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Bilinear Calderón–Zygmund operators

DEFINITION (GRAFAKOS-TORRES, 2002)

We say that T is an bilinear Calderón-Zygmund operator if, for some

1 < p1,p2 < ∞, it extends to a bounded bilinear operator from Lp1 ×Lp2 to

Lp, where
1
p
=

1
p1

+
1
p2

,

and if there exists a function K, defined off the diagonal x = y = z in (Rn)3,

satisfying

T(f ,g)(x) =
∫∫

R2n
K(x,y,z)f (y)g(z)dydz,

for all x /∈ suppf ∩ suppg.
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Bilinear Calderón–Zygmund operators

DEFINITION (GRAFAKOS-TORRES, 2002)

The kernel K must also satisfy these conditions:

|K(x,y,z)|. 1(
|x− y|+ |x− z|

)2n ,

and

|∇K(x,y,z)|. 1(
|x− y|+ |x− z|

)2n+1 ,

where ∇ denotes the gradient in all possible variables.
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Class of multiplicative symbols

BOUNDED MEAN OSCILLATION FUNCTIONS

BMO = { f ∈ L1
loc(Rn) : M]f ∈ L∞}
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Class of multiplicative symbols

BOUNDED MEAN OSCILLATION FUNCTIONS

BMO = { f ∈ L1
loc(Rn) : M]f ∈ L∞}

FEFFERMAN-STEIN SHARP MAXIMAL FUNCTION

M]f (x) = sup
Q3x

1
|Q|

∫
Q
|f (y)− fQ|dy
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Class of multiplicative symbols

BOUNDED MEAN OSCILLATION FUNCTIONS

BMO = { f ∈ L1
loc(Rn) : M]f ∈ L∞}

BOUNDED MEAN OSCILLATION FUNCTIONS

||f ||BMO = sup
Q

1
|Q|

∫
Q
|f (x)− fQ|dx.

CONTINUOUS MEAN OSCILLATION FUNCTIONS

CMO is defined as the closure of C∞
c in the BMO norm.
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Commutators of linear Calderón–Zygmund operators

Let T be a linear Calderón–Zygmund operator associated with a kernel K

and b is a BMO function.

[T,b] f (x) = T(bf )(x)−bT(f )(x)

=
∫
Rn
(b(y)−b(x))K(x,y)f (y)dy.
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Commutators of bilinear CZO

Let T be a bilinear Calderón–Zygmund operator and b ∈ BMO.

COMMUTATOR IN THE FIRST VARIABLE

[T,b]1(f ,g) = T(bf ,g)(x)−bT(f ,g)(x)

=
∫∫

(Rn)2
K(x,y,z)(b(y)−b(x))f (y)g(z)dydz.

COMMUTATOR IN THE SECOND VARIABLE

[T,b]2(f ,g) = T(f ,bg)(x)−bT(f ,g)(x)

=
∫∫

(Rn)2
K(x,y,z)(b(z)−b(x))f (y)g(z)dydz.
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Iterated commutators of bilinear CZO

Let T be a bilinear Calderón–Zygmund operator and~b = (b1,b2) ∈ BMO2.

[T,~b](f ,g)(x) = [[T,b1]1,b2]2(f ,g)(x) = [[T,b2]2,b1]1(f ,g)(x)
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Iterated commutators of bilinear CZO

Let T be a bilinear Calderón–Zygmund operator and~b = (b1,b2) ∈ BMO2.

[T,~b](f ,g)(x) =
∫∫

(Rn)2
K(x,y,z)(b1(y)−b1(x))((b2(z)−b2(x))f (y)g(z)dydz

For a multi-index ~α = (α1,α2) ∈ N2
0,

[T,~b]~α(f ,g)(x)

=
∫∫

(Rn)2
K(x,y,z)(b1(y)−b1(x))α1((b2(z)−b2(x))α2 f (y)g(z)dydz.
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Compactness of a bilinear operator

Let X, Y and Z be normed spaces and T : X×Y→ Z be a bilinear operator.

