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OUR PROBLEMS

Problem 1. (A three-point BVP of second order)

 x′′(t) = g
(
t, x(t), x′(t), x′′(t)

)
for a.e. 0 ≤ t ≤ 1,

x(0) = 0, x′(1) = δx′(η),

where g : [0, 1] × R3 → R is a continuous function, δ 6= 1 and
η ∈ (0, 1).

The multi-point boundary value problems for differential equations arise
from many fields of applied mathematics and physics. This kind of problems
for linear second order ordinary differential equations was initiated in 1987
by II’in and Moiseev, and motivated by the work of Bitsadze and Samarski
on non-local linear elliptic boundary problems.
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OUR PROBLEMS

Problem 2.

A general differential equation with homogeneous Dirichlet
condition: A(u′′(t))− sin

(
u(t)

)
= g(t), for t ∈ [0, 1]

u(0) = 0, u(1) = 0,

where the fixed function g ∈ C[0, 1] is called the driving force,
and A : R→ R is a certain known function.

This type of equations is motivated by the study of the forced oscillations of
finite amplitude of a pendulum in the absence of a damping force.
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OUR PROBLEMS

Problem 3.

A Cauchy problem with nonlocal initial data for fractional dif-
ferential equations of Caputo type:

cDqx(t) = f (t, x(t)) in R+,

x(0) = x0 + g(x),

where f ∈ C(R+ × R), 0 < q < 1, x0 ∈ R, and g(x) is defined by
g(x) =

∑N
i=1 gi(x(ti)).

Recall that Caputo the fractional derivative of x is defined by

cDqx(t) :=
1

Γ(1− q)

∫ t

0
(t− s)−qx′(s) ds,

where Γ denotes to the Gamma function.
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OUR PROBLEMS

Problem 3.

A Cauchy problem with nonlocal initial data for fractional dif-
ferential equations of Caputo type:

cDqx(t) = f (t, x(t)) in R+,

x(0) = x0 + g(x),

where f ∈ C(R+ × R), 0 < q < 1, x0 ∈ R, and g(x) is defined by
g(x) =

∑N
i=1 gi(x(ti)).

Fractional derivatives provide an excellent tool for description of memory
and hereditary properties of various materials and processes. This is one of
the main advantage of fractional differential equations in comparison with
classical integer-order models. A vast collection of real-world problems is
drawn form fractional equations of Caputo type.
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WHAT IS A COINCIDENCE PROBLEM?

Let X, Y be two nonempty sets and let T,S : X→ Y be two mappings.
Let us consider the following coincidence problem:

Find u ∈ X such that T(u) = S(u), (CP)

We will consider that X is a nonempty set and Y is a Banach space.

I In 1967 R. Machuca proved a coincidence theorem by using
Banach’s contraction principle.

I This same principle was used in 1968 by K. Goebel to obtain a
similar result under much weaker assumptions, Goebel’s
theorem allowed the author to give conditions for existence of
solutions of the differential equation x′(t) = f (t, x(t)).
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COINCIDENCE PROBLEM VS FIXED POINT PROBLEM

Example 1. Solve e−(1−x)2
= − sin2(3(x− 1))− 2 cos(3(x− 1)) + 3.

If f (x) = e−(1−x)2
and g(x) = − sin2(3(x− 1))− 2 cos(3(x− 1)) + 3, our

equation is equivalent to

Find x ∈ R s.t. f (x) = g(x)

-2 -1 1 2

1

2

3

4

5
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OUR WORK TOOLS

We will give several results on the coincidence problem (CP)

I when Y has the FPP

I when Y fails to have the FPP

Recall that, given a normed space (X, ‖·‖), a mapping T : C ⊂ X→ X
is said to be nonexpansive if

‖T(x)− T(y)‖ ≤ ‖x− y‖ for all x, y ∈ C.

We say that a Banach space X has the fixed point property (FPP for
short) whenever each nonexpansive sefmapping of each nonempty
closed convex bounded subset of X has a fixed point.
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COINCIDENCE PROBLEM ASSUMING THE FPP
Theorem 1.

Let X be a nonempty set and (Y, ‖·‖) a Banach space with the FPP. Let
T, S : X→ Y be two mappings satisfying:

(i) T(X) is a closed convex subset of Y,

(ii) S(X) ⊂ T(X) and ‖S(x)− S(y)‖ ≤ ‖T(x)− T(y)‖ for all x, y ∈ X,

(iii) there exist x0 ∈ X such that

‖T(x)− T(x0)‖ ≥ R⇒ S(x)− T(x0) 6= λ(T(x)− T(x0)) for all λ > 1.

