Interpolation of the couple ($L \log L, L_{\text {exp }}$) and other examples.

VI International Course of Mathematical Analysis in Andalucía

Pedro Fernández Martínez

Universidad de Murcia
Antequera, Septiembre 2014

What I will present today is part of following three papers with T.Signes
E. Fernández-Martínez, P. and Signes, T., Real interpolation with symmetric spaces and slowly varying functions, Quart. J. Math., 63 No. 1, (2012), 133-164.
E. Fernández-Martínez, P. and Signes, T., Limit cases of reiteration theorems, to appear in Math. Nachr.
E. Fernández-Martínez, P. and Signes, T., Reiteration theorems with extreme values of parameters, Arkiv der Mathematik, To appear.

Outline

Some concepts on Interpolation Theory

Slowly varying functions and symmetric spaces

Reiteration Results

Interpolation of $L \log L$ and $L_{\text {exp }}$.

An elementary example

$$
T f(x)=\int_{\mathbb{R}} k(x-y) f(y) d y
$$

where $k \in L_{q}(\mathbb{R})$ for some $1 \leq q \leq \infty$.

An elementary example

$$
\begin{gathered}
\operatorname{Tf}(x)=\int_{\mathbb{R}} k(x-y) f(y) d y \\
T: L_{1} \longrightarrow L_{q}
\end{gathered}
$$

$$
\begin{aligned}
\|T f(x)\|_{L_{q}} & =\left\|\int_{\mathbb{R}} k(x-y) f(y) d y\right\|_{L_{q}} \\
& \leq \int_{\mathbb{R}}\|k(x-y)\|_{L_{q}}|f(y)| d y \\
& =\|k\|_{L_{q}}\|f\|_{L_{1}}
\end{aligned}
$$

An elementary example

$$
T f(x)=\int_{\mathbb{R}} k(x-y) f(y) d y
$$

$$
T: L_{1} \longrightarrow L_{q}
$$

$$
T: L_{q^{\prime}} \longrightarrow L_{\infty}
$$

$\|T f(x)\|_{L_{\infty}} \leq\|k\|_{L_{q}}\|f\|_{L_{q^{\prime}}}$

An elementary example

$$
T f(x)=\int_{\mathbb{R}} k(x-y) f(y) d y
$$

$$
\begin{aligned}
& T: L_{1} \longrightarrow L_{q} \\
& T: L_{q^{\prime}} \longrightarrow L_{\infty}
\end{aligned}
$$

What can we say about the behavior of T on intermediate spaces?

The Riesz-Thorin interpolation theorem

Theorem
Let $0<p_{0} \neq p_{1}<\infty$ and $0<q_{0} \neq q_{1}<\infty$, and let

$$
\begin{aligned}
& T: L_{p_{0}} \longrightarrow L_{q_{0}} \\
& T: L_{p_{1}} \longrightarrow L_{q_{1}}
\end{aligned}
$$

then

$$
T: L_{p} \longrightarrow L_{q}
$$

for $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}$ and some $0<\theta<1$.

$$
\|T\|_{L_{p}, L_{q}} \leq\|T\|_{L_{p_{0}}}^{1-\theta}, L_{q_{0}}\|T\|_{L_{p_{1}}, L_{q_{1}}}^{\theta}
$$

The Real Interpolation Method

If $A_{0}, A_{1} \hookrightarrow \mathcal{U}$ we say that

$$
\bar{A}=\left(A_{0}, A_{1}\right) \text { is an interpolation couple. }
$$

$$
A_{0} \cap A_{1} \hookrightarrow A_{0}+A_{1}
$$

The Real Interpolation Method

$$
A_{0} \cap A_{1} \hookrightarrow A_{0}+A_{1}
$$

$$
K(t, a ; \bar{A})=\inf _{a=a_{0}+a_{1}}\left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}\right\}
$$

The Real Interpolation Method

$$
\begin{gathered}
A_{0} \cap A_{1} \hookrightarrow A_{0}+A_{1} \\
K(t, a ; \bar{A})=\inf _{a=a_{0}+a_{1}}\left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}\right\}
\end{gathered}
$$

Definition
$0<\theta<1$ and $0<q \leq \infty$. The space $\bar{A}_{\theta, q}^{K}$ consists of all those elements s.t.

