The Bishop-Phelps-Bollobás property for operators

María D. Acosta

Departamento de Análisis Matemático Universidad de Granada X (real or complex) Banach space, X^* the dual space

Bishop-Phelps Theorem, 1961

 $\{x^* \in X^* : x^* \text{ attains its norm }\}$ is dense in X^*

$$B_X = \{x \in X : \|x\| \le 1\}, \quad S_X = \{x \in X : \|x\| = 1\}$$

Bishop-Phelps-Bollobás Theorem, 1970

X Banach, $0 < \varepsilon < 1$. Given $(x, x^*) \in S_X \times S_{X^*}$ with $|1 - x^*(x)| < \frac{\varepsilon^2}{4}$ $\exists (y, y^*) \in S_X \times S_{X^*} : y^*(y) = 1, ||y - x|| < \varepsilon, ||y^* - x^*|| < \varepsilon$.

Second volumen by Bonsall and Duncan devoted to numerical range of operators

X, Y Banach spaces

 $L(X, Y) = \{T : X \longrightarrow Y : T \text{ is linear and bounded } \}$

If $T \in L(X, Y)$, the numerical range of T is given by

$$V(T) = \{x^*(T(x)) : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}.$$

Trivial that $V(T) \subset V(T^*)$.

It is satisfied that

$$V(T^*)=\overline{V(T)}.$$

Versions of Bishop-Phelps Theorem for operators

Norm attaining operators

 $NA(X, Y) = \{T \in L(X, Y) : \exists x \in B_X, \|Tx\| = \|T\|\}$

Question: Is NA(X, Y) (norm) dense in L(X, Y)?

(Lindenstrauss, 1963)

1) For $X = c_0$, Y strictly convex and isomorphic to c_0 ,

 $\overline{\mathit{NA}(X,Y)} \neq \mathit{L}(X,Y)$

2) X reflexive $\Rightarrow \overline{NA(X,Y)} = L(X,Y), \forall Y.$

3)
$$\overline{NA(\ell_1, Y)} = L(\ell_1, Y), \forall Y.$$

4)
$$\overline{NA(X,\ell_{\infty})} = L(X,\ell_{\infty}), \ \forall X.$$

Versions of Bishop-Phelps Theorem for operators

(Bourgain, 1977)

X has the Radon-Nikodým property $\Rightarrow \overline{NA(X, Y)} = L(X, Y), \forall Y.$

A few positive results for classical spaces

(Iwanik, 1979) For every finite positive Borel measures μ, ν on [0, 1], $\overline{NA(L_1(\mu), L_1(\nu))} = L(L_1(\mu), L_1(\nu))$

(Johnson and Wolfe, 1979)

If *K* and *S* are compact and Hausdorff topological spaces, then $\overline{NA(C(K), C(S))} = L(C(K), C(S))$ (real valued functions).

(Schachermayer, 1983) and (Alaminos, Choi, Kim and Payá, 1998)

 $\frac{\text{If } L \text{ is a Hausdorff and locally compact topological space, then }}{WC(C_0(L), Y) \cap NA(C_0(L), Y)} = WC(C_0(L), Y), \quad \forall Y.$

WC= weakly compact operators

Versions of Bishop-Phelps Theorem for operators

Hence

$$\overline{NA(C(K), \ell_2)} = L(C(K), \ell_2)$$
 and $\overline{NA(C(K), L_1[0, 1])} = L(C(K), L_1[0, 1])$.

(Schachermayer, 1979), (Johnson and Wolfe, 1979)

 $\overline{\textit{NA}(\textit{L}_1[0,1],\textit{C}[0,1])} \neq \textit{L}(\textit{L}_1[0,1],\textit{C}[0,1])$

(Gowers, 1990), (Aguirre, 1990), (A, 1998)

 $\exists X : \overline{NA(X,Y)} \neq L(X,Y)$

for every *Y* with dim $Y = \infty$, *Y* strictly convex

 $\exists X : \overline{NA(X, L_1(\mu))} \neq L(X, L_1(\mu))$

whenever dim $L_1(\mu) = \infty$.

