The optimal modulus of convexity of a super-reflexive Banach space

M. Raja (Murcia)

VI CIDAMA 2014, Antequera

Research partially supported by

1 / 17

X will denote a Banach space

3

∃ ► < ∃</p>

< 🗗 🕨

X will denote a Banach space

Modulus of uniform convexity

$$\delta_X(t) = \inf\{1 - \|rac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

 The modulus of convexity is defined for t ∈ [0, 2] and it is a monotone function.

X will denote a Banach space

Modulus of uniform convexity

$$\delta_X(t) = \inf\{1 - \|\frac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

- The modulus of convexity is defined for t ∈ [0, 2] and it is a monotone function.
- The space is said uniformly convex δ_X(t) > 0 if if t > 0 (Clarkson 1936).

4 3 > 4 3 >

X will denote a Banach space

Modulus of uniform convexity

$$\delta_X(t) = \inf\{1 - \|\frac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

- The modulus of convexity is defined for $t \in [0, 2]$ and it is a monotone function.
- The space is said uniformly convex δ_X(t) > 0 if if t > 0 (Clarkson 1936).
- As we will consider several equivalent norms on X we prefer to write $\delta_{\|.\|}(t)$.

Many classical Banach spaces are uniformly convex.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many classical Banach spaces are uniformly convex. In particular, the Hilbert space is uniformly convex and

$$\delta_H(t) = 1 - \sqrt{1 - t^2/4} \simeq t^2/8$$

A B M A B M

Many classical Banach spaces are uniformly convex. In particular, the Hilbert space is uniformly convex and

$$\delta_{H}(t) = 1 - \sqrt{1 - t^2/4} \simeq t^2/8$$

The "most uniformly convex" Banach space is the Hilbert space since $\delta_X(t) \leq \delta_H(t)$

for any Banach space X and $t \in [0, 2]$ (Nörlander 1960).

Many classical Banach spaces are uniformly convex. In particular, the Hilbert space is uniformly convex and

$$\delta_H(t) = 1 - \sqrt{1 - t^2/4} \simeq t^2/8$$

The "most uniformly convex" Banach space is the Hilbert space since

 $\delta_X(t) \leq \delta_H(t)$

for any Banach space X and $t \in [0, 2]$ (Nörlander 1960).

That suggests us a way to compare the degree of uniform convexity between spaces, or norms (even inside the same space).

When does a Banach space have an equivalent uniformly convex norm?

A B A A B A

< 🗗 🕨

When does a Banach space have an equivalent uniformly convex norm?

In other words: Is there any isomorphic characterization of the existence of such a renorming?

When does a Banach space have an equivalent uniformly convex norm?

In other words: Is there any isomorphic characterization of the existence of such a renorming?

Superreflexivity was introduced by James in 1972.

When does a Banach space have an equivalent uniformly convex norm?

In other words: Is there any isomorphic characterization of the existence of such a renorming?

Superreflexivity was introduced by James in 1972.

Theorem (James, Enflo, Pisier)

A Banach space has an equivalent uniformly convex norm if and only if it is superreflexive.

4 3 5 4 3 5

When does a Banach space have an equivalent uniformly convex norm?

In other words: Is there any isomorphic characterization of the existence of such a renorming?

Superreflexivity was introduced by James in 1972.

Theorem (James, Enflo, Pisier)

A Banach space has an equivalent uniformly convex norm if and only if it is superreflexive.

Moreover, we can take the norm such that $\delta(\varepsilon) \ge c\varepsilon^p$ for some c > 0 and $p \ge 2$.

イロト 人間ト イヨト イヨト

Consider the following order for real functions defined on (0, 1].

3

(日) (同) (三) (三)

Consider the following order for real functions defined on (0, 1].We say that $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$.