Then there exists at least one x in X such that Tx = Sx.

Question 1.

Give some conditions on X which guarantee that T(X) becomes in
closed and convex.
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AN APPLICATION TO DIFFERENTIAL EQUATIONS

We can prove that the following three-point boundary value problem
has at least one solution x ∈W2,2[0, 1] such that

(P)

 x′′(t) = g
(
t, x(t), x′(t), x′′(t)

)
for a.e. 0 ≤ t ≤ 1,

x(0) = 0, x′(1) = δx′(η),

where g : [0, 1]× R× R× R→ R is a continuous function, δ 6= 1 and
η ∈ (0, 1).

Recall the notation of the Sobolev spaces:

W1,2[0, 1] :=
{

x : [0, 1]→ R | x abs. cont. on [0, 1] with x′ ∈ L2[0, 1]
}

and

W2,2[0, 1] :=
{

x : [0, 1]→ R | x, x′ abs. cont. on [0, 1] with x′′ ∈ L2[0, 1]
}
.
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OUR NOTATION

For the sake of simplicity, for any `, we denote by Z(`) the set
of non-negative functions h : [0, 1] → R+ that are Lebesgue
integrable on each closed interval contained in (0, 1] and satisfy∫ 1

t
h(s) ds ≤ `

t
for all 0 < t < 1.

On one hand, notice that if h ∈ L2[0, 1] then h2 ∈ Z(`) with ` ≥ ‖h‖2
2.

However, there exist functions h : [0, 1]→ R with h2 ∈ Z(`), for some
` > 0, such that h 6∈ L2[0, 1]. For instance, h(t) = 1

t 6∈ L2[0, 1] but
h(t)2 = 1

t2 ∈ Z(1).

By the other hand, if h : [0, 1]→ R+ is a bounded measurable function
with its boundedness constant κ > 0, then h ∈ Z(κ4 ).
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TWO LEMMAS: THE FIRST ONE

Lemma 1. (Partsvania, 2011)

If h ∈ Z(`) for some ` ≥ 0, then for each x ∈ W1,2[0, 1], with
x(0) = 0, we have that∫ 1

0
h(t) x(t)2dt ≤ 4`

∫ 1

0
x′(t)2dt. (1)

If h is a constant function, the inequality (1) is not sharp. Indeed, in
this case, we have the well-known Wirtinger inequality. Let
x ∈W1,2[0, 1] be such that x(0) = 0. Then

‖x‖2 ≤
2
π
‖x′‖2 . (2)
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TWO LEMMAS: THE SECOND ONE

Lemma 2. (Gupta & Trofimchuk, 1999)

Let δ 6= 1, and η ∈ (0, 1) be given. Let x ∈ W2,2[0, 1] be such that
x′(1) = δx′(η). Then ∥∥x′

∥∥
2 ≤ C(δ, η)

∥∥x′′
∥∥

2 ,

where

C(δ, η) =


min

{√
F(δ, η),

2
π

}
if δ ≤ 0,

√
F(δ, η) if δ > 0,

F(δ, η) =
1

2(δ − 1)2

[
δ2(1− η)2 + (δ2 − 2δ)η2 + 1

]
.
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A QUESTION IN ORDER TO IMPROVE OUR RESULT

Question 2.

Are there other results similar to Lemma 1 and Lemma 2?

That is, give some conditions such that

I for each x ∈W1,2[0, 1], with x(0) = 0, we have that∫ 1

0
h(t) x(t)2dt ≤ K

∫ 1

0
x′(t)2dt.

I for each x ∈W2,2[0, 1], we can ensure that

‖x′‖2 ≤ C ‖x′′‖2 .
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TWO HYPOTHESES

(H1) There exist K2,K3 ≥ 0 and k1 : [0, 1]→ R, with k2
1 ∈ Z(`) for some

` ≥ 0, such that
(
2
√
`+ K2

)
C(δ, η) + K3 ≤ 1 and

|g(t,u1,u2,u3)− g(t, v1, v2, v3)| ≤ k1(t) |u1 − v1|
+ K2 |u2 − v2|+ K3 |u3 − v3| ,

for all t ∈ [0, 1] and ui, vi ∈ R with i = 1, 2, 3.