$$
\|a\|_{\theta, q}^{K}=\left\|t^{-\theta} K(t, a)\right\|_{L_{q}}<\infty
$$

The Real Interpolation Method

$$
\begin{gathered}
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, q}^{K} \hookrightarrow A_{0}+A_{1} \\
K(t, a ; \bar{A})=\inf _{a=a_{0}+a_{1}}\left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}\right\}
\end{gathered}
$$

Definition
$0<\theta<1$ and $0<q \leq \infty$. The space $\bar{A}_{\theta, q}^{K}$ consists of all those elements s.t.

$$
\|a\|_{\theta, q}^{K}=\left\|t^{-\theta} K(t, a)\right\|_{L_{q}}<\infty
$$

The interpolation property

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, q}^{K} \hookrightarrow A_{0}+A_{1}
$$

The interpolation property

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, q}^{K} \hookrightarrow A_{0}+A_{1}
$$

$$
\begin{aligned}
& T: A_{0} \longrightarrow B_{0} \\
& T: A_{1} \longrightarrow B_{1}
\end{aligned}
$$

The interpolation property

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, q}^{K} \hookrightarrow A_{0}+A_{1}
$$

$$
\begin{aligned}
& T: A_{0} \longrightarrow B_{0} \\
& T: A_{1} \longrightarrow B_{1}
\end{aligned} \Rightarrow T: \bar{A}_{\theta, q}^{K} \longrightarrow \bar{B}_{\theta, q}^{K}
$$

The interpolation property

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, q}^{K} \hookrightarrow A_{0}+A_{1}
$$

$$
\begin{aligned}
& T: A_{0} \longrightarrow B_{0} \\
& T: A_{1} \longrightarrow B_{1}
\end{aligned} \Rightarrow T: \bar{A}_{\theta, q}^{K} \longrightarrow \bar{B}_{\theta, q}^{K}{ }_{\|T\|_{\bar{A}_{\theta, q}^{K}, B_{\theta, q}^{K}}^{K} \leq C\|T\|_{A_{0}, B_{0}}^{1-\theta}\|T\|_{A_{1}, B_{1}}^{\theta}}=
$$

Example

Consider the couple (L_{1}, L_{∞}).

$$
K\left(t, f ; L_{1}, L_{\infty}\right)=\int_{0}^{t} f^{*}(s) d s, \quad t>0
$$

Example

Consider the couple (L_{1}, L_{∞}).

$$
\begin{gathered}
K\left(t, f ; L_{1}, L_{\infty}\right)=\int_{0}^{t} f^{*}(s) d s, \quad t>0 \\
\left(L_{1}, L_{\infty}\right)_{1-\frac{1}{p}, p}=L_{p} \quad 1<p<\infty
\end{gathered}
$$

The classical reiteration theorem

Let $\left(A_{0}, A_{1}\right)$ Banach couple, $0<\theta_{0} \neq \theta_{1}<1$ and $0<q_{0}, q_{1} \leq \infty$.

The classical reiteration theorem

Let $\left(A_{0}, A_{1}\right)$ Banach couple, $0<\theta_{0} \neq \theta_{1}<1$ and $0<q_{0}, q_{1} \leq \infty$.

$$
\left(\bar{A}_{\theta_{0}, q_{0}}^{K}, \bar{A}_{\theta_{1}, q_{1}}^{K}\right)
$$

The classical reiteration theorem

Let $\left(A_{0}, A_{1}\right)$ Banach couple, $0<\theta_{0} \neq \theta_{1}<1$ and $0<q_{0}, q_{1} \leq \infty$.

$$
\left(\bar{A}_{\theta_{0}, q_{0}}, \bar{A}_{\theta_{1}, q_{1}}^{K}\right)_{\eta, q}
$$

The classical reiteration theorem

Let $\left(A_{0}, A_{1}\right)$ Banach couple, $0<\theta_{0} \neq \theta_{1}<1$ and $0<q_{0}, q_{1} \leq \infty$.

