Decomposition norm theorem, L^p -behavior of reproducing kernels and two weight inequality for Bergman projection.

José Ángel Peláez

Departamento de Análisis Matemático Universidad de Málaga Supported by the Ramón y Cajal program of MICINN (Spain)

Joint works with O. Constantin and J. Rättyä

VI International Course of Mathematical Analysis in Andalucía Antequera

• A little bit on the big picture of weighted Bergman spaces.

- A little bit on the big picture of weighted Bergman spaces.
- Main Question

- A little bit on the big picture of weighted Bergman spaces.
- Main Question
- Doubling weights

- A little bit on the big picture of weighted Bergman spaces.
- Main Question
- Doubling weights
- A decomposition norm theorem for weighted Bergman spaces

•
$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$$

Notation Background

•
$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

• $\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}.$

•
$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

• $\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}.$

•
$$\mathcal{H}(\mathbb{D}) = \{g : g \text{ analytic in } \mathbb{D}\}.$$

- $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- $\mathcal{H}(\mathbb{D}) = \{g : g \text{ analytic in } \mathbb{D}\}.$
- For $0 \leq r < 1$,

$$M_p(r, f) = \left(rac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt
ight)^{1/p}, \quad 0 $M_\infty(r, f) = \sup_{|z|=r} |f(z)|.$$$

- $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- $\mathcal{H}(\mathbb{D}) = \{g : g \text{ analytic in } \mathbb{D}\}.$
- For $0 \leq r < 1$,

$$M_p(r, f) = \left(rac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p \, dt
ight)^{1/p}, \quad 0 $M_\infty(r, f) = \sup_{|z|=r} |f(z)|.$$$

• For $0 , <math>H^p$, the classical **Hardy space**,

$$||f||_{H^p} = \sup_{0 \le r < 1} M_p(r, f) < \infty.$$

• The Bloch space \mathcal{B} consists of $f \in \mathcal{H}(\mathbb{D})$ such that

$$\|f\|_{\mathcal{B}} = \sup_{z\in\mathbb{D}} |f'(z)|(1-|z|) + |f(0)| < \infty.$$

• $\omega : \mathbb{D} \to [0, \infty)$, integrable over \mathbb{D} , is called a **weight**. It is **radial** if $\omega(z) = \omega(|z|)$ for all $z \in \mathbb{D}$.

- $\omega : \mathbb{D} \to [0, \infty)$, integrable over \mathbb{D} , is called a **weight**. It is **radial** if $\omega(z) = \omega(|z|)$ for all $z \in \mathbb{D}$.
- For $0 and a weight <math>\omega$, L^p_ω is the space of measurable functions f for which

$$\|f\|_{L^p_\omega}^p = \int_{\mathbb{D}} |f(z)|^p \omega(z) \, dA(z) < \infty$$

where $dA(z) = \frac{dx \, dy}{\pi}$.

• The weighted Bergman space is $A^p_\omega = \mathcal{H}(\mathbb{D}) \cap L^p_\omega$.

- $\omega : \mathbb{D} \to [0, \infty)$, integrable over \mathbb{D} , is called a **weight**. It is **radial** if $\omega(z) = \omega(|z|)$ for all $z \in \mathbb{D}$.
- For $0 and a weight <math>\omega$, L^p_ω is the space of measurable functions f for which

$$\|f\|_{L^p_\omega}^p = \int_{\mathbb{D}} |f(z)|^p \omega(z) \, dA(z) < \infty$$

where $dA(z) = \frac{dx \, dy}{\pi}$.

- The weighted Bergman space is $A^p_{\omega} = \mathcal{H}(\mathbb{D}) \cap L^p_{\omega}$.
- Standard weighted Bergman spaces, A^p_α = ℋ(D) ∩ L^p_α,

$$\omega(z)dA(z) = (\alpha+1)(1-|z|^2)^{\alpha}dA(z), \quad -1 < \alpha < \infty.$$

• The (pseudo)hyperbolic metric is the appropriate.

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .
- $\mathcal{B} \simeq \left(\mathcal{A}_{\alpha}^{1} \right)^{\star}$ (with the \mathcal{A}_{α}^{2} pairing).

