x,...,T"x,...}

where T"=To To...oTisthe n-thiterated of T.
We could be interested in knowing how often the orbit of a point x
enters in a measurable set A

Mean frequency

. 1 ;
nILngo n+1 ZXA(TX)'

i=0

v
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One-sided operators

What does it mean?

More generally, for any measurable function f, study

lim L i f(T'x). I
i=0

n—oo n—|—1 .

To face this problem one considers the associated maximal operator

Mf(x) = sup HLHZV(TU()L I
i=0
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One-sided operators

What does it mean?

The analogous situation in the continuous case:
Semiflow of measurable transformations

{TttZO},T[X*)X

The associated maximal operator in this case is

h>0

MFF(x) _suph/ [f(T:x)| dt. \

If we are in R and the semiflow is given by T;x = x + t then the
maximal operator is

M*f(x)—sup /\fx+t|dt—sup/ f(t)| dt. J
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One-sided operators

What does it mean?

In general a one-sided operator (in R) is an operator T such that the
value of Tf(x) depends only on the values of f in [x, co0) orin (—oo, X].

In the first case, when "looking to the future", write T+.

In the second case, when "looking to the past", write 7.

Maria Lorente, Universidad de Malaga Weighted inequalities for one-sided operators



One-sided operators

Examples

The Hardy operator and its adjoint

P = [ )y, = JRE

The Hardy averaging operator defined for functions in (0, oo)

i) = 1 [ 1)y

The Riemann-Liouville and the Weyl integral operators, 0 < o < 1

= [ W) _ [T W)
e e O A
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One-sided operators

Examples

For f € L]

loc

(RyandneZz

1/2
Sf(x) = <Z |Apf(x) — An_1 f(x)|2>

neZ

Differential transform
Df(x) = va(Anf(X) — An_11(X)),

nez

where {v,}nez is @ bounded sequence.
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One-sided operators

Examples

One-sided Calderén-Zygmund singular integrals

They are singular integrals associated to a Calderén-Zygmund kernel
K with support on (—o0, 0) or (0, o)

supp K C (—o0,0) +— T, supp K C (0,00) +— T~

1 sin(log |x
K(x) = XWX(OO,O)(X)
TG = lm [ K- ydy
e=0% Jxte
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One-sided operators

Examples

One-sided Hardy-Littlewood maximal functions

X
M f(x _Suph/ y)dy, and M- f(x)—sup \f(y)|dy
h>0 h>0 X—h
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One-sided weights

Weights for the one-sided Hardy-Littlewood Maximal
Operator

Andersen, Sawyer, Martin-Reyes and de la Torre.

Let 1 < p < oo and let u, v nonnegative measurable functions locally
integrable in R. The following conditions are equivalent:

Weak type inequality

There exists C > 0 such thatfor all A > 0 and f € LP(v)

/ u(x)dx < E/ [F(x)|Pv(x)dx .
{XER:M*£(x)> A} AP Jr
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One-sided weights

Weights for the one-sided Hardy-Littlewood Maximal
Operator

A} condition, p > 1

There exists C > 0 such that for all h > 0 and x € R

/

1/p

1 X 1/.01 X+h iy
(h/xh“) E/X v =

A7 condition

There exists C > 0 such that

M~u(x) < Cv(x), a.e.
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One-sided weights

Weights for the one-sided Hardy-Littlewood Maximal
Operator

Let 1 < p < co. The following conditions are equivalent:

Strong type inequality

There exists C > 0 such that for any f € LP(v),

/(M*f(x))pu(x) dx < C/ [f(x)[Pv(x) dx

|

Sawyer’s SI condition

There exists C > 0 such that
/(M+(ax,)( ))Pu(x) dx < c/ x) dx < oo,

for all intervals | = (a, b) such that f u(x)dx > 0, where o = v
and p+p' = pp'.
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One-sided weights

Weights for the one-sided Hardy-Littlewood Maximal
Operator

If u = v the previous conditions are equivalent to

There exists C > 0 such that for all h > 0 and x € R

1 X 1/p 1 X+h . , 1/'0,
— — —P <C.
(h/xhu> (h/x . ) =@

There are similar conditions and results for M—.