Theorem

$$
\left(\overline{\boldsymbol{A}}_{\theta_{0}, q_{0}}^{K}, \bar{A}_{\theta_{1}, q_{1}}^{K}{ }_{\eta \eta, q}^{K}=\bar{A}_{\theta, q}^{K}\right.
$$

for $0<\eta<1$ and $\theta=(1-\eta) \theta_{0}+\eta \theta_{1}$

Example

$$
\begin{aligned}
& \text { Let } \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} \\
& \begin{aligned}
\left(L_{p_{0}}, L_{p_{1}}\right)_{\theta, p} & =\left(\left(L_{1}, L_{\infty}\right)_{1-\frac{1}{\rho_{0}}, p_{0}},\left(L_{1}, L_{\infty}\right)_{1-\frac{1}{p_{1}}, p_{1}}\right)_{\theta, p} \\
& =\left(L_{1}, L_{\infty}\right)_{1-\left(\frac{1-\theta}{p_{0}}+\frac{\theta}{\rho_{1}}\right), p} \\
& =L_{p}
\end{aligned}
\end{aligned}
$$

Problems

The Lorentz-Zygmund space $L \log L$ is an interpolation space for the couple (L_{1}, L_{∞}). However, since $0<\theta<1$

$$
L \log L \neq\left(L_{1}, L_{\infty}\right)_{\theta, p} .
$$

Similarly

$$
L_{\exp } \neq\left(L_{1}, L_{\infty}\right)_{\theta, p} .
$$

References

The problem of identifying limit spaces of the real interpolation scale has been studied by several authors:
E. Cobos, F., Fernández-Cabrera, L. M., Kühn T. and Ullrich, T., On an extreme class of real interpolation spaces, J. Funct. Anal. 256 (2009), 2321-2366.

- Cobos, F. and Segurado, A., Some reiteration formulae for limiting real methods, J. Math. Anal. Appl. 411 (2014), 405-421.
E. R. Ya. Doktorskii, Reiteration relations of the real interpolation method, Soviet Math. Dokl. 44 (1992), 665-669.
E. I. Ahmed, D.E. Edmunds, W.D. Evans and G.E. Karadzhov, Reiteration theorems for the Kinterpolation method in limiting cases, Math. Nachr. 284, No. 4 (2011) 421-442.
E. W. D. Evans and B. Opic, Real Interpolation with Logarithmic Functors and Reiteration, Canad. J. Math. 52 (5) (2000), 920-960.
E. Evans, W. D., Opic, B. and Pick, L., Real Interpolation with Logarithmic Functors, J. Inequal. Appl. 7 (2) (2002), 187-269.

Eiv Gogatishvili, A., Opic, B. and Trebels, W., Limiting reiteration for real interpolation with slowly varying functions, Math. Nachr. 278, No. 1-2, (2005), 86-107.
E. Milman, M., Extrapolation and optimal decompositions with applications to analysis. Lecture Notes in Mathematics, 1580, Springer-Verlag, Berlin, 1994.

Slowly varying functions and symmetric spaces

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, q}^{K} \hookrightarrow A_{0}+A_{1}
$$

$$
\|a\|_{\theta, q}^{K}=\left\|t^{-\theta} K(t, a)\right\|_{L_{q}}<\infty
$$

Slowly varying functions and symmetric spaces

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, \mathrm{b}, \mathrm{q}}^{K} \hookrightarrow A_{0}+A_{1}
$$

$$
\|a\|_{\theta, q}^{K}=\left\|t^{-\theta} \mathrm{b}(\mathrm{t}) K(t, a)\right\|_{L_{q}}<\infty
$$

Slowly varying functions and symmetric spaces

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{\theta, \mathrm{b}, \mathrm{E}}^{K} \hookrightarrow A_{0}+A_{1}
$$

$$
\|a\|_{\theta, q}^{K}=\left\|t^{-\theta} \mathrm{b}(\mathrm{t}) K(t, a)\right\|_{\tilde{E}}<\infty
$$

for $0 \leq \theta \leq 1$.

