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Modulus of uniform convexity

X will denote a Banach space

Modulus of uniform convexity

δX (t) = inf{1− ‖x + y

2
‖ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ t}

The modulus of convexity is defined for t ∈ [0, 2] and it is a
monotone function.

The space is said uniformly convex δX (t) > 0 if if t > 0
(Clarkson 1936).

As we will consider several equivalent norms on X we prefer to
write δ‖.‖(t).
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Uniform convexity

Many classical Banach spaces are uniformly convex.

In particular, the
Hilbert space is uniformly convex and

δH(t) = 1−
√

1− t2/4 ' t2/8

The “most uniformly convex” Banach space is the Hilbert space since

δX (t) ≤ δH(t)

for any Banach space X and t ∈ [0, 2] (Nörlander 1960).

That suggests us a way to compare the degree of uniform convexity
between spaces, or norms (even inside the same space).
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Uniform convexity

When does a Banach space have an equivalent uniformly convex
norm?

In other words: Is there any isomorphic characterization of the
existence of such a renorming?

Superreflexivity was introduced by James in 1972.

Theorem (James, Enflo, Pisier)

A Banach space has an equivalent uniformly convex norm if and only
if it is superreflexive.

Moreover, we can take the norm such that δ(ε) ≥ cεp for some
c > 0 and p ≥ 2.
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A partial order

Consider the following order for real functions defined on (0, 1].

We
say that φ � ψ if there is a constant c > 0 such that φ(t) ≤ c ψ(t)
for all t ∈ (0, 1].If φ � ψ and ψ � φ, then we say that φ and ψ are
equivalent.

Norlander’s result implies for every Banach space that

δX (t) � t2

Pisier’s result implies that if X is super-reflexive, then there exists an
equivalent norm ||| · ||| on X and p ≥ 2 such that

tp � δ|||·|||(t)

M. Raja (Universidad de Murcia) The optimal modulus of convexity VI CIDAMA 9/09/2014 5 / 17



A partial order

Consider the following order for real functions defined on (0, 1].We
say that φ � ψ if there is a constant c > 0 such that φ(t) ≤ c ψ(t)
for all t ∈ (0, 1].

If φ � ψ and ψ � φ, then we say that φ and ψ are
equivalent.

Norlander’s result implies for every Banach space that

δX (t) � t2

Pisier’s result implies that if X is super-reflexive, then there exists an
equivalent norm ||| · ||| on X and p ≥ 2 such that

tp � δ|||·|||(t)

M. Raja (Universidad de Murcia) The optimal modulus of convexity VI CIDAMA 9/09/2014 5 / 17



A partial order

Consider the following order for real functions defined on (0, 1].We
say that φ � ψ if there is a constant c > 0 such that φ(t) ≤ c ψ(t)
for all t ∈ (0, 1].If φ � ψ and ψ � φ, then we say that φ and ψ are
equivalent.

Norlander’s result implies for every Banach space that

δX (t) � t2

Pisier’s result implies that if X is super-reflexive, then there exists an
equivalent norm ||| · ||| on X and p ≥ 2 such that

tp � δ|||·|||(t)

M. Raja (Universidad de Murcia) The optimal modulus of convexity VI CIDAMA 9/09/2014 5 / 17



A partial order

Consider the following order for real functions defined on (0, 1].We
say that φ � ψ if there is a constant c > 0 such that φ(t) ≤ c ψ(t)
for all t ∈ (0, 1].If φ � ψ and ψ � φ, then we say that φ and ψ are
equivalent.

Norlander’s result implies for every Banach space that

δX (t) � t2

Pisier’s result implies that if X is super-reflexive, then there exists an
equivalent norm ||| · ||| on X and p ≥ 2 such that

tp � δ|||·|||(t)

M. Raja (Universidad de Murcia) The optimal modulus of convexity VI CIDAMA 9/09/2014 5 / 17



A partial order

Consider the following order for real functions defined on (0, 1].We
say that φ � ψ if there is a constant c > 0 such that φ(t) ≤ c ψ(t)
for all t ∈ (0, 1].If φ � ψ and ψ � φ, then we say that φ and ψ are
equivalent.