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .
- $\mathcal{B} \simeq \left(A_{\alpha}^{1}\right)^{\star}$ (with the A_{α}^{2} pairing).
- The reproducing kernels of A_{α}^2 are

$$\mathcal{K}^{\mathcal{A}^2_lpha}_z(\zeta) = rac{1}{(1-ar{z}\zeta)^{2+lpha}}$$

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .
- $\mathcal{B} \simeq \left(\mathcal{A}_{\alpha}^{1} \right)^{\star}$ (with the \mathcal{A}_{α}^{2} pairing).
- The reproducing kernels of A_{α}^2 are

$$\mathcal{K}^{\mathcal{A}^2_lpha}_z(\zeta) = rac{1}{(1-ar{z}\zeta)^{2+lpha}} \, .$$

• A rich operator theory on A^p_{α} ;

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .
- $\mathcal{B} \simeq \left(\mathcal{A}_{\alpha}^{1} \right)^{\star}$ (with the \mathcal{A}_{α}^{2} pairing).
- The reproducing kernels of A_{α}^2 are

$$\mathcal{K}^{\mathcal{A}^2_lpha}_z(\zeta) = rac{1}{(1-ar{z}\zeta)^{2+lpha}}$$

- A rich operator theory on A^p_{α} ;
- The (orthogonal) Bergman projection from L²_α to A²_α is bounded from L^p_α to A^p_α if and only if 1

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .
- $\mathcal{B} \simeq \left(\mathcal{A}_{\alpha}^{1} \right)^{\star}$ (with the \mathcal{A}_{α}^{2} pairing).
- The reproducing kernels of A_{α}^2 are

$$\mathcal{K}^{\mathcal{A}^2_lpha}_z(\zeta) = rac{1}{(1-ar{z}\zeta)^{2+lpha}}$$

- A rich operator theory on A^p_{α} ;
- The (orthogonal) Bergman projection from L²_α to A²_α is bounded from L^p_α to A^p_α if and only if 1
- The (orthogonal) Bergman projection from L^2_{α} to A^2_{α} is bounded from L^p_{ω} to A^p_{ω} if and only if $\frac{\omega(z)}{(1-|z|)^{\alpha}}$ satisfies the Bekollé-Bonami condition $B_p(\alpha)$.

- The (pseudo)hyperbolic metric is the appropriate.
- $|| \cdot ||_{A^p_{\alpha}}$ convergence implies uniform convergence on compact subsets of \mathbb{D} . So A^p_{α} is a closed subspace of L^p_{α} .
- The polynomials are dense in A^p_{α} .
- $\mathcal{B} \simeq (A^1_{\alpha})^*$ (with the A^2_{α} pairing).
- The reproducing kernels of A_{α}^2 are

$$\mathcal{K}^{\mathcal{A}^2_lpha}_z(\zeta) = rac{1}{(1-ar{z}\zeta)^{2+lpha}}$$

- A rich operator theory on A^p_{α} ;
- The (orthogonal) Bergman projection from L²_α to A²_α is bounded from L^p_α to A^p_α if and only if 1
- The (orthogonal) Bergman projection from L^2_{α} to A^2_{α} is bounded from L^p_{ω} to A^p_{ω} if and only if $\frac{\omega(z)}{(1-|z|)^{\alpha}}$ satisfies the Bekollé-Bonami condition $B_p(\alpha)$.
- A Littlewood-Paley formula

$$||f||_{\mathcal{A}^{p}_{\alpha}}^{p} \asymp |f(0)|^{p} + ||f'||_{\mathcal{A}^{p}_{\alpha+p}}^{p}$$

What about a general space A^p_{ω} ?

What about a general space A^p_{ω} ?

() The situation depends whether or not ω is radial.

What about a general space A^p_{ω} ?

() The situation depends whether or not ω is radial.

2 The polynomials are dense in A^p_{ω} whenever ω is radial,

What about a general space A^p_{ω} ?

() The situation depends whether or not ω is radial.

One polynomials are dense in A^p_ω whenever ω is radial, but this is not true in general.

