Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature

Composition operators on Hardy spaces

Episode III

VI Curso Internacional de Análisis Matemático en Andalucía

Antequera septiembre 2014

Pascal Lefèvre Université d'Artois, France

Program ●	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Program	n					

Other operator ideals

- Schatten classes and approximation numbers.
- Absolutely summing composition operators (work in progress, with L. Rodríguez-Piazza).
- Some open questions...

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Schatte	en Classes					

Let *H* be a (separable) Hilbert spaces, and *T* a bounded operator on *H*. For $p \ge 1$, define the Schatten *p*-norm of *T* as

$$\|T\|_{\mathcal{S}^p} := \left(\sum_{n\geq 1} \lambda_n^p(|T|)\right)^{1/p} = \left(tr(|T|^p)\right)^{1/p}$$

where

 $\lambda_1(|\mathcal{T}|) \geq \lambda_2(|\mathcal{T}|) \geq \cdots \geq \lambda_n(|\mathcal{T}|) \geq \cdots \text{ are the eigenvalues of } |\mathcal{T}| = \sqrt{(\mathcal{T}^*\mathcal{T})}.$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Schatte	en Classes					

Let *H* be a (separable) Hilbert spaces, and *T* a bounded operator on *H*. For $p \ge 1$, define the Schatten *p*-norm of *T* as

$$\|T\|_{\mathcal{S}^p} := \left(\sum_{n\geq 1} \lambda_n^p(|T|)\right)^{1/p} = \left(tr(|T|^p)\right)^{1/p}$$

where

 $\lambda_1(|\mathcal{T}|) \geq \lambda_2(|\mathcal{T}|) \geq \cdots \geq \lambda_n(|\mathcal{T}|) \geq \cdots$ are the eigenvalues of $|\mathcal{T}| = \sqrt{(\mathcal{T}^*\mathcal{T})}$.

T belongs to the Schatten class S^p if its Schatten p-norm is finite.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Schatte	en Classes					

Let *H* be a (separable) Hilbert spaces, and *T* a bounded operator on *H*. For $p \ge 1$, define the Schatten *p*-norm of *T* as

$$\|T\|_{\mathcal{S}^p} := \left(\sum_{n\geq 1} \lambda_n^p(|T|)\right)^{1/p} = \left(tr(|T|^p)\right)^{1/p}$$

where

 $\lambda_1(|\mathcal{T}|) \geq \lambda_2(|\mathcal{T}|) \geq \cdots \geq \lambda_n(|\mathcal{T}|) \geq \cdots$ are the eigenvalues of $|\mathcal{T}| = \sqrt{(\mathcal{T}^*\mathcal{T})}$.

T belongs to the Schatten class S^p if its Schatten p-norm is finite.

Remark: T belongs to S^2 if and only if T is Hilbert-Schmidt.

Program O	Schatten Classes ●○○	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Classes	de Schatter	1 - Contract of the second				

The case \mathcal{S}_2 is already known (lecture 1) and the general case was solved by Luecking:

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000					
Classes	de Schatter	ı				

The case S_2 is already known (lecture 1) and the general case was solved by Luecking: its characterization uses Luecking windows = half dyadic Carleson's windows.

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000					
Classes	de Schatte	n				

The case S_2 is already known (lecture 1) and the general case was solved by Luecking: its characterization uses Luecking windows = half dyadic Carleson's windows.

Let $n \ge 1$ and $0 \le j \le 2^n - 1$:

$$R_{n,j} = \left\{ z \in \mathbb{D} \, ; \, \, 1 - 2^{-n} \leq |z| < 1 - 2^{-n-1} \quad \text{and} \quad \frac{2j\pi}{2^n} \leq \arg z < \frac{2(j+1)\pi}{2^n} \right\}$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature			
	000		00000	0000000000000					
Classos	Classes de Schatten								

The case S_2 is already known (lecture 1) and the general case was solved by Luecking: its characterization uses Luecking windows = half dyadic Carleson's windows.

Let $n \ge 1$ and $0 \le j \le 2^n - 1$:

$$R_{n,j} = \left\{ z \in \mathbb{D} \, ; \, \, 1 - 2^{-n} \leq |z| < 1 - 2^{-n-1} \quad \text{and} \quad \frac{2j\pi}{2^n} \leq \arg z < \frac{2(j+1)\pi}{2^n} \, \right\}$$

VI Curso Internacional de Análisis Matemático en Andalucía

Program O	Schatten Classes ○●○	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Schatte	en classes					

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_p$ if and only if $\sum_{n \ge 0} \sum_{j=0}^{2^n - 1} \left[2^n \lambda_{\varphi}(R_{n,j}) \right]^{p/2} < +\infty$.