DEFINITION (BÉNYI AND TORRES, 2013)
1 Jointly compact if {T(x,y) : ‖x‖X,‖y‖Y ≤ 1} is precompact in Z.

2 Compact in the first variable if

Ty = T(·,y) : X→ Z is compact for all y ∈ Y.
3 Compact in the second variable if

Tx = T(x, ·) : Y→ Z is compact for all x ∈ X.
4 Separately compact if T is compact both in the first and second variable.
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Boundedness of linear commutators

In 1976, Coifman, Rochberg and Weiss proved:

THEOREM

Let T be a Calderón–Zygmund operator. If b ∈ BMO, then

[T,b] : Lp(Rn)−→ Lp(Rn), 1 < p < ∞.

Conversely, if for every j = 1, . . . ,n, [Rj,b] is bounded on Lp(Rn) for some p,

1 < p < ∞, where Rj is the j-th Riesz transform given by

Rjf (x) =
Γ
( n+1

2

)
π

n+1
2

p.v.
∫
Rn

yj

|y|n+1 f (x− y)dy, 1≤ j≤ n,

then b ∈ BMO.
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Compactness of linear commutators

THEOREM (UCHIYAMA, 1978)

Let b ∈ ∪q>1Lq
loc(R

n) and T a Calderón–Zygmund operator. Then [T,b] is a

compact operator from Lp(Rn) into itself, 1 < p < ∞, if and only if,

b ∈ CMO.

THEOREM (FRÉCHET-KOLMOGOROV)

A set K is precompact in Lp, 1≤ p < ∞, if and only if

1 K is bounded in Lp;

2 lim
A→∞

∫
|x|>A
|f (x)|p dx = 0 uniformly for f ∈K ;

3 lim
t→0
‖f (·+ t)− f‖Lp = 0 uniformly for f ∈K .
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Boundedness and compactness of bilinear commutators

THEOREM

Let T be a bilinear Calderón–Zygmund operator and b,b1,b2 ∈ BMO. Then

[T,b]1, [T,b]2 and [[T,b1]1,b2]2 : Lp1(Rn)×Lp2(Rn)→ Lp(Rn), with
1
p1
+ 1

p2
= 1

p , 1 < p1,p2 < ∞, with estimates of the form

||[T,b]1(f ,g), [T,b]2(f ,g)||Lp . ||b||BMO||f ||Lp1 ||g||Lp2 ,

||[[T,b1]1,b2]2(f ,g)||Lp . ||b1||BMO||b2||BMO||f ||Lp1 ||g||Lp2 .

THEOREM (BÉNYI AND TORRES, 2013)

If b,b1,b2 ∈ CMO, 1
p1
+ 1

p2
= 1

p , 1 < p1,p2 < ∞ and 1≤ p < ∞, then [T,b]1,

[T,b]2 and [[T,b1]1,b2]2 are compact for the same range of exponents.
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Ap weights

In 1972, Muckenhoupt characterized the class of weights v for which the

following strong inequality holds∫
Rn
(Mf (x))pv(x)dx≤ C

∫
Rn
|f (x)|pv(x)dx, f ∈ Lp(v),

where

Mf (x) = sup
Q3x

1
|Q|

∫
Q
|f (y)|dy.
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Ap weights

In 1972, Muckenhoupt proved that∫
Rn
(Mf (x))pv(x)dx≤ C

∫
Rn
|f (x)|pv(x)dx, f ∈ Lp(v),

holds if and only if v satisfies the Ap condition

Ap CONDITION

[v]Ap := sup
Q

(
1
|Q|

∫
Q

v(x)dx
)(

1
|Q|

∫
Q

v(x)−
1

p−1

)p−1

< ∞, p > 1.
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Ap weights

In 1972, Muckenhoupt proved that∫
Rn
(Mf (x))pv(x)dx≤ C

∫
Rn
|f (x)|pv(x)dx, f ∈ Lp(v),

holds if and only if v satisfies the Ap condition

Ap CONDITION

[v]Ap := sup
Q

(
1
|Q|

∫
Q

v(x)dx
)(

1
|Q|

∫
Q

v(x)−
1

p−1

)p−1

< ∞, p > 1.