What about a general space A^p_{ω} ?

() The situation depends whether or not ω is radial.

⁽²⁾ The polynomials are dense in A^p_{ω} whenever ω is radial, but this is not true in general. Example; $\omega(z) = |S(z)|^2 = \left| \exp\left(-\frac{1+z}{1-z}\right) \right|^2 = \exp\left(-\frac{1-|z|^2}{|1-z|^2}\right)$

Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- $\bullet\,$ The orthogonal projection P_ω from L^2_ω to A^2_ω has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- $\bullet\,$ The orthogonal projection P_ω from L^2_ω to A^2_ω has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- $\bullet\,$ The orthogonal projection P_ω from L^2_ω to A^2_ω has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

Which are those weights (ω, v) satisfying the two weight inequality

 $\|P_\omega(f)\|_{L^p_\nu}\lesssim \|f\|_{L^p_\nu},\quad f\in L^p_\nu?$

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- $\bullet\,$ The orthogonal projection P_ω from L^2_ω to A^2_ω has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

Which are those weights (ω, v) satisfying the two weight inequality

 $\|P_{\omega}(f)\|_{L^p_{\nu}}\lesssim \|f\|_{L^p_{\nu}},\quad f\in L^p_{\nu}?$

• Bounded Bergman projections are a key in operator theory;

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- The orthogonal projection P_{ω} from L^2_{ω} to A^2_{ω} has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

Which are those weights (ω, v) satisfying the two weight inequality

 $\|P_{\omega}(f)\|_{L^p_{\nu}} \lesssim \|f\|_{L^p_{\nu}}, \quad f \in L^p_{\nu}?$

• Bounded Bergman projections are a key in operator theory; e. g. for obtaining description of dual spaces,

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- The orthogonal projection P_{ω} from L^2_{ω} to A^2_{ω} has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

Which are those weights (ω, v) satisfying the two weight inequality

 $\|P_{\omega}(f)\|_{L^p_{\nu}}\lesssim \|f\|_{L^p_{\nu}},\quad f\in L^p_{\nu}?$

• Bounded Bergman projections are a key in operator theory; e. g. for obtaining description of dual spaces, Littlewood-Paley formulas.

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- The orthogonal projection P_{ω} from L^2_{ω} to A^2_{ω} has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \, dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

Which are those weights (ω, v) satisfying the two weight inequality

 $\|P_{\omega}(f)\|_{L^p_{\nu}} \lesssim \|f\|_{L^p_{\nu}}, \quad f \in L^p_{\nu}?$

- Bounded Bergman projections are a key in operator theory; e. g. for obtaining description of dual spaces, Littlewood-Paley formulas.
- The one weight problem is an open question, even for radial weights.

- Assume ω is such that convergence in A^p_ω-norm implies uniform convergence on compact subsets of D, in particular the point evaluations L_a are bounded functionals on A²_ω.
- The orthogonal projection P_{ω} from L^2_{ω} to A^2_{ω} has the expression

$$P_{\omega}(f)(z) = \int_{\mathbb{D}} f(\zeta) \,\overline{B_{z}^{\omega}(\zeta)} \,\omega(\zeta) \,dA(\zeta)$$

•
$$\{B_z^{\omega}\}_{z\in\mathbb{D}}$$
 are the reproducing kernels of A_{ω}^2 .

Which are those weights (ω, v) satisfying the two weight inequality

 $\|P_{\omega}(f)\|_{L^p_{\nu}}\lesssim \|f\|_{L^p_{\nu}},\quad f\in L^p_{\nu}?$

- Bounded Bergman projections are a key in operator theory; e. g. for obtaining description of dual spaces, Littlewood-Paley formulas.
- The one weight problem is an open question, even for radial weights.
- Primary obstacle; $\{B_z^{\omega}\}_{z\in\mathbb{D}}$ do not have a neat expression.

Let ω be a radial weight.

Let ω be a radial weight.

Question

Which properties of ω do affect A^p_{ω} ?

Let ω be a radial weight.

Question

Which properties of ω do affect A^p_{ω} ?

() The behavior of ω in a compact $[0, r_0]$, does not matter.