Program O	Schatten Classes ○●○	Approx. numbers	Abs. summing operators	Abs. summing C_{arphi}	Exercices	Litterature
Schatte	en classes					

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_{p}$ if and only if $\sum_{n \ge 0} \sum_{j=0}^{2^{n}-1} \left[2^{n} \lambda_{\varphi}(R_{n,j})\right]^{p/2} < +\infty$.

Actually (LLQR '08)

$$C_{arphi}\in \mathcal{S}_{p} \qquad ext{if and only if} \qquad \sum_{n\geq 0}\sum_{j=0}^{2^{n}-1}\left[2^{n}\lambda_{arphi}(W_{n,j})
ight]^{p/2}<+\infty.$$

Program O	Schatten Classes ○●○	Approx. numbers	Abs. summing operators	Abs. summing C_{arphi}	Exercices	Litterature
Schatte	en classes					

We assume that $\lambda_{arphi}(\mathbb{T})=0.$

$$\mathcal{L}_{arphi}\in\mathcal{S}_{p}\qquad ext{if and only if}\qquad \sum_{n\geq0}\sum_{j=0}^{2^{n-1}}\left[2^{n}\lambda_{arphi}(R_{n,j})
ight]^{p/2}<+\infty.$$

on 1

Actually (LLQR '08)

$$C_{\varphi} \in \mathcal{S}_p$$
 if and only if $\sum_{n \geq 0} \sum_{j=0}^{2^n-1} \left[2^n \lambda_{\varphi}(W_{n,j}) \right]^{p/2} < +\infty.$

(Luecking-Zhu '92)

$$\mathcal{C}_{arphi}\in\mathcal{S}_{p}$$
 if and only if $\int_{\mathbb{D}}$

$$\int \left(rac{\mathsf{N}_arphi(z)}{\log(1/|z|)}
ight)^{p/2} rac{d\mathcal{A}}{(1-|z|^2)^2} < +\infty.$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000		00000	0000000000000		
Schatte	en classes					

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_p$ if and only if $\sum_{n \geq 0} \sum_{j=0}^{2^n - 1} \left[2^n \lambda_{\varphi}(R_{n,j}) \right]^{p/2} < +\infty$.

Actually (LLQR '08)

$$C_{\varphi} \in \mathcal{S}_p$$
 if and only if $\sum_{n \geq 0} \sum_{j=0}^{2^n-1} \left[2^n \lambda_{\varphi}(W_{n,j}) \right]^{p/2} < +\infty.$

(Luecking-Zhu '92)

$$\Sigma_{arphi}\in \mathcal{S}_p \qquad ext{if and only if}\qquad \int_{\mathbb{D}} \Big(rac{N_arphi(z)}{\log(1/|z|)}\Big)^{p/2}\;rac{d\mathcal{A}}{(1-|z|^2)^2}<+\infty.$$

Link with Carleson's measures ?

Program O	Schatten Classes ○●○	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Schatten classes						

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_{p}$ if and only if $\sum_{n \geq 0} \sum_{j=0}^{2^{n}-1} \left[2^{n} \lambda_{\varphi}(R_{n,j})\right]^{p/2} < +\infty$.

Actually (LLQR '08)

$$C_{arphi}\in\mathcal{S}_{p} \qquad ext{if and only if} \qquad \sum_{n\geq 0}\sum_{j=0}^{2^{n}-1}\left[2^{n}\lambda_{arphi}(W_{n,j})
ight]^{p/2}<+\infty.$$

(Luecking-Zhu '92)

$$C_{\varphi} \in \mathcal{S}_{p} \qquad \textit{if and only if} \qquad \int_{\mathbb{D}} \Big(\frac{N_{\varphi}(z)}{\log(1/|z|)} \Big)^{p/2} \; \frac{d\mathcal{A}}{(1-|z|^{2})^{2}} < +\infty.$$

Link with Carleson's measures ? With α -Carleson ?

A finite measure μ on \mathbb{D} is α -Carleson if $\rho_{\mu}(h) = \sup_{\xi \in \mathbb{T}} \mu(W(\xi, h)) = O(h^{\alpha})$.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Schatte	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_p \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000					
Schatt	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_{p} \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

A sufficient condition

If λ_{φ} is α -Carleson where $\alpha > 1$, then $C_{\varphi} \in \mathcal{S}_{p}$

for any
$$p > rac{2}{lpha - 1}$$
 .

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000					
Schatte	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_{p} \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

A sufficient condition

If λ_{φ} is α -Carleson where $\alpha > 1$, then $C_{\varphi} \in \mathcal{S}_{p}$

for any
$$p > rac{2}{lpha - 1}$$
 .

On the other hand,

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000					
Schatt	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_p \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

A sufficient condition

If λ_{φ} is α -Carleson where $\alpha > 1$, then $C_{\varphi} \in \mathcal{S}_{p}$

for any
$$p>rac{2}{lpha-1}$$
 .