THEOREM (COIFMAN AND C. FEFFERMAN, 1974)
Let T be a Calderón–Zygmund operator. Then, for any w ∈ Ap, 1 < p < ∞,

T : Lp(w)→ Lp(w).
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Compactness in the weighted setting

THEOREM (CLOP AND CRUZ, 2013)

Let 1 < p < ∞ and w ∈ Ap and let K ⊂ Lp(w). If

1 K is bounded in Lp(w);

2 lim
A→∞

∫
|x|>A
|f (x)|p w(x)dx = 0 uniformly for f ∈K ;

3 lim
t→0
‖f (·+ t)− f‖Lp(w) = 0 uniformly for f ∈K ;

then K is precompact in Lp(w).

THEOREM (CLOP AND CRUZ, 2013)
Let T be a Calderón–Zygmund operator. Let w ∈ Ap, with 1 < p < ∞, and let

b ∈ CMO. Then the commutator [T,b] : Lp(w)→ Lp(w) is compact.
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A~P condition

Let~P = (p1, · · · ,pm) and let p be a number such that 1
p = 1

p1
+ · · ·+ 1

pm
.

DEFINITION (LOPTT, 2009)

Let 1≤ p1, . . . ,pm < ∞. Given ~w = (w1, . . . ,wm), set ν~w = ∏
m
j=1 w

p/pj
j .

A~P CONDITION (LOPTT, 2009)

We say that ~w satisfies the A~P condition if

[~w]A~P := sup
Q

( 1
|Q|

∫
Q

ν~w

) m

∏
j=1

( 1
|Q|

∫
Q

w
1−p′j
j

)p/p′j
< ∞.

When pj = 1,
(

1
|Q|
∫

Q w
1−p′j
j

)p/p′j
is understood as (inf

Q
wj)
−p.
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Weighted results in the multilinear setting

THEOREM (LOPTT, 2009)

Let 1 < pj < ∞, j = 1, . . . ,m and 1
p = 1

p1
+ · · ·+ 1

pm
. Then the inequality

‖M (~f )‖Lp(ν~w)
≤ C

m

∏
j=1
‖fj‖Lpj (wj)

holds for every~f if and only if ~w satisfies the A~P condition, where

M (~f )(x) = sup
Q3x

m

∏
i=1

1
|Q|

∫
Q
|fi(yi)|dyi.

THEOREM (LOPTT, 2009)

Let T be a multilinear Calderón–Zygmund operator. If ~w ∈ A~P with~P >~1

and 1
p1
+ · · ·+ 1

pm
= 1

p , then

T : Lp1(w1)×·· ·×Lpm(wm)→ Lp(ν~w).



KEY INGREDIENTS MOTIVATING RESULTS MAIN RESULTS

Weighted results in the multilinear setting

THEOREM (LOPTT, 2009)

Let 1 < pj < ∞, j = 1, . . . ,m and 1
p = 1

p1
+ · · ·+ 1

pm
. Then the inequality

‖M (~f )‖Lp(ν~w)
≤ C

m

∏
j=1
‖fj‖Lpj (wj)

holds for every~f if and only if ~w satisfies the A~P condition.

THEOREM (LOPTT, 2009)

Let T be a multilinear Calderón–Zygmund operator. If ~w ∈ A~P with~P >~1

and 1
p1
+ · · ·+ 1

pm
= 1

p , then

T : Lp1(w1)×·· ·×Lpm(wm)→ Lp(ν~w).