(H2) There exist a1, a4 : [0, 1]→ R with a2
1 ∈ Z(m) and a4 ∈ L2[0, 1], and

A2,A3 ≥ 0 such that
(
2
√

m + A2
)

C(δ, η) + A3 < 1 and

|g(t,u1,u2,u3)| ≤ a1(t) |u1|+ A2 |u2|+ A3 |u3|+ a4(t)

for all t ∈ [0, 1] and ui ∈ R with i = 1, 2, 3.

then the problem (P) has at least one solution in W2,2[0, 1].
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EXAMPLES

Let α : [0, 1]→ R be such that α2 ∈ Z(`) for some ` ≥ 0. Let f2, f3 : R→ R be
two lipschitzian functions with Lipschitz constant L2 and L3, respectively. Let
β : [0, 1]→ R be a function in L2[0, 1]. Consider g : [0, 1]× R3 → R defined by

g(t, u1, u2, u3) = α(t)
2u2

1

1 + u2
1

+ f2(u2) + f3(u3) + β(t).

If ( 3
2

√
3`+ L2)C(δ, η) + L3 ≤ 1 then g satisfies (H1) and (H2).

Example 1.

The problem
x′′(t)3 + 2x′′(t)

x′′(t)2 + 3
=

κ x(t)2

t + t x(t)2 + log
(
t
√

1 + 2ex′(t)
)

for 0 < t < 1,

x(0) = 0, x′(1) = 0,

has at least one solution in W2,2[0, 1] whenever |κ| ≤ 4π−6
9
√

3
.
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COINCIDENCE PROBLEM WITHOUT THE FPP

Recall that (X, d) is a semi-metric space if X is a nonempty set and d
is a semi-metric, that is, a nonnegative real function d : X × X→ R+

such that
(a) d(x, y) = 0 if, and only if, x = y;
(b) d(x, y) = d(y, x) for all x, y ∈ X.

Note that every metric space (or, more general, every quasi-metric
space) is semi-metric but not conversely.

We denote by F the family of all functions f : R+ → R+ such that
(P1) f (r) = 0 if and only if r = 0,
(P2) f is nondecreasing.

http://www.ams.org/journals/ecgd/2006-10-18/S1088-4173-06-00155-X/S1088-4173-06-00155-X.pdf
http://www.ams.org/journals/ecgd/2006-10-18/S1088-4173-06-00155-X/S1088-4173-06-00155-X.pdf
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COINCIDENCE PROBLEM WITHOUT THE FPP

Theorem 2.

Let (X, d) be a semi-metric space and (Y, ‖·‖) a Banach space. Let T, S :
X→ Y be two mappings satisfying:

(C1) T(X) is a closed convex subset of Y,

(C2) S(X) ⊂ T(X) and ‖S(x)− S(y)‖ ≤ ‖T(x)− T(y)‖ for all x, y ∈ X,

(C3) There exists f ∈ F such that f (‖T(x)− T(y)‖) ≤ d(x, y) for all
x, y ∈ X,

(C4) T − S is ϕ-expansive,

(C5) there exist x0 ∈ X such that

‖T(x)− T(x0)‖ ≥ R⇒ S(x)− T(x0) 6= λ(T(x)− T(x0)) for all λ > 1.

Then there exists a unique x in X such that Tx = Sx.
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A GENERALIZATION OF GOEBEL’S THEOREM

Geraghty (1973) gave an interesting generalization of the contraction
principle using the class S of the functions α : [0,∞)→ [0, 1) such that

lim
n→∞

α(tn) = 1 implies lim
n→∞

tn = 0. (3)

Using the above result, we can prove a generalization of Goebel’s Theorem in
the setting of Banach spaces.

Theorem 3.

Let X be a nonempty set, (Y, ‖·‖) be a Banach space and T,S :
X → Y. Assume that T is onto and there exists a decreasing
function α ∈ S such that

‖Sx− Sy‖ ≤ α
(
‖Tx− Ty‖

)
‖Tx− Ty‖ for all x, y ∈ X. (4)

Then, there exists at least one x∗ ∈ X such that Tx∗ = Sx∗. If, in
addition, T is injective, then the coincidence point x∗ is unique.
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AN APPLICATION TO DIFFERENTIAL EQUATIONS

Consider the Banach space X :=
{

u ∈ C2[0, 1] : u(0) = u(1) = 0
}

with
the norm ‖u‖∗ := max

{
‖u‖∞ , ‖u′‖∞ , ‖u′′‖∞

}
We can apply Theorem 2 in order to states the existence of classical
solutions (on X) for the following general differential equation with
homogeneous Dirichlet condition:

(P)

{
A(u′′(t))− sin

(
u(t)

)
= g(t), t ∈ [0, 1]

u(0) = 0, u(1) = 0,

where the fixed function g ∈ Y is called the driving force, and
A : R→ R is a known function satisfying the following two
properties:

(A1) A is continuous;
(A2) there exists a function f ∈ F such that

f (|Ax− Ay|) ≤ |x− y| ≤ |Ax− Ay| , for all x, y ∈ R.
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REMARKS

Notice that the assumption (A2) is enough natural, because we can
easily find functions satisfying (A2).

For example, given k ∈ R with
k ≥ 2, the function A : R+ → R+ defined by

Ax :=

 2
√

x if 0 ≤ x ≤ 1,

k x if x > 1,

satisfies the property (A2) with f (t) = min
{

t2

4
,

t
k

}
.

Remark

Note that the property (A1) is necessary, because (A2) does not
imply the continuity of A. Indeed, just take k > 2 in the above
example.
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AN APPLICATION TO FRACTIONAL DIFF. EQUATIONS


cDqx(t) = f (t, x(t)) in R+,

x(0) = x0 + g(x),
(CP)

where f ∈ C(R+ × R), 0 < q < 1, cDqx is the Caputo fractional
derivative of x, x0 ∈ R, and g(x) is defined by

g(x) =

N∑
i=1

gi(x(ti)),

where each gi : R→ R is ci-lipschitziann, and 0 < t1 < · · · < tN <∞.

Notice that g is Lg-lipschitzian with Lg =
∑N

i=1 ci.
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For instance, Deng (1993) used this class of nonlocal condition with
gi(x(ti)) = cix(ti), for each i = 1, . . . ,N

, pointing out that, unlike the
classical Cauchy problem with initial condition x(0) = x0, one can
obtain a better effect using the nonlocal condition x(0) + g(x) = x0 in
certain physical processes,for instance, in order to describe the
diffusion phenomenon of a small amount in a transparent tube.

Recently, N’Guérékata (2009) proved the existence and uniqueness of
solutions to problem (CP) on a bounded interval.
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Since f is assumed continuous, (CP) is equivalent to the following
Volterra integral equation:

x(t) = x0 + g(x) +
1

Γ(q)

∫ t

0
(t− s)q−1f

(
s, x(s)

)
ds, for t ≥ 0. (IE)

Theorem 3.

Let 0 < q < 1. Assume that f : R+ × R → R is a continuous
function. If there exists a positive constant Lf such that

|f (s,u)− f (s, v)| ≤ Lf |u− v| for all u, v ∈ R and a.e. s ≥ 0,

then equation (IE) (and, therefore (CP)) has a unique solution in
C(R+) whenever

Lf

Γ(q)

(
tq
N
q

)
+ Lg < 1.



INTRODUCTION COINCIDENCE PROBLEM ASSUMING THE FPP COINCIDENCE PROBLEM WITHOUT THE FPP

Since f is assumed continuous, (CP) is equivalent to the following
Volterra integral equation:

x(t) = x0 + g(x) +
1

Γ(q)

∫ t

0
(t− s)q−1f

(
s, x(s)

)
ds, for t ≥ 0. (IE)

Theorem 3.

Let 0 < q < 1. Assume that f : R+ × R → R is a continuous
function. If there exists a positive constant Lf such that

|f (s,u)− f (s, v)| ≤ Lf |u− v| for all u, v ∈ R and a.e. s ≥ 0,

then equation (IE) (and, therefore (CP)) has a unique solution in
C(R+) whenever

Lf

Γ(q)

(
tq
N
q

)
+ Lg < 1.



INTRODUCTION COINCIDENCE PROBLEM ASSUMING THE FPP COINCIDENCE PROBLEM WITHOUT THE FPP

REFERENCES

Every result on this talk can be found in the following paper and the
references given there.

D. ARIZA-RUIZ, J. GARCÍA-FALSET.
Existence and uniqueness to several kinds of differential
equations using the Coincidence Theory.
(submitted to Taiwanese Journal of Mathematics)



INTRODUCTION COINCIDENCE PROBLEM ASSUMING THE FPP COINCIDENCE PROBLEM WITHOUT THE FPP

Thank you
for your attention!
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