A= A% 0 A
ApCA; Yy ACAL
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One-sided weights

Coifman type inequalities

Let AL =Ug>1Af. For0 <p<ooand w e AL

One-sided C-Z singular integrals, Aimar, Forzani, Martin-Reyes

/|T+f|pwg C/(M+f)pw
R R

Discrete square function, L., Riveros, de la Torre

/|Sf|pw < c/(/wowf)ﬁw
R R

Differential transform, L., Martell, Riveros, de la Torre

/\Df|pW§ C/(M+OM+OM+f)pW
R R
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One-sided weights

One-sided Hardy-Littlewood maximal functions in R”

Natural generalization of M* in R": for x = (xq, Xz, . . ., Xn), define

One-sided maximal function in R”

M T f(xq, X, .. ., Xp) = SUP —/ y)| dy,
h>0h ) (

where Qx(h) = [x1, X1 + h) X [X2, X2 + h) X - - x [x,,,x,, + h).

Weighted inequalities for M+ T in R" have not been characterized.
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One-sided weights

Weights for the one-sided HL maximal operator in R"

Forzani, Martin-Reyes and Ombrosi gave a characterization of the
weak type (p, p) inequality for M** but only in dimension n = 2.

Let 1 < p < o and let u, v be two weights. The following conditions
are equivalent:

Weak type inequality

There exists C > 0 such that forany A > 0 and f € LP(v)

/ u(x)dx < E/ [f(x)|Pv(x)dx .
{XERZ:MHH(X)> A} AP Jge
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One-sided weights

Weights for the one-sided HL maximal operator in R"

One-sided Muckenhoupt’s type condition, p > 1

There exists C > 0 such that for all x e R2 and all h > 0,

1 1/p 1/p'
= / u / vi=F <C,
h? \ Jag ax(h)

where Qy (h) = [x1 — h, X1) X [X2 — h, X2).

Qu(h)

z = (21,29)

N ()
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One-sided weights

Weights for the one-sided HL maximal operator in R"

One-sided Muckenhoupt’s type condition, p = 1
There exists C > 0 such that for any h > 0,

lz/ u<Cv(x), ctp. x=(x1,X).
H Jag )

The previous conditions are necessary for the weak type inequality in
any dimension, but we don’t know if they are sufficient.
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One-sided dyadic maximal operators

Dyadic maximal operator in R”

Sawyer’s proof that S, condition characterizes de strong type
inequality for the classical Hardy-Littlewood maximal operator
requires to prove a similar result for the dyadic maximal operator

1
M) = sup o | [f(y)ldy,
er,Odyadlc|Q| Q

and subsequently he uses an averaging argument due to Fefferman
and Stein.

Then, in order to tackle the problem in the one-sided case, it is
natural to study one-sided versions of this dyadic operator.
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

Some one-sided dyadic maximal operators have already been studied

Martin-Reyes and de la Torre, n = 1

1
Mif(x)= sup — [ [f(y)ldy.
x€l, I dyadic | | I*
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

1
My = sup o [y,
er,Odyadlc| | Q*

Q*
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

The previous operators do not satisfy the inequality
M f < Myf, Myt < Myf

where My is the classical dyadic maximal operator,

1
Maf(x)= sup & / ()] dy.
xeQ,adyadic |Q| Ja

We think that an optimal dyadic maximal operator should satisfy

My F<SMgf y Mt M
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

Joint work with F.J. Martin-Reyes.

We have got a one-sided dyadic maximal operator satisfying these
conditions in R:

One-sided dyadic maximal operator in R

,
My = swp o [y

Idyadic, xel—
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

We have characterized the good weights for this dyadic operator and
we have got an inequality in means analogous to the classical one.

As a consequence we get the characterization of the good weights for
the one-sided maximal operator in R, M.