Let ω be a radial weight.

Question

Which properties of ω do affect A^p_{ω} ?

- **(**) The behavior of ω in a compact $[0, r_0]$, does not matter.
- Oscillations.

Let ω be a radial weight.

Question

Which properties of ω do affect A^p_{ω} ?

- **(**) The behavior of ω in a compact $[0, r_0]$, does not matter.
- Oscillations.
- The decay or growth.

• If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$

1

Doubling weights

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• The following weights are doubling;

$$\omega(r) = (1-r)^{lpha}, \quad lpha > -1,$$
 $u_{lpha}(r) = \left((1-r)\left(\lograc{e}{1-r}
ight)^{lpha}\right)^{-1}, \quad 1 < lpha < \infty.$

- If ω is radial, $\widehat{\omega}(r) = \int_r^1 \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• The following weights are doubling;

$$\omega(r)=(1-r)^lpha,\quad lpha>-1,$$

$$v_{lpha}(r) = \left((1-r)\left(\log rac{e}{1-r}
ight)^{lpha}
ight)^{-1}, \quad 1 < lpha < \infty.$$

• Doubling weights may admit a strong oscillatory behavior,

$$\omega(r) = \left| \sin\left(\log \frac{1}{1-r} \right) \right| v_{\alpha}(r) + 1, \quad 1 < \alpha < \infty.$$

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• The following weights are doubling;

$$\omega(r) = (1-r)^{\alpha}, \quad \alpha > -1,$$

$$v_{lpha}(r) = \left((1-r)\left(\log rac{e}{1-r}
ight)^{lpha}
ight)^{-1}, \quad 1 < lpha < \infty.$$

• Doubling weights may admit a strong oscillatory behavior,

$$\omega(r) = \left| \sin\left(\log \frac{1}{1-r} \right) \right| v_{\alpha}(r) + 1, \quad 1 < \alpha < \infty.$$

• Exponential type weights

$$\omega(r) = \exp\left(-\frac{C}{(1-r)^{lpha}}\right), \quad C, lpha > 0$$

are not doubling.

$$H^{p} \subset A^{p}_{\omega} \subset \cap_{\alpha > -1} A^{p}_{\alpha}, \quad \omega \in \mathcal{I}.$$

$$H^{p} \subset A^{p}_{\omega} \subset \cap_{\alpha > -1} A^{p}_{\alpha}, \quad \omega \in \mathcal{I}.$$

• Extra motivation; Frequently, techniques which work for A^p_{α} , do not work for A^p_{ω} , $\omega \in \widehat{D}$.

$$H^{p} \subset A^{p}_{\omega} \subset \cap_{\alpha > -1} A^{p}_{\alpha}, \quad \omega \in \mathcal{I}.$$

- Extra motivation; Frequently, techniques which work for A^p_{α} , do not work for A^p_{ω} , $\omega \in \widehat{D}$.
- However, techniques which work for A^p_{ω} , $\omega \in \widehat{\mathcal{D}}$, work for A^p_{α} and even for H^p (sometimes).

An appropriate norm

An appropriate norm

• The right choice of the norm is essential to get a good approach to a problem on spaces of functions. Sometimes, this equivalent norm is given in terms of the the derivative (gradient), square area functions,...

An appropriate norm

- The right choice of the norm is essential to get a good approach to a problem on spaces of functions. Sometimes, this equivalent norm is given in terms of the the derivative (gradient), square area functions,...
- Our approach to the two weight inequality for the Bergman projection

$$\| \mathcal{P}_\omega(f) \|_{L^p_v} \lesssim \| f \|_{L^p_v}, \quad f \in L^p_v$$

lead us to the consider following equivalent norm.

•
$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\mathbb{N} = \bigcup_n I(n)$, $||f||_X \asymp \sum_n C_n \left\| \sum_{k \in I(n)} a_k z^k \right\|_Y$, $Y \subset X$.

Applications

•
$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\mathbb{N} = \bigcup_n I(n)$, $||f||_X \asymp \sum_n C_n \left\| \sum_{k \in I(n)} a_k z^k \right\|_Y$, $Y \subset X$.