Consider the following order for real functions defined on (0, 1].We say that $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$.If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Consider the following order for real functions defined on (0, 1].We say that $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$.If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Norlander's result implies for every Banach space that

 $\delta_X(t) \preceq t^2$

Consider the following order for real functions defined on (0, 1].We say that $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$.If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Norlander's result implies for every Banach space that

$$\delta_X(t) \preceq t^2$$

Pisier's result implies that if X is super-reflexive, then there exists an equivalent norm $\|\cdot\|$ on X and $p \ge 2$ such that

$$t^{p} \preceq \delta_{\mathbf{k} \cdot \mathbf{k}}(t)$$

- 3

M. Raja (Universidad de Murcia)

3

<ロ> (日) (日) (日) (日) (日)

Our aim is to provide the best upper bound for all the modulus of convexity of possible renormings of a Banach space beyond the power functions.

3

A B A A B A

< 🗇 🕨

Our aim is to provide the best upper bound for all the modulus of convexity of possible renormings of a Banach space beyond the power functions.

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0, 1]

A B A A B A

Our aim is to provide the best upper bound for all the modulus of convexity of possible renormings of a Banach space beyond the power functions.

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0, 1]

submultiplicativity

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

- 一司

Our aim is to provide the best upper bound for all the modulus of convexity of possible renormings of a Banach space beyond the power functions.

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

Our aim is to provide the best upper bound for all the modulus of convexity of possible renormings of a Banach space beyond the power functions.

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\|\cdot\|}(t): \|\cdot\|$ is an equivalent norm on $X\}.$

イロト イポト イヨト イヨト

Our aim is to provide the best upper bound for all the modulus of convexity of possible renormings of a Banach space beyond the power functions.

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\|\cdot\|}(t): \|\cdot\|$ is an equivalent norm on $X\}.$

We do not know if $\mathfrak{N}_X(t)^{-1}$ is always a maximum.

イロト 不得 トイヨト イヨト 二日

M. Raja (Universidad de Murcia)

3

(日) (同) (三) (三)

Consider $A \subset X$ and denote by \mathcal{H} the family of open halfspaces.

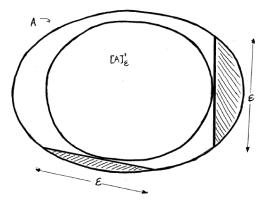
- ×

Consider A ⊂ X and denote by H the family of open halfspaces.
[A]'_ε = A \ ∪{H ∈ H : diam(A ∩ H) < ε}.

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Consider A ⊂ X and denote by H the family of open halfspaces.
[A]'_ε = A \ ∪{H ∈ H : diam(A ∩ H) < ε}.



Consider A ⊂ X and denote by H the family of open halfspaces.
[A]'_ε = A \ ∪{H ∈ H : diam(A ∩ H) < ε}.

3

Consider $A \subset X$ and denote by \mathcal{H} the family of open halfspaces.

•
$$[A]'_{\varepsilon} = A \setminus \bigcup \{H \in \mathcal{H} : \operatorname{diam}(A \cap H) < \varepsilon \}.$$

• $[A]^{n+1}_{\varepsilon} = [[A]^n_{\varepsilon}]'_{\varepsilon}.$

- 3

Consider $A \subset X$ and denote by \mathcal{H} the family of open halfspaces.

•
$$[A]'_{\varepsilon} = A \setminus \bigcup \{H \in \mathcal{H} : \operatorname{diam}(A \cap H) < \varepsilon \}.$$

- $[A]^{n+1}_{\varepsilon} = [[A]^n_{\varepsilon}]'_{\varepsilon}.$
- $Dz(A,\varepsilon) = \inf\{n : [A]_{\varepsilon}^{n} = \emptyset\}$

Consider $A \subset X$ and denote by \mathcal{H} the family of open halfspaces.

•
$$[A]'_{\varepsilon} = A \setminus \bigcup \{H \in \mathcal{H} : \operatorname{diam}(A \cap H) < \varepsilon \}.$$

•
$$[A]^{n+1}_{\varepsilon} = [[A]^n_{\varepsilon}]'_{\varepsilon}.$$

•
$$Dz(A,\varepsilon) = \inf\{n : [A]_{\varepsilon}^{n} = \emptyset\}$$

Definition

We say that a set $A \subset X$ is *finitely dentable* if $Dz(A, \varepsilon) < \omega$ for every $\varepsilon > 0$.