(Martín, 2014)

 $\exists X, Y : \overline{NAK(X, Y)} \neq K(X, Y))$

(K(X, Y) = compact operators from X into Y)

Bishop-Phelps-Bollobás property for operators

Bishop-Phelps-Bollobás property for operators

(X, Y) has the Bishop-Phelps-Bollobás property (BPBp) for operators if for every $0 < \varepsilon < 1$ there are $\eta(\varepsilon) > 0$ satisfying that

$$T \in S_{L(X,Y)}, x_0 \in S_X : ||Tx_0|| > 1 - \eta(\varepsilon) \Rightarrow$$

$$\exists S \in S_{L(X,Y)}, u_0 \in S_X : ||S(u_0)|| = 1,$$
$$||u_0 - x_0|| < \varepsilon \text{ and } ||S - T|| < \varepsilon$$

Question: Which pair of spaces (X, Y) have the BPBp?

(A., Aron, García and Maestre, 2008)

1) dim *X*, dim $Y < +\infty \Rightarrow (X, Y)$ has the BPBp for operators.

2) $(\ell_1, Y) \text{ satisfies } BPBp \text{ for operators } \Leftrightarrow Y \text{ has the } AHSp$

AHSp= almost hyperplane series property

3) Finite-dimensional spaces, uniformly convex spaces, C(K) and $L_1(\mu)$ ($\mu \sigma$ -finite) satisfy AHSp

(Aron, Choi, García and Maestre, 2011)

 $\mu \sigma$ -finite measure $\Rightarrow (L_1(\mu), L_\infty[0, 1])$ has the BPBp for operators.

(Aron, Cascales, Kozhushkina, 2011)

 $\left. \begin{array}{l} X \quad \text{Asplund} \\ L \quad \text{locally compact Hausdorff} \end{array} \right\} \Rightarrow (X, C_0(L)) \ \text{has the BPBp for operators.} \end{array} \right\}$

(A., Becerra, García and Maestre, 2014), (Dai, preprint), (Kim, Lee, 2013) X is uniformly convex \Rightarrow (X, Y) has the BPBp for operators.

(Kim, 2013)

Y uniformly convex \Rightarrow (c_0 , Y) has the BPBp for operators

2) Y strictly convex,

1)

 (c_0, Y) has the BPBp for operators \Leftrightarrow Y is uniformly convex

(A., Becerra, Choi, Ciesielski, Kim, Lee, Lourenço, Martín, 2014)

K, S compact Hausdorff spaces, (C(K), C(S)) has the BPBp for operators (for real valued functions). (A., Becerra, García, Kim, Maestre, preprint, 2013)

1) Characterize the spaces Y such that (ℓ_{∞}^3, Y) has the BPBp for operators (real case).

2) Finite-dimensional spaces, uniformly convex spaces, $C_0(L)$ (*L* locally compact Hausdorff space) and $L_1(\mu)$ satisfy the previous condition.

- **3)** If a strictly convex space *Y* satisfies 1) then it is uniformly convex.
- 4) Every real Banach space admits an equivalent norm satisfying 1).

Very recent results for operators acting on $C_0(L)$

(Kim, Lee, 2015)

Y uniformly convex, K compact Hausdorff space (C(K), Y) has the BPBp for operators (real case).

(Kim, Lee, Lin, preprint, 2014)

prove that

Y uniformly convex, $X = L_{\infty}(\mu)$ or $X = c_0(\Gamma)$. Then (X, Y) has the BPBp for operators (real case).

state that

Y is complex uniformly convex, $X = L_{\infty}(\mu)$ or $X = c_0$ (complex cases). Then (X, Y) has the BPBp for operators (complex case).

Very recent results for operators acting on $C_0(L)$

Theorem

 $(C_0(L), Y)$ satisfies the Bishop-Phelps-Bollobás property for operators for any locally compact Hausdorff topological space *L* and any \mathbb{C} -uniformly convex space *Y*.

Moreover the function η (Definition of BPBp) depends only on the modulus of convexity of *Y*.

Definition

Y complex space, the \mathbb{C} -modulus of convexity δ is given by

$$\delta(\varepsilon) = \inf \{ \sup \{ \|x + \lambda \varepsilon y\| - 1 : \lambda \in \mathbb{C}, |\lambda| = 1 \} : x, y \in S_Y \}.$$

Y is \mathbb{C} -uniformly convex if $\delta(\varepsilon) > 0$ for every $\varepsilon > 0$.