Applications

• Coefficient multipliers (Hadamard or convolution product).

•
$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\mathbb{N} = \bigcup_n I(n)$, $||f||_X \asymp \sum_n C_n \left\| \sum_{k \in I(n)} a_k z^k \right\|_Y$, $Y \subset X$.

Applications

- Coefficient multipliers (Hadamard or convolution product).
- For any $g \in \mathcal{H}(\mathbb{D})$, the generalized Hilbert operator

$$\mathcal{H}_g(f)(z) = \int_0^1 f(t)g'(tz)\,dt.$$

•
$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\mathbb{N} = \bigcup_n I(n)$, $||f||_X \asymp \sum_n C_n \left\| \sum_{k \in I(n)} a_k z^k \right\|_Y$, $Y \subset X$.

Applications

- Coefficient multipliers (Hadamard or convolution product).
- For any $g \in \mathcal{H}(\mathbb{D})$, the generalized Hilbert operator

$$\mathcal{H}_g(f)(z) = \int_0^1 f(t)g'(tz)\,dt.$$

• If $g(z) = \log \frac{1}{1-z}$, we get the Hilbert operator

$$\mathcal{H}(f)(z) = \int_0^1 \frac{f(t)}{1-tz} \, dt.$$

•
$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\mathbb{N} = \bigcup_n I(n)$, $||f||_X \asymp \sum_n C_n \left\| \sum_{k \in I(n)} a_k z^k \right\|_Y$, $Y \subset X$.

Applications

- Coefficient multipliers (Hadamard or convolution product).
- For any $g \in \mathcal{H}(\mathbb{D})$, the generalized Hilbert operator

$$\mathcal{H}_g(f)(z) = \int_0^1 f(t)g'(tz)\,dt.$$

• If $g(z) = \log \frac{1}{1-z}$, we get the Hilbert operator

$$\mathcal{H}(f)(z) = \int_0^1 \frac{f(t)}{1-tz} \, dt.$$

• L^p estimates of Bergman reproducing kernels induced by a radial weight

$$B_a^{\omega}(z) = \sum_{n=0}^{\infty} \frac{(\bar{a}z)^n}{2\int_0^1 r^{2n+1}\omega(r)\,dr}$$

Decomposition theorems for A^p_{ω} .

Decomposition theorems for A^p_{ω} .

• For $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $n \in \mathbb{N} \cup \{0\}$, let $r_n = r_n(\omega) \in [0, 1)$ be defined by

$$\widehat{\omega}(r_n) = \int_{r_n}^1 \omega(r) \, dr = 2^{-n}.$$

Decomposition theorems for A^p_{ω} .

• For $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $n \in \mathbb{N} \cup \{0\}$, let $r_n = r_n(\omega) \in [0, 1)$ be defined by

$$\widehat{\omega}(r_n) = \int_{r_n}^1 \omega(r) \, dr = 2^{-n}$$

• $\{r_n\}_{n=0}^{\infty}$ is an increasing sequence of distinct points on [0, 1) such that $r_0 = 0$ and $r_n \to 1^-$, as $n \to \infty$.

• For $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $n \in \mathbb{N} \cup \{0\}$, let $r_n = r_n(\omega) \in [0, 1)$ be defined by

$$\widehat{\omega}(r_n) = \int_{r_n}^1 \omega(r) \, dr = 2^{-n}$$

- $\{r_n\}_{n=0}^{\infty}$ is an increasing sequence of distinct points on [0, 1) such that $r_0 = 0$ and $r_n \to 1^-$, as $n \to \infty$.
- For $x \in [0, \infty)$, let E(x) denote the integer such that $E(x) \le x < E(x) + 1$.