(LLQR '08)

 $\forall \alpha \in (1,2)$, there exist two symbols φ_1 and φ_2 such that $|\varphi_1^*| = |\varphi_2^*|$ (a.e.), with

 $ho_{arphi_1}(h)pprox h$ et $ho_{arphi_2}(h)pprox h^lpha$

hence

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000		00000	0000000000000		
Schatt	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_{p} \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

A sufficient condition

If λ_{φ} is α -Carleson where $\alpha > 1$, then $C_{\varphi} \in \mathcal{S}_{p}$

for any
$$p > \frac{2}{\alpha - 1}$$

.

(LLQR '08)

 $orall lpha \in$ (1,2), there exist two symbols $arphi_1$ and $arphi_2$ such that $|arphi_1^*| = |arphi_2^*|$ (a.e.), with

 $ho_{arphi_1}(h)pprox h$ et $ho_{arphi_2}(h)pprox h^lpha$

For any p > 2,there exist two symbols φ_1 and φ_2 such that $|\varphi_1^*| = |\varphi_2^*|$ (a.e.), with

$$C_{\varphi_2} \in S_p$$
 but C_{φ_1} non compact.

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000		00000	0000000000000		
Schatt	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_{p} \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

A sufficient condition

If λ_{φ} is α -Carleson where $\alpha > 1$, then $C_{\varphi} \in \mathcal{S}_p$

for any
$$p>rac{2}{lpha-1}$$
 .

(LLQR '08)

 $orall lpha \in$ (1,2), there exist two symbols $arphi_1$ and $arphi_2$ such that $|arphi_1^*| = |arphi_2^*|$ (a.e.), with

$$ho_{arphi_1}(h)pprox h$$
 et $ho_{arphi_2}(h)pprox h^lpha$

For any p> 2,there exist two symbols φ_1 and φ_2 such that $|\varphi_1^*|=|\varphi_2^*|$ (a.e.), with

$$C_{\varphi_2} \in \mathcal{S}_p$$
 but C_{φ_1} non compact.

" $p = \infty$ " (cf lecture 2: $\alpha = 3/2$).

VI Curso Internacional de Análisis Matemático en Andalucía

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000		00000	0000000000000		
Schatt	en Classes					

$$\text{If } C_{\varphi} \in \mathcal{S}_{p} \text{, then } \rho_{\varphi}(h) = o\left(h\Big(\log \frac{1}{h}\Big)^{-2/p}\right).$$

A sufficient condition

If λ_{φ} is α -Carleson where $\alpha > 1$, then $C_{\varphi} \in \mathcal{S}_{p}$

for any
$$p>rac{2}{lpha-1}$$
 .

(LLQR '08)

 $orall lpha \in$ (1,2), there exist two symbols $arphi_1$ and $arphi_2$ such that $|arphi_1^*| = |arphi_2^*|$ (a.e.), with

$$ho_{arphi_1}(h)pprox h$$
 et $ho_{arphi_2}(h)pprox h^lpha$

For any p > 2,there exist two symbols φ_1 and φ_2 such that $|\varphi_1^*| = |\varphi_2^*|$ (a.e.), with

$$C_{\varphi_2} \in \mathcal{S}_p$$
 but C_{φ_1} non compact.

" $p = \infty$ " (cf lecture 2: $\alpha = 3/2$). Cannot be true for p = 2 (cf lecture 1) !!

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approx	imation nun	mbers on H^2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approx	imation nun	nbers on H^2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{arphi}	Exercices	Litterature
	000	•	00000	000000000000		
Approx	imation nun	nbers on H^2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$ a non-increasing sequence

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approximation numbers on H^2						

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$ a non-increasing sequence $a_n(T) \longrightarrow 0$ if and only if T is compact.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approximation numbers on H^2						

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$ a non-increasing sequence $a_n(T) \longrightarrow 0$ if and only if T is compact.

 $\left\|T\right\|_{\mathcal{S}^p}=\left\|(a_n(T))_n\right\|_{\ell^p}$

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approximation numbers on H^2						

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$ a non-increasing sequence $a_n(T) \longrightarrow 0$ if and only if T is compact.

$$\left\|T\right\|_{\mathcal{S}^p} = \left\|(a_n(T))_n\right\|_{\ell^p}$$

(Li-Queffélec-Rodríguez-Piazza '11-14)

• Given $\varepsilon_n \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_n(C_{\varphi}) \gtrsim \varepsilon_n$.