KEY INGREDIENTS MOTIVATING RESULTS MAIN RESULTS

Main results

THEOREM I (BÉNYI, D., MOEN AND TORRES)

Suppose~P ∈ (1,∞)× (1,∞), p = p1p2
p1+p2

> 1, b ∈ CMO, and ~w ∈ Ap×Ap.

Then [T,b]1 and [T,b]2 are compact operators from Lp1(w1)×Lp2(w2) to

Lp(ν~w).

THEOREM II (BÉNYI, D., MOEN AND TORRES)

Suppose~P ∈ (1,∞)× (1,∞), p = p1p2
p1+p2

> 1,~b ∈ CMO×CMO, and

~w ∈ Ap×Ap. Then [T,~b] is a compact operator from Lp1(w1)×Lp2(w2) to

Lp(ν~w).
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Sketch of proof for [T,b]1

1 Introduce the truncated kernels

Kδ (x,y,z) =

{
K(x,y,z), max(|x− y|, |x− z|)> δ

0, max(|x− y|, |x− z|)≤ δ .

2 Consider the operator Tδ (f ,g) associated with Kδ . We get that

|[Tδ ,b]1(f ,g)(x)− [T,b]1(f ,g)(x)|. δ‖∇b‖L∞M (f ,g)(x).

3 Since the bounds of the commutators with BMO functions are

‖[T,~b]~α(f ,g)‖Lp(ν~w)
. ‖b1‖α1

BMO‖b2‖α2
BMO‖f‖Lp1 (w1)‖g‖Lp2 (w2),

to show compactness when working with symbols in CMO we may also

assume~b ∈ C∞
c ×C∞

c by density and the estimates may depend on~b too.
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Sketch of proof for [T,b]1

Fix δ > 0 and assume b ∈ C∞
c . Suppose f ,g belong to

B1,Lp1 (w1)×B1,Lp2 (w2) = {(f ,g) : ‖f‖Lp1 (w1),‖g‖Lp2 (w2) ≤ 1},

with w1 and w2 in Ap.

We want to prove:

1 [Tδ ,b]1(B1,Lp1 (w1)×B1,Lp2 (w2)) is bounded in Lp(ν~w);

2 lim
R→∞

∫
|x|>R
|[Tδ ,b]1(f ,g)(x)|pν~w dx = 0;

3 lim
t→0
‖[Tδ ,b]1(f ,g)(·+ t)− [Tδ ,b]1(f ,g)‖Lp(ν~w)

= 0.
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Sketch of proof for [T,b]1

Proof of condition 1. It is a consequence of the following

THEOREM (PÉREZ, PRADOLINI, TORRES AND TRUJILLO-GONZÁLEZ)

Let T be a bilinear Calderón–Zygmund operator and ~w ∈ A~P with

1
p
=

1
p1

+
1
p2

,

and 1 < p1,p2 < ∞ and~b = (b1,b2) ∈ BMO2. Then

||[[T,b1]1,b2]2(f ,g)||Lp(ν~w)
. ||b1||BMO||b2||BMO||f ||Lp1 (w1)||g||Lp2 (w2).

Observe that ~w ∈ Ap×Ap ⊂ A~P.
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Sketch of proof for [T,b]1

Proof of condition 2. Let A be large enough so that suppb⊂ BA(0) and let

R≥max(1,2A). Then for |x|> R we have

|[Tδ ,b]1(f ,g)(x)| ≤ ‖b‖L∞

∫
suppb

∫
Rn

|f (y)||g(z)|
(|x− y|+ |x− z|)2n dydz

.
1
|x|n
‖b‖L∞‖f‖Lp1 (w1)σ1(BA(0))1/p′1

∫
Rn

|g(z)|
(|x|+ |x− z|)n dz,

where σ1 = w
1−p′1
1 and 1

p1
+ 1

p′1
= 1.
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Sketch of proof for [T,b]1

Proof of condition 2. For the global part of the highlighted term∫
|z|≥1

|g(z)|
(|x|+ |x− z|)n dz≤ ‖g‖Lp2 (w2)

(∫
|z|≥1

σ2(z)

|z|np′2
dz
)1/p′2

.