• For $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $n \in \mathbb{N} \cup \{0\}$, let $r_n = r_n(\omega) \in [0, 1)$ be defined by

$$\widehat{\omega}(r_n) = \int_{r_n}^1 \omega(r) \, dr = 2^{-n}$$

- $\{r_n\}_{n=0}^{\infty}$ is an increasing sequence of distinct points on [0, 1) such that $r_0 = 0$ and $r_n \to 1^-$, as $n \to \infty$.
- For $x \in [0, \infty)$, let E(x) denote the integer such that $E(x) \le x < E(x) + 1$.

$$I(0) = I_{\omega}(0) = \left\{ k \in \mathbb{N} \cup \{0\} : k < E\left(\frac{1}{1-r_1}\right) \right\}$$

and

$$I(n) = I_{\omega}(n) = \left\{ k \in \mathbb{N} : E\left(\frac{1}{1-r_n}\right) \le k < E\left(\frac{1}{1-r_{n+1}}\right) \right\}$$

for all $n \in \mathbb{N}$.

• For $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $n \in \mathbb{N} \cup \{0\}$, let $r_n = r_n(\omega) \in [0, 1)$ be defined by

$$\widehat{\omega}(r_n) = \int_{r_n}^1 \omega(r) \, dr = 2^{-n}$$

- $\{r_n\}_{n=0}^{\infty}$ is an increasing sequence of distinct points on [0, 1) such that $r_0 = 0$ and $r_n \to 1^-$, as $n \to \infty$.
- For $x \in [0, \infty)$, let E(x) denote the integer such that $E(x) \le x < E(x) + 1$.

$$I(0) = I_{\omega}(0) = \left\{ k \in \mathbb{N} \cup \{0\} : k < E\left(\frac{1}{1-r_1}\right) \right\}$$

and

$$I(n) = I_{\omega}(n) = \left\{ k \in \mathbb{N} : E\left(\frac{1}{1-r_n}\right) \le k < E\left(\frac{1}{1-r_{n+1}}\right) \right\}$$

for all $n \in \mathbb{N}$.

• If $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}(\mathbb{D})$

$$\Delta_n^{\omega}f(z) = \sum_{k\in I_{\omega}(n)} a_k z^k, \quad n\in\mathbb{N}\cup\{0\}.$$

• For $\omega \in \widehat{D}$ such that $\int_0^1 \omega(r) dr = 1$ and $n \in \mathbb{N} \cup \{0\}$, let $r_n = r_n(\omega) \in [0, 1)$ be defined by

$$\widehat{\omega}(r_n) = \int_{r_n}^1 \omega(r) \, dr = 2^{-n}$$

- $\{r_n\}_{n=0}^{\infty}$ is an increasing sequence of distinct points on [0, 1) such that $r_0 = 0$ and $r_n \to 1^-$, as $n \to \infty$.
- For $x \in [0, \infty)$, let E(x) denote the integer such that $E(x) \le x < E(x) + 1$.

$$I(0) = I_{\omega}(0) = \left\{ k \in \mathbb{N} \cup \{0\} : k < E\left(\frac{1}{1-r_1}\right) \right\}$$

and

$$I(n) = I_{\omega}(n) = \left\{ k \in \mathbb{N} : E\left(\frac{1}{1-r_n}\right) \le k < E\left(\frac{1}{1-r_{n+1}}\right) \right\}$$

for all $n \in \mathbb{N}$.

• If $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}(\mathbb{D})$

$$\Delta_n^{\omega}f(z) = \sum_{k\in I_{\omega}(n)} a_k z^k, \quad n \in \mathbb{N} \cup \{0\}.$$

• $f(z) = \sum_{n=0}^{\infty} \Delta_n^{\omega} f(z).$

Assume that $\omega \in \widehat{\mathcal{D}}$ with $\int_0^1 \omega(r) dr = 1$, and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

(ii) If 0 , then

$$||f||_{A^p_{\omega}}^p \lesssim \sum_{n=0}^{\infty} 2^{-n} ||\Delta^{\omega}_n f||_{H^p}^p.$$

Assume that $\omega \in \widehat{\mathcal{D}}$ with $\int_0^1 \omega(r) dr = 1$, and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

(ii) If 0 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \lesssim \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

Assume that $\omega \in \widehat{\mathcal{D}}$ with $\int_0^1 \omega(r) dr = 1$, and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{\mathcal{H}^{p}}^{p}.$$

(ii) If 0 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \lesssim \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

Key ingredients and Comments

Preliminary result on power series with positive coefficients

Assume that $\omega \in \widehat{D}$ with $\int_0^1 \omega(r) dr = 1$, and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

(ii) If 0 , then

$$||f||_{A^p_{\omega}}^p \lesssim \sum_{n=0}^{\infty} 2^{-n} \|\Delta^{\omega}_n f\|_{H^p}^p.$$

- Preliminary result on power series with positive coefficients
- In the boundedness of the Riesz projection.