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approximation numbers on H^2						

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$ a non-increasing sequence $a_n(T) \longrightarrow 0$ if and only if T is compact.

$$\left\|T\right\|_{\mathcal{S}^p} = \left\|(a_n(T))_n\right\|_{\ell^p}$$

(Li–Queffélec–Rodríguez-Piazza '11-14)

- Given $\varepsilon_n \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_n(C_{\varphi}) \gtrsim \varepsilon_n$.
- If $\|\varphi\|_{\infty} < 1$ then $\lim (a_n(C_{\varphi}))^{1/n} = e^{1/Cap(\varphi(\mathbb{D}))}.$

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Approximation numbers on H^2						

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: $a_1(T) = ||T||$ a non-increasing sequence $a_n(T) \longrightarrow 0$ if and only if T is compact.

$$\left\|T\right\|_{\mathcal{S}^p} = \left\|(a_n(T))_n\right\|_{\ell^p}$$

(Li-Queffélec-Rodríguez-Piazza '11-14)

- Given $\varepsilon_n \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_n(C_{\varphi}) \gtrsim \varepsilon_n$.
- If $\|\varphi\|_{\infty} < 1$ then $\lim (a_n(C_{\varphi}))^{1/n} = e^{1/Cap(\varphi(\mathbb{D}))}$.
- Si φ is the lens map (of index $\theta \in (0,1)$), then

$$e^{-lpha_{ heta}\sqrt{n}} \lesssim a_n(\mathcal{C}_arphi) \lesssim e^{-eta_{ heta}\sqrt{n}}$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ●○○○○	Abs. summing C_{φ}	Exercices O	Litterature
<i>q</i> -sumr	ning operato	ors				

Suppose $1 \le q < +\infty$ and let $T: X \to Y$ be a (bounded) operator between Banach spaces.

We say T is a q-summing operator if there exists C > 0 such that

$$\Big(\sum_{j=1}^n \|Tx_j\|^q\Big)^{1/q} \le C \sup_{x^* \in B_{X^*}} \Big(\sum_{j=1}^n |\langle x^*, x_j \rangle|^q\Big)^{1/q} =$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ●○○○○	Abs. summing C_{φ}	Exercices	Litterature
<i>q</i> -sumn	ning operato	ors				

Suppose $1 \le q < +\infty$ and let $T: X \to Y$ be a (bounded) operator between Banach spaces.

We say T is a *q*-summing operator if there exists C > 0 such that

$$\Big(\sum_{j=1}^{n} \|Tx_{j}\|^{q}\Big)^{1/q} \leq C \sup_{x^{*} \in B_{X^{*}}} \Big(\sum_{j=1}^{n} |\langle x^{*}, x_{j} \rangle|^{q}\Big)^{1/q} = C \sup_{a \in B_{\ell^{q'}}} \Big\|\sum_{j=1}^{n} a_{j} x_{j}\Big\|,$$

for every finite sequence x_1, x_2, \ldots, x_n in X.

The q-summing norm of T, denoted by $\pi_q(T)$, is the least suitable constant C > 0.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ●○○○○	Abs. summing C_{φ}	Exercices	Litterature
<i>q</i> -sumn	ning operato	ors				

Suppose $1 \le q < +\infty$ and let $T : X \to Y$ be a (bounded) operator between Banach spaces.

We say T is a *q*-summing operator if there exists C > 0 such that

$$\Big(\sum_{j=1}^{n} \|Tx_{j}\|^{q}\Big)^{1/q} \leq C \sup_{x^{*} \in B_{X^{*}}} \Big(\sum_{j=1}^{n} |\langle x^{*}, x_{j} \rangle|^{q}\Big)^{1/q} = C \sup_{a \in B_{\ell}q'} \Big\|\sum_{j=1}^{n} a_{j}x_{j}\Big\|,$$

for every finite sequence x_1, x_2, \ldots, x_n in X.

The q-summing norm of T, denoted by $\pi_q(T)$, is the least suitable constant C > 0.

- This forms an operator ideal.
- 1-summing operators are also called absolutely summing operators.

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^n \|T(f_j)\|_q^q = \int_K \sum_{j=1}^n |f_j(x)|^q \ d
u$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○●○○○	Abs. summing C_{φ}	Exercices O	Litterature
a (gene	eric) example	9				

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^n \| {\mathcal T}(f_j) \|_q^q = \; \int_{{\mathcal K}} \sum_{j=1}^n |f_j(x)|^q \; d
u \leq \int_{{\mathcal K}} \sup_{\chi \in B_{{\mathcal C}({\mathcal K})^*}} \sum_{j=1}^n |\chi(f_j)|^q \; d
u$$

Let (K, ν) a probability space, where K is compact and consider

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^n \|T(f_j)\|_q^q = \int_K \sum_{j=1}^n |f_j(x)|^q \ d\nu \le \int_K \sup_{\chi \in \mathcal{B}_{\mathcal{C}(K)^*}} \sum_{j=1}^n |\chi(f_j)|^q \ d\nu \le \sup_{\chi \in \mathcal{B}_{\mathcal{C}(K)^*}} \sum_{j=1}^n |\chi(f_j)|^q$$

Let (K, ν) a probability space, where K is compact and consider

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^{n} \| \mathsf{T}(f_{j}) \|_{q}^{q} = \int_{\mathcal{K}} \sum_{j=1}^{n} |f_{j}(x)|^{q} \ d\nu \leq \int_{\mathcal{K}} \sup_{\chi \in \mathsf{B}_{\mathcal{C}(\mathcal{K})^{*}}} \sum_{j=1}^{n} |\chi(f_{j})|^{q} \ d\nu \leq \sup_{\chi \in \mathsf{B}_{\mathcal{C}(\mathcal{K})^{*}}} \sum_{j=1}^{n} |\chi(f_{j})|^{q}$$

Any restriction of this operator still works...