A D A D A D A

Consider $A \subset X$ and denote by \mathcal{H} the family of open halfspaces.

•
$$[A]'_{\varepsilon} = A \setminus \bigcup \{H \in \mathcal{H} : \operatorname{diam}(A \cap H) < \varepsilon \}.$$

•
$$[A]^{n+1}_{\varepsilon} = [[A]^n_{\varepsilon}]'_{\varepsilon}.$$

•
$$Dz(A,\varepsilon) = \inf\{n : [A]_{\varepsilon}^{n} = \emptyset\}$$

Definition

We say that a set $A \subset X$ is *finitely dentable* if $Dz(A, \varepsilon) < \omega$ for every $\varepsilon > 0$.

Closed convex finitely dentable subsets in Banach spaces enjoy many good properties.

(人間) トイヨト イヨト

Connection UC-FD

M. Raja (Universidad de Murcia)

The optimal modulus of convexity

VI CIDAMA 9/09/2014 10 / 17

3

<ロ> (日) (日) (日) (日) (日)

Remark

If X is uniformly convex then

$$[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

If X is uniformly convex then

```
[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.
```

That implies the finite dentability of B_X .

3

くほと くほと くほと

Remark

If X is uniformly convex then

```
[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.
```

That implies the finite dentability of B_X .

M. Raja (Universidad de Murcia)

The optimal modulus of convexity

VI CIDAMA 9/09/2014 10 / 17

3

Remark

If X is uniformly convex then

$$[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.$$

Moreover, we have

```
Dz(B_X,\varepsilon) \leq \delta_X(\varepsilon)^{-1}
```

3

A B M A B M

Remark

If X is uniformly convex then

```
[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.
```

Moreover, we have

$$Dz(B_X,\varepsilon) \leq \delta_X(\varepsilon)^{-1}$$

following that

 $\delta_X(\varepsilon) \leq Dz(B_X,\varepsilon)^{-1}$

3

Remark

If X is uniformly convex then

$$[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.$$

Moreover, we have

$$Dz(B_X,\varepsilon) \leq \delta_X(\varepsilon)^{-1}$$

following that

$$\delta_X(\varepsilon) \leq Dz(B_X,\varepsilon)^{-1}$$

If $|\!|\!| \cdot |\!|\!|$ is another equivalent norm, then

3

A B < A B </p>

Remark

If X is uniformly convex then

$$[B_X]'_{\varepsilon} \subset (1 - \delta_X(\varepsilon))B_X.$$

Moreover, we have

$$Dz(B_X,\varepsilon) \leq \delta_X(\varepsilon)^{-1}$$

following that

$$\delta_X(\varepsilon) \leq Dz(B_X,\varepsilon)^{-1}$$

If $|\!|\!| \cdot |\!|\!|$ is another equivalent norm, then

$$\delta_{||\cdot||}(arepsilon) \leq Dz(B_{||\cdot|||},arepsilon)^{-1} \leq Dz(B_X,c^2arepsilon)^{-1}$$

where c > 1 is the equivalence constant between the norms.

Previous computations show that the function $Dz(B_X, 4t)^{-1}$ bounds from above the modulus of convexity of any 2-equivalent norm on X.

くほと くほと くほと

Previous computations show that the function $Dz(B_X, 4t)^{-1}$ bounds from above the modulus of convexity of any 2-equivalent norm on X.

Maybe that is the best upper bound. It depends on how that function can be used in uniformly convex renorming.

・ 同 ト ・ 三 ト ・ 三 ト

Previous computations show that the function $Dz(B_X, 4t)^{-1}$ bounds from above the modulus of convexity of any 2-equivalent norm on X.

Maybe that is the best upper bound. It depends on how that function can be used in uniformly convex renorming. Lancien in 1995 proved that a super-reflexive Banach space admits an equivalent norm such that, for some c > 0,

$$\delta_{\mathrm{H}\cdot\mathrm{H}}(t) \geq rac{ct^2}{Dz(B_X,t/8)^2}$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Previous computations show that the function $Dz(B_X, 4t)^{-1}$ bounds from above the modulus of convexity of any 2-equivalent norm on X.