Example
Let (Ω, μ) be a σ-finite measure space with $\mu(\Omega)=1$. Then

$$
\left(L_{1}, L_{\infty}\right)_{0,1, L_{1}}=L \log L \quad\left(L_{1}, L_{\infty}\right)_{1, \ell(t)^{-1}, L_{1}}=L_{\exp }
$$

Reiteration Results

Let $\bar{X}=\left(X_{0}, X_{1}\right)$ be a compatible Banach couple. E_{0}, E_{1}
r.i spaces and b_{0}, b_{1} and b slowly varying functions

Reiteration Results

Theorem

$$
0<\theta<1 \quad \text { and } \quad\left\{\begin{array}{l}
0<\theta_{0}<\theta_{1}<1 \\
\theta_{0}=0,0<\theta_{1}<1 \\
0<\theta_{0}<1 ; \theta_{1}=1
\end{array}\right.
$$

then

$$
\left(\left(X_{0}, X_{1}\right)_{\theta_{0}, b_{0}, E_{0}},\left(X_{0}, X_{1}\right)_{\theta_{1}, b_{1}, E_{1}}\right)_{\theta, b, E}=\left(X_{0}, X_{1}\right)_{\tilde{\theta}, \tilde{b}, E}
$$

Reiteration Results

Theorem

$$
\begin{gathered}
0 \leq \theta<1 \quad \text { and } 0<\theta_{1}<1 \\
\left(X_{0},\left(X_{0}, X_{1}\right)_{\theta_{1}, b_{1}, E_{1}}\right)_{\theta, b, E}=\left(X_{0}, X_{1}\right)_{\tilde{\theta}, \tilde{b}, E}
\end{gathered}
$$

Reiteration Results

Theorem

$$
\begin{gathered}
0 \leq \theta<1 \quad \text { and } 0<\theta_{1}<1 \\
\left(X_{0},\left(X_{0}, X_{1}\right)_{\theta_{1}, b_{1}, E_{1}}\right)_{\theta, b, E}=\left(X_{0}, X_{1}\right)_{\tilde{\theta}, \tilde{b}, E}
\end{gathered}
$$

Theorem

$$
\begin{gathered}
0<\theta \leq 1 \quad \text { and } 0<\theta_{0}<1 \\
\left(\left(X_{0}, X_{1}\right)_{\theta_{0}, b_{0}, E_{0}}, X_{1}\right)_{\theta, b, E}=\left(X_{0}, X_{1}\right)_{\tilde{\theta}, \tilde{b}, E}
\end{gathered}
$$

Reiteration Results

WHAT ABOUT THE CASES

$$
\begin{aligned}
& \left(\left(X_{0}, X_{1}\right)_{\theta_{0}, \mathbf{b}_{0}, E_{0}},\left(X_{0}, X_{1}\right)_{\theta_{1}, \mathbf{b}_{1}, E_{1}}\right)_{0, \mathbf{b}, E} \\
& \left(\left(X_{0}, X_{1}\right)_{\theta_{0}, \mathbf{b}_{0}, E_{0}},\left(X_{0}, X_{1}\right)_{\theta_{1}, \mathbf{b}_{1}, E_{1}}\right)_{1, \mathbf{b}, E} .
\end{aligned}
$$

???

Reiteration Results

- $0 \leq \theta \leq 1$
- a and b slowly varying functions
- E and F r.i. spaces

Reiteration Results

- $0 \leq \theta \leq 1$
- a and b slowly varying functions
- E and F r.i. spaces

$$
\left(X_{0}, X_{1}\right)_{\theta, \mathbf{b}, E, a, F}^{\mathcal{L}} \quad\left(X_{0}, X_{1}\right)_{\theta, \mathbf{b}, E, a, F}^{\mathcal{R}}
$$

Reiteration Results

- $0 \leq \theta \leq 1$
- a and b slowly varying functions
- E and F r.i. spaces

$$
\left(X_{0}, X_{1}\right)_{\theta, \mathbf{b}, E, a, F}^{\mathcal{L}} \quad\left(X_{0}, X_{1}\right)_{\theta, \mathbf{b}, E, a, F}^{\mathcal{R}}
$$

$$
\begin{aligned}
\|f\|_{\theta, \mathbf{b}, E, a, F}^{\mathcal{L}} & =\|\mathbf{b}(t)\| s^{-\theta} a(s) K(s, f)\left\|_{\tilde{F}(0, t)}\right\|_{\tilde{E}} \\
\|f\|_{\theta, \mathbf{b}, E, a, F}^{\mathcal{R}} & =\|\mathbf{b}(t)\| s^{-\theta} a(s) K(s, f)\left\|_{\tilde{F}(t, \infty)}\right\|_{\widetilde{E}}
\end{aligned}
$$