Let (K, ν) a probability space, where K is compact and consider

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^q(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a q-summing operator and $\pi_q(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^{n} \| \mathsf{T}(f_{j}) \|_{q}^{q} = \int_{\mathcal{K}} \sum_{j=1}^{n} |f_{j}(x)|^{q} \ d\nu \leq \int_{\mathcal{K}} \sup_{\chi \in B_{\mathcal{C}(\mathcal{K})^{*}}} \sum_{j=1}^{n} |\chi(f_{j})|^{q} \ d\nu \leq \sup_{\chi \in B_{\mathcal{C}(\mathcal{K})^{*}}} \sum_{j=1}^{n} |\chi(f_{j})|^{q}$$

Any restriction of this operator still works...

Actually, up to factorizations, any q-summing looks like this:

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○●○○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

(Pietsch '67)

 $T: X \to Y$ is a *q*-summing operator

if and only if

there exists a (probability) measure ν on the compact (B_{X^*}, w^*) s.t.

$$orall x \in X$$
, $\|T(x)\| \lesssim \Big(\int_{B_{X^*}} |\xi(x)|^q d
u(\xi)\Big)^{1/q}$

if and only if

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

(Pietsch '67)

 $T: X \to Y$ is a *q*-summing operator

if and only if

there exists a (probability) measure ν on the compact (B_{X^*}, w^*) s.t.

$$\forall x \in X$$
, $\|T(x)\| \lesssim \left(\int_{B_{X^*}} |\xi(x)|^q d\nu(\xi)\right)^{1/q}$

if and only if

we have the following factorization

$$egin{array}{cccc} X & \stackrel{T}{\longrightarrow} & Y & \ & & \uparrow & \widetilde{T} & \ & & & & \mid & \ & & & & \mid & \ & \widetilde{X} \subset C(B_{X^*}) & \stackrel{``id''}{\longrightarrow} & X_q & \subset L^q(B_{X^*},
u) \end{array}$$

for some probability measure ν on B_{X^*} .

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

• If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ} 000000000000000000000000000000000000	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator).

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is q_1 -summing *if and only if* j_{μ} is q_2 -summing

in the following cases:

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is q_1 -summing *if and only if* j_{μ} is q_2 -summing

in the following cases:

• For $1 \le p \le 2$ and $q_1, q_2 \ge 1$.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●○	Abs. summing C_{φ}	Exercices O	Litterature
Pietsch	Theorem					

- If $q_1 \leq q_2$, every q_1 -summing operator is q_2 -summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is q_1 -summing *if and only if* j_{μ} is q_2 -summing

in the following cases:

- For $1 \leq p \leq 2$ and q_1 , $q_2 \geq 1$.
- For p > 2, and $1 \le q_1$, $q_2 < p'$, where p' is the conjugate exponent of p.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1$$

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow (\widehat{f}(2^n))_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious),

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow \left(\widehat{f}(2^n)\right)_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious), 1-summing (obvious)

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow (\widehat{f}(2^n))_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow (\widehat{f}(2^n))_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).

2 Ingredient 2: ℓ^1 has the lifting property:

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow (\widehat{f}(2^n))_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).

② Ingredient 2: ℓ^1 has the lifting property: Given a surjective map: σ : X → Y, any operator T: $\ell^1 \to Y$ factorizes as $T = \sigma \circ \tilde{T}$.

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow (\widehat{f}(2^n))_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).

O Ingredient 2: $ℓ^1$ has the lifting property: Given a surjective map: σ: X → Y, any operator $T: ℓ^1 → Y$ factorizes as T = σ ◦ T.

So the proof is now obvious:

given $T: \ell^1 \to \ell^2$.

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators ○○○○●	Abs. summing C_{φ}	Exercices O	Litterature
A digre	ssion					

Every operator from ℓ^1 to ℓ^2 is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

Ingredient 1: the Paley projection P:

$$f \in A(\mathbb{D}) \longrightarrow f \in H^1 \longrightarrow (\widehat{f}(2^n))_{n \in \mathbb{N}} \in \ell^2$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).

O Ingredient 2: $ℓ^1$ has the lifting property: Given a surjective map: σ: X → Y, any operator $T: ℓ^1 → Y$ factorizes as T = σ ◦ T.