Assume that $\omega \in \widehat{D}$ with $\int_0^1 \omega(r) dr = 1$, and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

(ii) If 0 , then

$$||f||_{A^p_{\omega}}^p \lesssim \sum_{n=0}^{\infty} 2^{-n} \|\Delta^{\omega}_n f\|_{H^p}^p.$$

- Preliminary result on power series with positive coefficients
- In the boundedness of the Riesz projection.
- The above result can be generalized to mixed spaces.

Assume that
$$\omega \in \widehat{\mathcal{D}}$$
 with $\int_0^1 \omega(r) dr = 1$, and $f \in \mathcal{H}(\mathbb{D})$.
(i) If $1 , then$

$$||f||_{\mathcal{A}_{\omega}^{p}}^{p} \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

(ii) If 0 , then

$$||f||_{A^p_{\omega}} \lesssim \sum_{n=0}^{\infty} 2^{-n} \|\Delta^{\omega}_n f\|_{H^p}^p.$$

- Preliminary result on power series with positive coefficients
- One of the projection.
- The above result can be generalized to mixed spaces.
- Similar results have been obtained by Mateljević and Pavlović for A^p_α.

Proposition (P-Rättyä 2013)

Let $0 and <math>\omega \in \widehat{D}$ such that $\int_0^1 \omega(r) dr = 1$. Let $f(r) = \sum_{k=0}^{\infty} a_k r^k$, where $a_k \ge 0$ for all $k \in \mathbb{N} \cup \{0\}$, and denote $t_n = \sum_{k \in I_{\omega}(n)} a_k$. Then there exists a constant $C = C(p, \omega) > 0$ such that

$$\frac{1}{C}\sum_{n=0}^{\infty}2^{-n}t_n^p\leq \int_0^1f(r)^p\omega(r)\,dr\leq C\sum_{n=0}^{\infty}2^{-n}t_n^p.$$

• Straightforward calculation splitting the integral \int_0^1 into pieces $\int_{r_0}^{r_{n+1}}$ gives

$$\frac{1}{C}\sum_{n=0}^{\infty}2^{-n}t_n^p\leq\int_0^1f(r)^p\omega(r)\,dr$$

• Straightforward calculation splitting the integral \int_0^1 into pieces $\int_{r_n}^{r_{n+1}}$ gives

$$\frac{1}{C}\sum_{n=0}^{\infty}2^{-n}t_n^p\leq \int_0^1f(r)^p\omega(r)\,dr$$

 P The reverse if 0 1 take 0 < γ < 1/(p-1). Then Hölder's inequality gives

$$f(r)^{p} \leq \left(\sum_{n=0}^{\infty} t_{n} r^{M_{n}}\right)^{p} \leq \eta_{\gamma}(r)^{p-1} \sum_{n=0}^{\infty} 2^{-n\gamma(p-1)} t_{n}^{p} r^{M_{n}}$$

• Straightforward calculation splitting the integral \int_0^1 into pieces $\int_{r_a}^{r_{a+1}}$ gives

$$\frac{1}{C}\sum_{n=0}^{\infty}2^{-n}t_n^p\leq\int_0^1f(r)^p\omega(r)\,dr$$

 P The reverse if 0 1 take 0 < γ < 1/(p-1). Then Hölder's inequality gives

$$f(r)^{p} \leq \left(\sum_{n=0}^{\infty} t_{n} r^{M_{n}}\right)^{p} \leq \eta_{\gamma}(r)^{p-1} \sum_{n=0}^{\infty} 2^{-n\gamma(p-1)} t_{n}^{p} r^{M_{n}}.$$

• This together with a right control of $\eta_{\gamma}(r)$ and

$$\int_0^1 s^{x} \omega(s) \, ds symp \int_{1-rac{1}{x}}^1 \omega(s) \, ds = \widehat{\omega}\left(1-rac{1}{x}
ight), \quad x \in [1,\infty)$$

finishes the proof.