Maybe that is the best upper bound. It depends on how that function can be used in uniformly convex renorming. Lancien in 1995 proved that a super-reflexive Banach space admits an equivalent norm such that, for some c > 0,

$$\delta_{ extsf{m}\cdot extsf{m}}(t) \geq rac{ct^2}{Dz(B_X,t/8)^2}$$

How can we improve that?

A B F A B F

Previous computations show that the function $Dz(B_X, 4t)^{-1}$ bounds from above the modulus of convexity of any 2-equivalent norm on X.

Maybe that is the best upper bound. It depends on how that function can be used in uniformly convex renorming. Lancien in 1995 proved that a super-reflexive Banach space admits an equivalent norm such that, for some c > 0,

$$\delta_{||\cdot|||}(t) \geq rac{ct^2}{Dz(B_X,t/8)^2}$$

How can we improve that?

A key trick is to change the index $Dz(B_X, t)$ by $\mathfrak{N}_X(t)$.

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\|\cdot\|}(t): \|\cdot\|$ is an equivalent norm on $X\}.$

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\mathbf{W}}(t): \mathbf{W} \in \mathbf{W} \text{ is an equivalent norm on } X\}.$

The function $\mathfrak{N}_X(t)$ is built as a geometrical ordinal index, like Dz.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\parallel \cdot \parallel}(t) : \parallel \cdot \parallel \text{ is an equivalent norm on } X\}.$

The function $\mathfrak{N}_X(t)$ is built as a geometrical ordinal index, like Dz.

After that, as usual for suprema, the proof has two parts

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\parallel \cdot \parallel}(t) : \parallel \cdot \parallel \text{ is an equivalent norm on } X\}.$

The function $\mathfrak{N}_X(t)$ is built as a geometrical ordinal index, like Dz.

After that, as usual for suprema, the proof has two parts

• to show that $\mathfrak{N}_X(t)^{-1}$ is an upper bound in \leq ;

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem

Let X be a superreflexive Banach space. There exists a decreasing submultiplicative positive-integer valued function $\mathfrak{N}_X(t)$ defined on (0,1] satisfying that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\|\cdot\|}(t): \|\cdot\|$ is an equivalent norm on $X\}.$

The function $\mathfrak{N}_X(t)$ is built as a geometrical ordinal index, like Dz.

After that, as usual for suprema, the proof has two parts

- to show that $\mathfrak{N}_X(t)^{-1}$ is an upper bound in \leq ;
- to show that it is under any other upper bound.

イロト 不得下 イヨト イヨト 二日

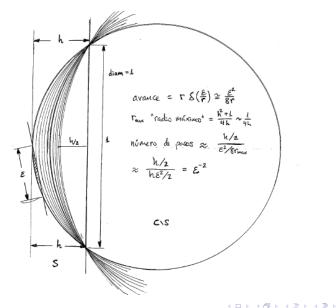
M. Raja (Universidad de Murcia)

The optimal modulus of convexity

VI CIDAMA 9/09/2014 14 / 17

イロト イヨト イヨト イヨト

3



14 / 17

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

a)
$$A = C_0 \supset C_1 \supset \cdots \supset C_{N_{\varepsilon}} \supset (A \setminus H)$$
,

・ 同 ト ・ 三 ト ・ 三 ト

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

a)
$$A = C_0 \supset C_1 \supset \cdots \supset C_{N_{\varepsilon}} \supset (A \setminus H),$$

b) $[C_{n-1}]'_{\varepsilon} \subset C_n,$

通 ト イヨ ト イヨト

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

a)
$$A = C_0 \supset C_1 \supset \cdots \supset C_{N_{\varepsilon}} \supset (A \setminus H)$$

b)
$$[C_{n-1}]'_{\varepsilon} \subset C_n$$
, and

c) $C_{N_{\varepsilon}} \cap H$ has width less than h/2.

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

a)
$$A = C_0 \supset C_1 \supset \cdots \supset C_{N_{\varepsilon}} \supset (A \setminus H)$$
,

b)
$$[C_{n-1}]'_{\varepsilon} \subset C_n$$
, and

c) $C_{N_{\varepsilon}} \cap H$ has width less than h/2.