So the proof is now obvious:

given $T: \ell^1 \to \ell^2$. We factorize $T = P \circ \tilde{T}$, which is 1-summing.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Carleso	n embedding	gs				

Our problem now:

When a composition operator $C_{\varphi} \colon H^{p} \to H^{p}$ is *q*-summing ?

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
	000		00000	●00000000000		
Carleso	n embeddin	gs				

Our problem now:

When a composition operator $C_{\varphi} \colon H^p \to H^p$ is *q*-summing ?

This problem is equivalent to:

When the identity $f \in H^p \mapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$ is *q*-summing ?

Hence we are interested in the following more general problem:

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Carleso	n embedding	gs				

Our problem now:

When a composition operator $C_{\varphi} \colon H^{p} \to H^{p}$ is *q*-summing ?

This problem is equivalent to:

When the identity $f \in H^p \mapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$ is *q*-summing ?

Hence we are interested in the following more general problem: Assume from now on that μ is concentrated in the open disk \mathbb{D} .

For μ a Carleson measure, when the Carleson embedding

$$j_{\mu} \colon H^{p} \hookrightarrow L^{p}(\mu)$$

is a *q*-summing operator ?

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
Known	facts					

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}} \frac{1}{1-|\varphi^*|} \, d\lambda < +\infty \, .$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
0	000	0	00000	00000000000	0	
Known	facts					

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} \frac{1}{1-|z|} d\mu(z) < +\infty$

Actually,

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				0000000000000		
Known	facts					

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} rac{1}{1-|z|} \, d\mu(z) < +\infty$

Actually,

Let
$$p \ge 1$$
.

$$\int_{\mathbb{T}} \frac{1}{1-|z|} d\mu < +\infty \quad \text{if and only if} \quad j_{\mu} \colon H^{p} \hookrightarrow L^{p}(\mu) \text{ is order bounded.}$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				0000000000000		
Known	facts					

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} \frac{1}{1-|z|} \, d\mu(z) < +\infty$.

Actually,

Let
$$p \ge 1$$
.

$$\int_{\mathbb{T}} \frac{1}{1-|z|} d\mu < +\infty \quad \text{if and only if} \quad j_{\mu} \colon H^{p} \hookrightarrow L^{p}(\mu) \text{ is order bounded.}$$

In particular, the condition implies that j_{μ} is *p*-summing for every $p \ge 1$. But the converse is false for $p \in [1, 2)$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				0000000000000		
Known	facts					

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} rac{1}{1-|z|} \, d\mu(z) < +\infty$.

Actually,

Let
$$p \ge 1$$
.

$$\int_{\mathbb{T}} \frac{1}{1-|z|} d\mu < +\infty \quad \text{if and only if} \quad j_{\mu} \colon H^{p} \hookrightarrow L^{p}(\mu) \text{ is order bounded.}$$

In particular, the condition implies that j_{μ} is *p*-summing for every $p \ge 1$. But the converse is false for $p \in [1, 2)$

(Domenig '99)

Let $p \in [1, 2)$. There exist *p*-summing composition operators on H^p which are not order bounded.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First results: the annulus case.						

We denote by μ_n the restriction of μ to the annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults: the a	nnulus case.				

We denote by μ_n the restriction of μ to the annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults: the a	nnulus case.				

We denote by μ_n the restriction of μ to the annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults: the a	nnulus case.				

We denote by μ_n the restriction of μ to the annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$. We have, the decomposition

$$\{f\in H^p: f(0)=0\}=\bigoplus_{n\geq 0}H^p_n$$

which is an orthogonal decomposition when p = 2 (i.e. for H^2).

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults: the a	nnulus case.				

We denote by μ_n the restriction of μ to the annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$. We have, the decomposition

$$\{f\in H^p: f(0)=0\}=\bigoplus_{n\geq 0}H^p_n$$

which is an orthogonal decomposition when p = 2 (i.e. for H^2).
Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults: the a	nnulus case.				

Let us fix a finite measure μ on $\mathbb D$ and an integer n.

We denote by μ_n the restriction of μ to the annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$. We have, the decomposition

$$\{f\in H^p: f(0)=0\}=\bigoplus_{n\geq 0}H_n^p$$

which is an orthogonal decomposition when p = 2 (i.e. for H^2).

Moreover

$$H_n^p \sim \ell_{2^n}^p$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
the anr	nulus case					

Let α_n be the restriction of j_n to H_n^p .

Proposition

For 1 , the following quantities are equivalent:

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
the anr	nulus case					

Let α_n be the restriction of j_n to H_n^p .

Proposition

For 1 , the following quantities are equivalent:

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
the anr	nulus case					

Let α_n be the restriction of j_n to H_n^p .