Examples:

1) Every uniformly convex complex space is $\mathbb{C}\mbox{-uniformly convex}$ and the converse is not true.

2)The complex space $L_1(\mu)$ is \mathbb{C} -uniformly convex (Globevnik).

Proposition

Let *Y* be a \mathbb{C} -uniformly convex Banach space and *L* any locally compact Hausdorff space. Then every operator from $C_0(L)$ into *Y* is weakly compact.

Argument in the proof use James distortion Theorem + Bessaga-Pełczyński selection principle.

(If X is a complex space and $X_{\mathbb{R}}$ contains c_0 (real) then X contains also the complex c_0 .)

Facts used in the proof

L a locally compact Hausdorff space,

 $\mathcal{B}(L)$ = Borel measurable and bounded complex valued functions on *L* (with the sup norm)

 $B \subset L$ Borel measurable set, define $P_B : \mathcal{B}(L) \longrightarrow \mathcal{B}(L)$

$$P_B(f) = f\chi_B \quad (f \in \mathcal{B}(L)).$$

By Riesz Theorem, the space $\mathcal{B}(L)$ is embedded as a subspace of $C_0(L)^{**}$ such that the restriction of this identification to $C_0(L)$ is the usual injection of a space to its bidual. As a consequence, for an operator $T \in L(C_0(L), Y)$ and a Borel set $B \subset L$, the composition $T^{**}P_B$ makes sense.

Lemma

Let *Y* be a \mathbb{C} -uniformly convex space with modulus of \mathbb{C} -convexity δ . Let *B* a Borel set of *L*. Assume that for some $0 < \varepsilon < 1$ and $T \in S_{L(C_0(L), Y)}$ it is satisfied $||T^{**}P_B|| > 1 - \frac{\delta(\varepsilon)}{1+\delta(\varepsilon)}$. Then $||T^{**}(I - P_B)|| \le \varepsilon$. 1) Riesz Theorem, Radon-Nikodým Theorem

2) If $\mu \in M(K) = C(K)^*$, $\|\mu\| = 1$, $g = \frac{d\mu}{d|\mu|}$. Then μ attains its norm at \overline{g} .

Some estimates of the same kind Assume $\mu \in M(K) = C(K)^*$, $\|\mu\| = 1$, $g = \frac{d\mu}{d|\mu|}$. Assume |g| = 1. If $f \in S_{C(K)}$ satisfies that Re $\mu(f) = \text{Re } \int_K fgd|\mu| > 1 - \varepsilon^2$. Take

 $\boldsymbol{A} = \{t \in \boldsymbol{K} : \operatorname{Re} f(t)\boldsymbol{g}(t) > 1 - \varepsilon\}.$

Then $|\mu|(K \setminus A) < \varepsilon$ and $||(f - \overline{g})\chi_A||_{\infty} \le \sqrt{2\varepsilon}$.

3) Lusin Theorem

4) If *Y* is \mathbb{C} -uniformly convex then *Y* does not contain c_0 . Hence any operator from C(K) into *Y* is weakly compact (Pełczyński).

5) The set of weakly compact norm attaining operators is dense in the set of weakly compact operators from C(K) into Y (Alaminos, Choi, Kim, Payá)

6) Urysohn Lemma

Sketch of the proof I

Sketch of proof:

1) Given $0 < \varepsilon < 1$, take $\eta = \eta(\varepsilon, \delta(\varepsilon))$ and $s = s(\varepsilon)$. Assume that $T : C_0(L) \longrightarrow Y$ and f_0 satisfies that

$$T\in \mathcal{S}_{L(C_0(L),Y)}, \qquad f_0\in \mathcal{S}_{C_0(L)}, \qquad ext{ and } \qquad \|Tf_0\|>1-s.$$

Write $\mu_1 = T^* y_1^* \in B_{C_0(L)^*} \equiv B_{M(L)}$ (Riesz Theorem) and $g_1 = \frac{d\mu_1}{|\mu_1|}$. We can assume that $|g_1| = 1$. A by

$$A = \{t \in L : \text{Re } f_0(t)g_1(t) > 1 - \beta\}.$$

Immediate to obtain that

$$\|(f_0-\overline{g_1})\chi_A\|_{\infty}\leq \sqrt{2\beta}=\frac{\varepsilon}{12}.$$