Norlander’s result implies for every Banach space that

δX (t) � t2

Pisier’s result implies that if X is super-reflexive, then there exists an
equivalent norm ||| · ||| on X and p ≥ 2 such that

tp � δ|||·|||(t)

M. Raja (Universidad de Murcia) The optimal modulus of convexity VI CIDAMA 9/09/2014 5 / 17



The main result

Our aim is to provide the best upper bound for all the modulus of
convexity of possible renormings of a Banach space beyond the power
functions.

Theorem
Let X be a superreflexive Banach space. There exists a decreasing
submultiplicative positive-integer valued function NX (t) defined on
(0, 1]

submultiplicativity

NX (t1t2) ≤ NX (t1)NX (t2)
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Slice derivation and dentability index

Consider A ⊂ X and denote by H the family of open halfspaces.

• [A]′ε = A \
⋃
{H ∈ H : diam(A ∩ H) < ε}.
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Slice derivation and dentability index

Consider A ⊂ X and denote by H the family of open halfspaces.

• [A]′ε = A \
⋃
{H ∈ H : diam(A ∩ H) < ε}.

• [A]n+1
ε = [[A]nε ]′ε.

• Dz(A, ε) = inf{n : [A]nε = ∅}

Definition
We say that a set A ⊂ X is finitely dentable if Dz(A, ε) < ω for every
ε > 0.

Closed convex finitely dentable subsets in Banach spaces enjoy many
good properties.
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Connection UC-FD

Remark
If X is uniformly convex then

[BX ]′ε ⊂ (1− δX (ε))BX .

That implies the finite dentability of BX .
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Connection UC-FD

Remark
If X is uniformly convex then

[BX ]′ε ⊂ (1− δX (ε))BX .

Moreover, we have
Dz(BX , ε) ≤ δX (ε)−1

following that
δX (ε) ≤ Dz(BX , ε)−1

If ||| · ||| is another equivalent norm, then

δ|||·|||(ε) ≤ Dz(B|||·|||, ε)−1 ≤ Dz(BX , c
2ε)−1

where c > 1 is the equivalence constant between the norms.
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Connection UC-FD

Previous computations show that the function Dz(BX , 4t)−1 bounds
from above the modulus of convexity of any 2-equivalent norm on X .

Maybe that is the best upper bound. It depends on how that
function can be used in uniformly convex renorming. Lancien in 1995
proved that a super-reflexive Banach space admits an equivalent
norm such that, for some c > 0,

δ|||·|||(t) ≥ ct2

Dz(BX , t/8)2

How can we improve that?

A key trick is to change the index Dz(BX , t) by NX (t).
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Back to the main result

Theorem
Let X be a superreflexive Banach space. There exists a decreasing
submultiplicative positive-integer valued function NX (t) defined on
(0, 1] satisfying that NX (t)−1 is the supremum, up to equivalence,
with respect to the order � of the set

{δ|||·|||(t) : ||| · ||| is an equivalent norm on X}.

The function NX (t) is built as a geometrical ordinal index, like Dz .

After that, as usual for suprema, the proof has two parts

to show that NX (t)−1 is an upper bound in �;

to show that it is under any other upper bound.
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Theorem
Let X be a superreflexive Banach space. For every ε ∈ (0, 1] there is
Nε ∈ N, such that for every slice S = A ∩ H , with A convex and
H ∈ H, of diameter at most 1 and width h > 0 there are closed
convex sets (Cn)Nε

n=0 having these properties:

a) A = C0 ⊃ C1 ⊃ · · · ⊃ CNε ⊃ (A \ H),

b) [Cn−1]′ε ⊂ Cn,and

c) CNε ∩ H has width less than h/2.

The least Nε with all these properties will be denoted MX (ε).

A small variation can be done above in order to get the
submultiplicativity. The function obtained in that fashion is
NX (ε). Anyway, NX (ε) and MX (ε) are equivalent functions.
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Improving Pisier’s

Let us recall the submultiplicativity of NX (t)

NX (t1t2) ≤ NX (t1)NX (t2)

A submultiplicative function is bounded from above by a power
function, and so NX (t)−1 is bounded below by a power function.
The moduli of convexity of equivalent norms that approaches enough
NX (t)−1 inherit the same property.

We finish with a picture of the main idea leading to the definition of
the index NX (t) and its submultiplicativity.
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Thank you for your attention!
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