Proposition

For 1 , the following quantities are equivalent:

$$\ \, \bullet \ \, \pi_q(j_n \colon H^p \to L^p(\mu_n))$$

$$a_{q}(\alpha_{n} \colon H_{n}^{p} \to L^{p}(\mu_{n}))$$

• $\pi_q(D_a)$, where $D_a \colon \ell_{2^n}^p \to \ell_{2^n}^p$ is the diagonal operator whose multipliers are $a_j = (2^n \mu(R_{n,j}))^{1/p}$ (where $j = 1, 2, ..., 2^n$).

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
the ann	ulus case	0			•	

0
$$1 : $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
the ann	ulus case					

•
$$1 : $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$.$$

2:

• if
$$1\leq q\leq p'.$$
 $\pi_q(j_n)pprox \left(\sum_{j=1}^{2^n} \left[2^n\mu(R_{n,j})\right]^{p'/p}
ight)^{1/p'},$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
the ann	ulus case					

•
$$1 : $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$.
• $p > 2$:$$

• if
$$1 \le q \le p'$$
. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)$,
• if $p' \le q \le p$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{q/p}\right)^{1/q}$,

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
the ann	ulus case					

•
$$1 :
• $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$.
• $p > 2$:
• if $1 \le q \le p'$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)^{1/p'}$,
• if $p' \le q \le p$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{q/p}\right)^{1/q}$,
• if $p \le q$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]\right)^{1/p}$,$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
the ann	ulus case					

•
$$1 :
• $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$.
• $p > 2$:
• $\text{if } 1 \le q \le p'$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)^{1/p'}$,
• $\text{if } p' \le q \le p$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{q/p}\right)^{1/q}$,
• $\text{if } p \le q$. $\pi_q(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]\right)^{1/p}$,$$

How to glue the pieces ?

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults					

In some cases, we can glue:

Theorem

In the case $q \ge p \ge 2$ we have:

$$egin{aligned} \pi_q(j_\mu) &pprox \left(\sum_n \left[\pi_q(j_n)
ight]^p
ight)^{1/p} &pprox \left(\sum_{n,j} \left[2^n \mu(R_{n,j})
ight]
ight)^{1/p} \ &pprox \left(\int_{\mathbb{D}} rac{1}{1-|z|} \, d\mu(z)
ight)^{1/p}. \end{aligned}$$

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing <i>C</i> _φ ○○○○○●○○○○○○	Exercices O	Litterature
First re	sults					

In some cases, we can glue:

Theorem

In the case $q \ge p \ge 2$ we have:

$$egin{aligned} \pi_q(j_\mu) &pprox \left(\sum_n \left[\pi_q(j_n)
ight]^p
ight)^{1/p} &pprox \left(\sum_{n,j} \left[2^n \mu(R_{n,j})
ight]
ight)^{1/p} \ &pprox \left(\int_{\mathbb{D}} rac{1}{1-|z|} \, d\mu(z)
ight)^{1/p}. \end{aligned}$$

In the case $2 \le q \le p$ we have:

$$\pi_q(j_\mu) \approx \left(\sum_n \left[\pi_q(j_n)\right]^q\right)^{1/q} \approx \left(\sum_{n,j} \left[2^n \mu(R_{n,j})\right]^{q/p}\right)^{1/p}$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
First re	sults					

In some cases, we can glue:

Theorem

In the case $q \ge p \ge 2$ we have:

$$egin{aligned} \pi_q(j_\mu) &pprox \left(\sum_n \left[\pi_q(j_n)
ight]^p
ight)^{1/p} &pprox \left(\sum_{n,j} \left[2^n \mu(R_{n,j})
ight]
ight)^{1/p} \ &pprox \left(\int_{\mathbb{D}} rac{1}{1-|z|} \, d\mu(z)
ight)^{1/p}. \end{aligned}$$

In the case $2 \le q \le p$ we have:

$$\pi_q(j_\mu) \approx \left(\sum_n \left[\pi_q(j_n)\right]^q\right)^{1/q} \approx \left(\sum_{n,j} \left[2^n \mu(R_{n,j})\right]^{q/p}\right)^{1/p}$$

For p > 2, the case $1 \le q < 2$ is still open (our tube of glue is empty...).

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing <i>Cφ</i> ○○○○○○●○○○○○	Exercices O	Litterature
The cas	se $p \leq 2$.					

$$\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx \left\|\left(\sum_{n} |f_{n}^{*}|^{2}\right)^{1/2}\right\|_{L^{p}(\mathbb{T})}$$

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C _φ ○○○○○○●○○○○○	Exercices O	Litterature
The cas	se $p \leq 2$.					

$$\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx \left\|\left(\sum_{n} |f_{n}^{*}|^{2}\right)^{1/2}\right\|_{L^{p}(\mathbb{T})}$$

and since H^p has cotype 2 and type p:

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing <i>Cφ</i> ○○○○○○●○○○○○	Exercices O	Litterature
The cas	se $p \leq 2$.					