Reiteration Results

Theorem
$0<\theta_{0}<\theta_{1}<1$.
$\left(\left(X_{0}, X_{1}\right)_{\theta_{0}, \mathbf{b}_{0}, E_{0}},\left(X_{0}, X_{1}\right)_{\theta_{1}, \mathbf{b}_{1}, E_{1}}\right)_{0, \mathbf{b}, E}=\left(X_{0}, X_{1}\right)^{\mathcal{L}} \theta_{0, b \rho p, E, \mathbf{b}_{0}, E_{0}}$.

Reiteration Results

Theorem
$0<\theta_{0}<\theta_{1}<1$.
$\left(\left(X_{0}, X_{1}\right)_{\theta_{0}, \mathbf{b}_{0}, E_{0}},\left(X_{0}, X_{1}\right)_{\theta_{1}, \mathbf{b}_{1}, E_{1}}\right)_{0, \mathbf{b}, E}=\left(X_{0}, X_{1}\right)^{\mathcal{L}} \theta_{0}, \mathbf{b} \rho p, E, \mathbf{b}_{0}, E_{0}$.
$\left(\left(X_{0}, X_{1}\right)_{\theta_{0}, \mathbf{b}_{0}, E_{0}},\left(X_{0}, X_{1}\right)_{\theta_{1}, \mathbf{b}_{1}, E_{1}}\right)_{1, \mathbf{b}, E}=\left(X_{0}, X_{1}\right)^{\mathcal{R}} \theta_{\theta_{1}, \mathbf{b} \rho \rho, E, \mathbf{b}_{1}, E_{1}}$.

Reiteration Results

Theorem

$\theta_{1}=1$.

$$
\left\{\begin{array}{l}
\left(\bar{X}_{\theta_{0}, \mathbf{b}_{0}, E_{0}}, \bar{X}_{1, \mathbf{b}_{1}, E_{1}}\right)_{\theta, \mathbf{b}, E}=\bar{X}_{\bar{\theta}, \overline{\mathbf{b}}, E} \quad \text { for } 0<\theta, \theta_{1}<1 \\
\left(\bar{X}_{\theta_{0}, \mathbf{b}_{0}, E_{0}}, \bar{X}_{1, \mathbf{b}_{1}, E_{1}}\right)_{0, \mathbf{b}, E}=\bar{X}_{\theta_{0}, \mathbf{b} \circ \rho, E, \mathbf{b}_{0}, E_{0}}^{\mathcal{L}} \\
\left(\bar{X}_{\theta_{0}, \mathbf{b}_{0}, E_{0}}, \bar{X}_{1, \mathbf{b}_{1}, E_{1}}\right)_{1, \mathbf{b}, E}=\bar{X}_{1, \mathbf{b} \#, E} \cap \bar{X}_{1, \mathbf{b} \circ \rho, E, \mathbf{b}_{1}, E_{1}}^{\mathcal{R}}
\end{array}\right.
$$

Similar results for $\theta_{0}=0$.

Extreme Reiteration Results

$$
\begin{gathered}
\left(\bar{X}_{1, \mathbf{b}_{0}, E_{0}}, X_{1}\right)_{\theta, \mathbf{b}, E}=\bar{X}_{1, \tilde{\mathbf{b}}, \widehat{E}} \\
\tilde{\mathbf{b}}(t)=\left(\mathbf{b}_{0}(t) \varphi_{E_{0}}(\ell(t))\right)^{1-\mathbf{b}_{\mathbf{b}}\left(\mathbf{b}_{0}(t) \varphi_{E_{0}}(\ell(t))\right), t>0 .} \\
\left(\bar{X}_{1, \mathbf{b}_{0}, E_{0}}, X_{1}\right)_{0, \mathbf{b}, E}=\bar{X}_{1, \mathbf{b} \rho \rho, \widehat{E}, \mathbf{b}_{0}, E_{0}}^{\mathcal{L}} \\
\left.\rho(t)=\mathbf{b}_{0}(t) \varphi_{E_{0}}(\ell(t))\right), t>0 .
\end{gathered}
$$

Similar results for $\left(X_{0}, \bar{X}_{0, \mathbf{b}_{1}, E_{1}}\right)$.