We have tried to generalize it to R”, but we have not achieved our
main goal.
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

1
MiHx) =  sup / 1#(y) .
Qdyadic, xea— |QT| Jo+

Q+
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One-sided dyadic maximal operators

One-sided dyadic maximal operators

1
MiH) =  sup / 11(y) .
Qdyadic, xeQ— |Q | Qt

@ It generalizes the case n=1.
o It satisfies M +f < Mgf and M+ f < M+,

@ Problem: We have not been able to prove an inequality in means.
We don’t get any result for M+,
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One-sided dyadic maximal operators

Another one-sided maximal operator

1
N+"'+f(X1""’X”) = SUPT/ |f(y)|dy,
h>0 ‘Qx7h| Q;h

where Qf = [x1 + h, X1 +2h) x --- x [X, + h, Xp + 2h).

h Qx,h
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One-sided dyadic maximal operators

Ombrosi proved that for 1 < p < oo, the condition

There exists C > 0 such that for all x € R” and all h > 0,

1 1/p 1/p’

1—p/
— u v <C
hn </ox<h) ) </ . (h) )

implies the weak type inequality for N*

Weak type inequality

There exists C > 0 such that for any A > 0 and f € LP(v)

/ dx<—/ 17()[Pv(x)dx
{xeRn:N+---+f(x)>,\}
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One-sided dyadic maximal operators

Lerner and Ombrosi proved thatforn=2and u = v
A} condition implies that N** is bounded from LP(u) into LP(u).

Berkovits extends this result for n > 3.
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One-sided dyadic maximal operators

Fork € Z let

NG00 = sup o / yldy.
X,h

0<h<2k

ot o ot
N T f(x) < okn /(0’2k+4]>< 0 2k+4](7'_t o My o 7¢)f(x)dt,

where 7:g(x) = g(x — t).
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One-sided dyadic maximal operators

Weights for the one-sided dyadic maximal operator

Let 1 < p < co. We say that the pair of weights (u, v) belongs to A;;d
if

there exists C > 0 such that for all dyadic cubes Q

1 1/p , 1/p’
a(fo) (L) =
Q- Q+

there exists C > 0 such that for all dyadic cubes Q

1

— u<Cv(x), ctp. xeQt.
@] Jo U= OV ot
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One-sided dyadic maximal operators

Weights for the one-sided dyadic maximal operator

Theorem

Let 1 < p < co. The following conditions are equivalent
o (u,v)eAl,
e There eX|sts C > O such thatfor all A > 0 and f € LP(v)

/ u(x)dx < £/ [f(x)|Pv(x)dx
(MEHHx)> A} AP Jgo

Maria Lorente, Universidad de Malaga Weighted inequalities for one-sided operators



One-sided dyadic maximal operators

Weights for the one-sided dyadic maximal operator

Let 1 < p < oo and let u, v be two weights. The following conditions
are equivalent

Strong type inequality
There exists C > 0 such that for all f € LP(v),

/ (M f(x))Pu(x) dx < C / 1) [PV(x) dix.

| A\

Sawyer’s type condition S;d

There exists C > 0 such that

[ My oxe)Put)ax < C [ ax)dx < oc,
Q-uQt Qt

for all dyadic cubes Q with [, u > 0, where o = v'=F'.
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One-sided dyadic maximal operators

Weights for the one-sided dyadic maximal operator

If u = v the previous inequalities are equivalent to

Muckenhoupt’s type A;d condition

There exists C > 0 such that for all dyadic cubes Q,

1 1/p /1/P,
(9" (L) e
1Ql \Jo- a+
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One-sided dyadic maximal operators

Boundedness of N™

From the inequality in means and the previous result we get that if
1 < p < oo and u is a weight satisfying

A} condition

There exists C > 0 such that for all x € R” and all h > 0,

1 1/p 1/p'
— / u / u'=" <C.
h" \ Ja; () Qx(h)

Then N+ is bounded from LP(u) into LP(u).

This extends Ombrosi’s result to dimension n > 3 with a different
proof to the one proposed by Berkovits.
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One-sided dyadic maximal operators

Boundedness of N™

Let 1 < p < 0. If u, v are two weights satisfying

S; condition

There exists C > 0 such that for all x € R” and all h > 0,

/ (Mt *(oxq,,))Pu<C o < 00,
QihUQx,h 1 Qx.n

X

whenever [, u >0, where o = v! =7
x,h

then N** is bounded from LP(u) into LP(Vv).
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One-sided dyadic maximal operators

M+ and N* are equivalent

MTf<Ntf  and  NYF<MYf

n>1
M+** and N* T are not equivalent

NTHf < MPFf but  MTTE £ CNEUTS

]\r+...+

doesn't see this part

N7 doesn't see this part
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Thanks for your attention!

iMuchas gracias!
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