Prove that

$$|\mu_1|(L \setminus A) \leq rac{s}{eta} \sim 0$$

Sketch of the proof II

2) By Lusin Theorem we approximate *A* by a compact set. There is a compact set $B \subset A$ such that $g_{1|B}$ is continuous and $|\mu_1|(A \setminus B) \leq \frac{\varepsilon \eta}{2}$ (almost zero), so $|\mu_1|(L \setminus B)$ is also close to zero. Hence $||T^{**}P_B|| \geq |\mu_1| > 1 - \eta$. By Lemma we obtain that $||T^{**}(I - P_B)|| \leq \frac{\varepsilon}{9}$.

3) By using y_1^* and g_1 we define an operator \tilde{S} close to T and such that

$$ilde{S}^{**} = ilde{S}^{**} P_B$$
 and $\| ilde{S}\| \sim 1.$

Let S_1 be the restriction of \tilde{S} to C(B) $(S_1(f) = \tilde{S}^{**}(f\chi_B))$. Use that in this case NA(C(B), Y) is dense in L(C(B), Y) (Alaminos, Choi, Kim, Payá). There is an operator $S_2 \in L(C(B), Y)$ and $h_1 \in S_{C(B)}$ satisfying that

$$\|\tilde{S}\| = \|S_2\| = \|S_2(h_1)\|$$
 and $\|S_2 - S_1\| < \frac{\varepsilon\eta}{2}$.

We can choose $y_2^* \in S_{Y^*}$ such that $y_2^*(S_2(h_1)) = ||S_2||$ and check that Re $y_2^*(R_2(\overline{g_1}_{|B})) \sim 1$,

where

$$R_2 = rac{S_2}{\|S_2\|}, \qquad \mu_2 = R_2^*(y_2^*) \in M(B), \qquad ext{and} \qquad g_2 = rac{d\mu_2}{d|\mu_2|}, \ |g_2| = 1.$$

Consider the subset *C* given by

$$C = \big\{ t \in B : \operatorname{Re} \big(\overline{g_1}(t) + h_1(t) \big) g_2(t) > 2 - \beta \big\}.$$

We check that $|\mu_2|(B \setminus C) \sim 0$ and we also have that

$$\|(h_1-f_0)\chi_{\mathcal{C}}\|\leq \frac{\varepsilon}{4}.$$

By the inner regularity of μ_2 there is a compact ser $K_1 \subset C$ such that $|\mu_2|(C \setminus K_1) \sim 0$ and also $||R_2^{**}P_{K_1}|| \sim 1$. By the Lemma we obtain $|||R_2^{**}(P_B - P_{K_1})|| \sim 0$. We also have that $K_1 \neq \emptyset$.

Sketch of the proof IV

5) By Urysohn Lemma and up to some modifications we can assume that the function h_1 satisfies that $|h_1(t_0)| = 1$ for some $t_0 \in K_1$. Since $B \subset L$ is compact and $||h_1|| = 1$ there is a function $f_2 \in S_{C_0(L)}$ that extends h_1 .

We knew that $(h_1 - f_0)\chi_{K_1}$ is close to zero, so there is an open set *G* such that $K_1 \subset G$ and $(f_2 - f_0)\chi_G$ is close to zero.

In view of Urysohn Lemma there is a function $f_3 \in S_{C_0(L)}$ such that

$$\|f_3-f_0\|<\varepsilon$$
 and $f_{3|K_1}=h_1$.

6) Define S by

$$S(f) = R_2^{**}((f\chi_{K_1})_{|B}) + \lambda_0 f(t_0) R_2^{**}(h_1\chi_{B\setminus K_1})$$

for some λ_0 satisfying $|\lambda_0| = 1$. Since R_2 is weakly compact, $S \in L(C_0(L), Y)$.

$$\|R_2\|=1 \qquad \Rightarrow \qquad \|S\|\leq 1.$$

Also it is satisfied that $||S - T|| < \varepsilon$ and $||f_3 - f_0|| < \varepsilon$.

Some open questions

- Does the pair (c₀, l₁) (real case) have the BPBp for operators?
- Characterize the Banach spaces Y such that the pair (L₁(μ), Y) satisfies the BPBp for operators.