Outline of the lecture Introduction Decomposition theorems. Equivalent norms on $A^P_{\mu_J}$

Theorem (P-Rättyä 2013)

Assume that $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{A^p_{\omega}}^p \asymp \sum_{n=0}^{\infty} 2^{-n} ||\Delta^{\omega}_n f||_{H^p}^p.$$

(ii) If 0 , then

$$||f||_{A^p_{\omega}}^p \lesssim \sum_{n=0}^{\infty} 2^{-n} ||\Delta^{\omega}_n f||_{H^p}^p.$$

Assume that $\omega \in \widehat{\mathcal{D}}$ such that $\int_0^1 \omega(r) dr = 1$ and $f \in \mathcal{H}(\mathbb{D})$. (i) If 1 , then

$$||f||_{A^p_{\omega}}^p \asymp \sum_{n=0}^{\infty} 2^{-n} ||\Delta^{\omega}_n f||_{H^p}^p.$$

(ii) If 0 , then

$$||f||_{A^p_{\omega}}^p \lesssim \sum_{n=0}^{\infty} 2^{-n} \|\Delta^{\omega}_n f\|_{H^p}^p.$$

(Mateljevic-Pavlovic (1984))

$$\|\Delta_n^{\omega}f\|_{H^p} \asymp M_p(r_{n+1},\Delta_n^{\omega}f)$$

Sketch of the proof. Case p > 1.

Sketch of the proof. Case p > 1.

1

$$f\|_{A_{\omega}^{p}}^{p} \geq \sum_{n=0}^{\infty} \int_{r_{n+1}}^{r_{n+2}} M_{p}^{p}(r,f) r\omega(r) dr$$

$$\gtrsim \sum_{n=0}^{\infty} \int_{r_{n+1}}^{r_{n+2}} M_{p}^{p}(r,\Delta_{n}^{\omega}f) r\omega(r) dr \quad \text{Riesz projection theorem}$$

$$\gtrsim \sum_{n=0}^{\infty} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p} \int_{r_{n+1}}^{r_{n+2}} r^{pM_{n+1}}\omega(r) dr \quad \text{previous estimate}$$

$$\asymp \sum_{n=0}^{\infty} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p} \int_{r_{n+1}}^{r_{n+2}} \omega(r) dr \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

Sketch of the proof. Case p > 1.

1

2

$$f\|_{A_{\omega}^{p}}^{p} \geq \sum_{n=0}^{\infty} \int_{r_{n+1}}^{r_{n+2}} M_{p}^{p}(r,f) r \omega(r) dr$$

$$\gtrsim \sum_{n=0}^{\infty} \int_{r_{n+1}}^{r_{n+2}} M_{p}^{p}(r,\Delta_{n}^{\omega}f) r \omega(r) dr \quad \text{Riesz projection theorem}$$

$$\gtrsim \sum_{n=0}^{\infty} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p} \int_{r_{n+1}}^{r_{n+2}} r^{pM_{n+1}} \omega(r) dr \quad \text{previous estimate}$$

$$\asymp \sum_{n=0}^{\infty} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p} \int_{r_{n+1}}^{r_{n+2}} \omega(r) dr \asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{\omega}f\|_{H^{p}}^{p}.$$

$$M_p(r,f) \leq \sum_{n=0}^{\infty} M_p(r,\Delta_n^{\omega}f) \leq \sum_{n=0}^{\infty} r^{M_n} \|\Delta_n^{\omega}f\|_{H^p}$$

and hence

$$\|f\|_{A^p_\omega}^p \leq \int_0^1 \left(\sum_{n=0}^\infty r^{M_n} \|\Delta^\omega_n f\|_{H^p}\right)^p \omega(r) \, dr \asymp \sum_{n=0}^\infty 2^{-n} \|\Delta^\omega_n f\|_{H^p}^p.$$