Examples

$$
1<p<\infty
$$

$$
L_{\infty} \hookrightarrow L_{\text {exp }} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1}
$$

Examples

$$
L_{\infty} \hookrightarrow L_{\exp } \hookrightarrow L_{p} \hookrightarrow \underset{\substack{\left(L_{1}, L_{\infty}\right)_{0,1, L_{1}}}}{L \log L} \hookrightarrow L_{1}
$$

Examples

$$
\begin{gathered}
L_{\infty} \hookrightarrow L_{\exp } \hookrightarrow L_{p} \hookrightarrow \underset{\left(L_{1}, L_{\infty}\right)_{0,1, L_{1}}}{L \log L} \hookrightarrow L_{1} \\
\begin{cases}\left(L \log L, L_{\infty}\right)_{\theta, b, E} & 0<\theta \leq 1 \\
\left(L \log L, L_{\infty}\right)_{0, b, E}\end{cases}
\end{gathered}
$$

Examples

$$
\begin{aligned}
& L_{\infty} \hookrightarrow L_{\text {exp }} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1} \\
& \left.4_{1}, L_{2}\right)_{0,1,1,4}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(\left(L_{1}, L_{\infty}\right)_{0,1, L_{1}, L_{\infty}}\right)_{\theta, b, E}=L_{\frac{1}{1-0}, B_{0}, E} \quad 0<\theta \leq 1\right. \\
& \left\{\left(\left(L_{1}, L_{\infty}\right)_{0,1, L_{1},}, L_{\infty}\right)_{0, b, E}=L_{\left(1, E_{0}, E\right)} \cap\left(L_{1}, L_{\infty}\right)_{0, b(t)}^{c}\right.
\end{aligned}
$$

Examples

$$
L_{\infty} \hookrightarrow L_{\text {exp }} \hookrightarrow L_{p} \hookrightarrow \underset{\substack{\left(L_{1}, L_{\infty}\right)_{0,1, L_{1}}}}{L \log L} \hookrightarrow L_{1}
$$

$\left\{\begin{array}{l}\left(L \log L, L_{\infty}\right)_{\theta, b, E}=L_{\frac{1}{1-\theta}, B_{\theta}, E} \quad 0<\theta \leq 1 \\ \left(L \log L, L_{\infty}\right)_{0, b, E}=L_{\left(1, B_{0}, E\right)} \cap\left(L_{1}, L_{\infty}\right)_{0, b(t \log 1 / t), E, 1, L_{1}}^{\mathcal{L}}\end{array}\right.$

Examples

$$
L_{\infty} \hookrightarrow \underset{\substack{\left(L_{1}, L_{\infty}\right)_{1, \ell(t))^{-1}, L_{1}}}}{L_{\text {exp }}} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1}
$$

Examples

$$
\begin{aligned}
L_{\infty} \hookrightarrow & \underset{\left(L_{1}, L_{\infty}\right)_{1, \ell(t)}-1, L_{1}}{L_{\text {exp }}} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1} \\
& \begin{cases}\left(L_{1}, L_{\text {exp }}\right)_{\theta, b, E} & 0<\theta<1 \\
\left(L_{1}, L_{\text {exp }}\right)_{0, b, E} & \\
\left(L_{1}, L_{\text {exp }}\right)_{1, b, E} & \end{cases}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& L_{\infty} \hookrightarrow \underset{\substack{\left.\left(L_{1}, L_{\infty}\right)_{1, \ell(t)-1}\right)_{1, L_{1}}}}{L_{\text {exp }}} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1} \\
& \left\{\begin{array}{l}
\left(L_{1},\left(L_{1}, L_{\infty}\right)_{1, \ell(t)^{-1}, L_{1}}\right)_{\theta, b, b}=L_{q, B_{0}, E} \quad 0<\theta<1 \\
\left(L_{1},\left(L_{1}, L_{\infty}\right)_{1, \ell(t)-1, L_{1}}\right)_{0, b, E}=L_{\left(1, B_{0}, E\right)} \\
\left(L_{1},\left(L_{1}, L_{\infty}\right)_{1, \ell(t)^{-1}, L_{1}}\right)_{1, b, E}=L_{\infty, \mathbf{B}_{1}, E} \cap\left(L_{1}, L_{\infty}\right)_{1, \mathbf{b}(t e(t)), E, \ell(t)^{-1}, L_{\infty}}^{\mathcal{R}}
\end{array}\right.
\end{aligned}
$$