Since w2 ∈ Ap ⊂ Ap2 , we have σ2 = w
1−p′2
2 ∈ Ap′2

, and then

∫
|z|≥1

σ2(z)

|z|np′2
dz < ∞.
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Sketch of proof for [T,b]1

Proof of condition 2. And finally, combining the local and global estimate,

rasing both sides to the power p and integrating over |x| ≥ R, we get∫
|x|>R
|[Tδ ,b]1(f ,g)(x)|pν~w dx .b,~P,~w

∫
|x|>R

ν~w(x)
|x|np dx→ 0, R→ ∞,

where we used again the fact that for v ∈ Ar, r > 1,∫
|x|>R

v(x)
|x|nr dx→ 0, R→ ∞.

Proof of condition 3.
Smooth truncations
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Further remarks

The sufficient condition about Lp(w) precompactness in [CC] may be

extended to include weights w ∈ Aq, with q > p.

REMARK

Let 1 < p < ∞, w ∈ A∞, and K ⊂ Lp(w). If

1 K is bounded in Lp(w);

2 lim
A→∞

∫
|x|>A
|f (x)|p wdx = 0 uniformly for f ∈K ;

3 ‖f (·+ t1)− f (·+ t2)‖Lp(w)→ 0 uniformly for f ∈K as |t1− t2| → 0;

then K is precompact.
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Further remarks

Observe that
~w ∈ Ap×Ap⇒~w ∈ A~P and ν~w ∈ Ap.

THEOREM I’

Suppose~P ∈ (1,∞)× (1,∞), p = p1p2
p1+p2

> 1, b ∈ CMO, and ~w ∈ A~P with

ν~w ∈ Ap. Then [T,b]1 and [T,b]2 are compact operators from

Lp1(w1)×Lp2(w2) to Lp(ν~w).

THEOREM II’

Suppose~P ∈ (1,∞)× (1,∞), p = p1p2
p1+p2

> 1,~b ∈ CMO×CMO, and ~w ∈ A~P
with ν~w ∈ Ap. Then [T,~b] is a compact operator from Lp1(w1)×Lp2(w2) to

Lp(ν~w).
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Smooth truncations

We can also consider smooth truncations. Let ϕ = ϕ(x,y,z) be a

non-negative function in C∞
c (R3n),

suppϕ ⊂ {(x,y,z) : max(|x|, |y|, |z|)< 1}

and such that ∫
R3n

ϕ(u)du = 1.

For δ > 0 let χδ = χδ (x,y,z) be the characteristic function of the set

{(x,y,z) : max(|x− y|, |x− z|)≥ 3δ

2
},

and let

ψ
δ = ϕδ ∗χ

δ ,

where

ϕδ (x,y,z) = (δ/4)−3n
ϕ(4x/δ ,4y/δ ,4z/δ ).
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Smooth truncations

Clearly we have that ψδ ∈ C∞,

suppψ
δ ⊂ {(x,y,z) : max(|x− y|, |x− z|)≥ δ},

ψδ (x,y,z) = 1 if max(|x− y|, |x− z|)> 2δ , and ‖ψδ‖L∞ ≤ 1. Moreover,

∇ψδ is not zero only if max(|x− y|, |x− z|)≈ δ and ‖∇ψδ‖L∞ . 1/δ . We

define the truncated kernel

Kδ (x,y,z) = ψ
δ (x,y,z)K(x,y,z).

It follows that Kδ satisfies the same size and regularity estimates of K with a

constant C independent of δ . As before, we let Tδ (f ,g) be the operator

defined pointwise by Kδ , now for all x ∈ Rn.
Further remarks
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