The least N_{ε} with all these properties will be denoted $\mathfrak{M}_{X}(\varepsilon)$.

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

a)
$$A = C_0 \supset C_1 \supset \cdots \supset C_{N_{\varepsilon}} \supset (A \setminus H),$$

b)
$$[C_{n-1}]'_{\varepsilon} \subset C_n$$
, and

c)
$$C_{N_{\varepsilon}} \cap H$$
 has width less than $h/2$.

The least N_{ε} with all these properties will be denoted $\mathfrak{M}_{X}(\varepsilon)$.

A small variation can be done above in order to get the submultiplicativity. The function obtained in that fashion is $\mathfrak{N}_X(\varepsilon)$.

A B A A B A

< 🗗 🕨

Theorem

Let X be a superreflexive Banach space. For every $\varepsilon \in (0, 1]$ there is $N_{\varepsilon} \in \mathbb{N}$, such that for every slice $S = A \cap H$, with A convex and $H \in \mathcal{H}$, of diameter at most 1 and width h > 0 there are closed convex sets $(C_n)_{n=0}^{N_{\varepsilon}}$ having these properties:

a)
$$A = C_0 \supset C_1 \supset \cdots \supset C_{N_{\varepsilon}} \supset (A \setminus H),$$

b)
$$[C_{n-1}]'_{\varepsilon} \subset C_n$$
, and

c)
$$C_{N_{\varepsilon}} \cap H$$
 has width less than $h/2$.

The least N_{ε} with all these properties will be denoted $\mathfrak{M}_{X}(\varepsilon)$.

A small variation can be done above in order to get the submultiplicativity. The function obtained in that fashion is $\mathfrak{N}_X(\varepsilon)$. Anyway, $\mathfrak{N}_X(\varepsilon)$ and $\mathfrak{M}_X(\varepsilon)$ are equivalent functions.

15 / 17

M. Raja (Universidad de Murcia)

- 2

*ロト *檀ト *注ト *注ト

Let us recall the submultiplicativity of $\mathfrak{N}_X(t)$

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

3

くほと くほと くほと

Let us recall the submultiplicativity of $\mathfrak{N}_X(t)$

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

A submultiplicative function is bounded from above by a power function,

3 K K 3 K

Let us recall the submultiplicativity of $\mathfrak{N}_X(t)$

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

A submultiplicative function is bounded from above by a power function, and so $\mathfrak{N}_X(t)^{-1}$ is bounded below by a power function.

< 3 > < 3 >

Let us recall the submultiplicativity of $\mathfrak{N}_X(t)$

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

A submultiplicative function is bounded from above by a power function, and so $\mathfrak{N}_X(t)^{-1}$ is bounded below by a power function. The moduli of convexity of equivalent norms that approaches enough $\mathfrak{N}_X(t)^{-1}$ inherit the same property.

Let us recall the submultiplicativity of $\mathfrak{N}_X(t)$

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

A submultiplicative function is bounded from above by a power function, and so $\mathfrak{N}_X(t)^{-1}$ is bounded below by a power function. The moduli of convexity of equivalent norms that approaches enough $\mathfrak{N}_X(t)^{-1}$ inherit the same property.

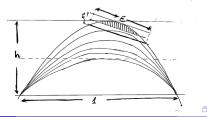
We finish with a picture of the main idea leading to the definition of the index $\mathfrak{N}_X(t)$ and its submultiplicativity.

Let us recall the submultiplicativity of $\mathfrak{N}_X(t)$

• $\mathfrak{N}_X(t_1t_2) \leq \mathfrak{N}_X(t_1)\mathfrak{N}_X(t_2)$

A submultiplicative function is bounded from above by a power function, and so $\mathfrak{N}_X(t)^{-1}$ is bounded below by a power function. The moduli of convexity of equivalent norms that approaches enough $\mathfrak{N}_X(t)^{-1}$ inherit the same property.

We finish with a picture of the main idea leading to the definition of the index $\mathfrak{N}_{\chi}(t)$ and its submultiplicativity.



Thank you for your attention!

3