Examples

$$
\begin{gathered}
L_{\infty} \hookrightarrow \underset{\left(L_{1}, L_{0}\right)_{1, \ell(t)^{-1, L_{1}}} L_{\text {exp }}}{\|} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1} \\
\left\{\begin{array}{l}
\left(L_{1}, L_{\text {exp }}\right)_{\theta, b, E}=L_{q, B_{\theta}, E} \quad 0<\theta<1 \\
\left(L_{1}, L_{\text {exp }}\right)_{0, b, E}=L_{\left(1, B_{\theta}, E\right)} \\
\left(L_{1}, L_{\text {exp }}\right)_{1, b, E}=L_{\infty, \mathbf{B}_{1}, E} \cap\left(L_{1}, L_{\infty}\right)_{1, \mathbf{b}(t e(t)), E, \ell(t)^{-1}, L_{\infty}}^{\mathcal{R}}
\end{array}\right.
\end{gathered}
$$

Examples

$$
\begin{gathered}
L_{\infty} \hookrightarrow L_{\text {exp }} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1} \\
\left\{\begin{array}{l}
\left(L \log L, L_{\text {exp }}\right)_{\theta, \mathbf{b}, E}=L_{\frac{1}{1-\theta}, \mathbf{B}_{0}, E} \quad 0<\theta<1 \\
\left.\left(L \log L, L_{\text {exp }}\right)_{0, \mathbf{b}, E}=L_{\left(1, \mathbf{B}_{0}, E\right)} \cap\left(L_{1}, L_{\infty}\right)_{0, \mathbf{b}(t \log }^{\mathcal{L}} \frac{1}{t} \ell(t)\right), E, 1, L_{1} \\
\left(L \log L, L_{\text {exp }}\right)_{1, \mathbf{b}, E}=L_{\infty, \mathbf{B}_{1}, E} \cap\left(L_{1}, L_{\infty}\right)_{1, \mathbf{b}\left(t \log \frac{1}{t} \ell(t)\right), E, \ell(t)^{-1}, L_{\infty}}^{\mathcal{R}}
\end{array}\right.
\end{gathered}
$$

Extreme cases

$$
\begin{gathered}
L_{\infty} \hookrightarrow L_{e x p} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1} \\
\left\{\begin{array}{l}
\left(L_{1}, L \log L\right)_{\theta, \mathbf{b}, E}=\left(L_{1}, L_{\infty}\right)_{0, \hat{\mathbf{b}}, \hat{E}} \quad 0 \leq \theta<1 \\
\left(L_{1}, L \log L\right)_{1, \mathbf{b}, E}=\left(L_{1}, L_{\infty}\right)_{0, \hat{\mathbf{b}}, \hat{E}, 1, L_{1}}^{\mathcal{R}}
\end{array}\right.
\end{gathered}
$$

The intermediate space $\left(L_{1}, L \log L\right)_{\theta, 1, L_{q}}$, for $0<\theta<1$ and $1 \leq q \leq \infty$, was identified by Bennett in Ark. Mat. (1973).

Extreme cases

$$
L_{\infty} \hookrightarrow L_{\text {exp }} \hookrightarrow L_{p} \hookrightarrow L \log L \hookrightarrow L_{1}
$$

$$
\left\{\begin{array}{l}
\left(L_{\text {exp }}, L_{\infty}\right)_{\theta, \mathbf{b}, E}=\left(L_{1}, L_{\infty}\right)_{1, \hat{\mathbf{b}}, \hat{E}} \quad 0<\theta \leq 1 \\
\left(L_{\text {exp }}, L_{\infty}\right)_{0, \mathbf{b}, E}=\left(L_{1}, L_{\infty}\right)_{1, \mathbf{b}, \hat{E}, \ell(t))^{-1}, L_{\infty}}^{c}
\end{array}\right.
$$

THANK YOU FOR
 YOUR ATTENTION.