$$\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx \left\|\left(\sum_{n} |f_{n}^{*}|^{2}\right)^{1/2}\right\|_{L^{p}(\mathbb{T})}$$

and since H^p has cotype 2 and type p:

$$\left(\sum_{n} \|f_{n}\|_{H^{p}}^{2}\right)^{1/2} \lesssim \left\|\sum_{n} f_{n}\right\|_{H^{p}} \lesssim \left(\sum_{n} \|f_{n}\|_{H^{p}}^{p}\right)^{1/p}$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
The cas	se $p \leq 2$.					

$$\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx \left\|\left(\sum_{n} |f_{n}^{*}|^{2}\right)^{1/2}\right\|_{L^{p}(\mathbb{T})}$$

and since H^p has cotype 2 and type p:

$$\left(\sum_{n} \|f_{n}\|_{H^{p}}^{2}\right)^{1/2} \lesssim \left\|\sum_{n} f_{n}\right\|_{H^{p}} \lesssim \left(\sum_{n} \|f_{n}\|_{H^{p}}^{p}\right)^{1/p}$$

This can be used to prove

$$\left(\sum_n \pi_2(j_n)^2\right)^{1/2} \lesssim \pi_2(j_\mu) \lesssim \left(\sum_n \pi_2(j_n)^p\right)^{1/p}$$

But none of these two estimates is the correct one.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
The cas	se $p \leq 2$.					

$$\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx \left\|\left(\sum_{n} |f_{n}^{*}|^{2}\right)^{1/2}\right\|_{L^{p}(\mathbb{T})}$$

and since H^p has cotype 2 and type p:

$$\left(\sum_{n} \|f_{n}\|_{H^{p}}^{2}\right)^{1/2} \lesssim \left\|\sum_{n} f_{n}\right\|_{H^{p}} \lesssim \left(\sum_{n} \|f_{n}\|_{H^{p}}^{p}\right)^{1/p}$$

This can be used to prove

$$\left(\sum_{n} \pi_2(j_n)^2\right)^{1/2} \lesssim \pi_2(j_\mu) \lesssim \left(\sum_{n} \pi_2(j_n)^p\right)^{1/p}$$

But none of these two estimates is the correct one.

Our characterization is of different nature...

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
The cas	se $p \leq 2$.					

Theorem

Let $1 . The Carleson embedding <math>j_\mu \colon H^p \to L^p(\mu)$ is absolutely summing if and only if

$$\int_{\mathbb{T}} igg(\int_{\Gamma(\xi)} rac{d\mu(z)}{(1-|z|)^{1+p/2}} igg)^{2/p} d\lambda(\xi) < +\infty$$

where $\Gamma(\xi)$ is the Stolz domain in ξ :

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				000000000000000000000000000000000000000		
The ca	se <i>p</i> < 2: s	ketch of prod	of			

Step 1 (via Maurey factorization theorem)

Let r>1 with 1/r+1/2=1/p and $T\colon X\to L^p(\mu)$ a bounded operator.

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				0000000000000		
The ca	ase $p < 2$: s	ketch of prod	of			

Step 1 (via Maurey factorization theorem)

Let r > 1 with 1/r + 1/2 = 1/p and $T: X \to L^p(\mu)$ a bounded operator.

T is a 2-summing operator

if and only if

There exists $F \in L^{r}(\mu)$, with F > 0 μ -a.e., such that $T: X \to L^{2}(\nu)$ is well defined and 2-summing, where ν is the measure defined by

$$d\nu(z)=\frac{1}{F(z)^2}\,d\mu(z)\,.$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature			
				0000000000000					
The c	The case $p < 2^{\circ}$ sketch of proof								

Step 1 (via Maurey factorization theorem)

Let r > 1 with 1/r + 1/2 = 1/p and $T: X \to L^p(\mu)$ a bounded operator.

T is a 2-summing operator

if and only if

There exists $F \in L^{r}(\mu)$, with F > 0 μ -a.e., such that $T: X \to L^{2}(\nu)$ is well defined and 2-summing, where ν is the measure defined by

$$d\nu(z)=\frac{1}{F(z)^2}\,d\mu(z)\,.$$

Moreover, we have

$$\pi_2\big(T\colon X\to L^p(\mu)\big)\\\approx$$

$$\inf\Big\{\pi_2\big({\mathcal T}\colon X o L^2(
u)ig): d
u=d\mu/F^2, F\ge 0, \int F^r\,d\mu\le 1\Big\}.$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				000000000000000000000000000000000000000		
The ca	se $p\leq$ 2: sk	etch of proc	of			

The natural injection $j \colon H^p \to L^2(\nu)$ is a 2-summing operator

if and only if

$$\int_{\mathbb{T}} \left(\int_{\mathbb{D}} rac{1}{|z-w|^2} \, d
u(z)
ight)^{p'/2} d\lambda(w) < +\infty$$

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
				00000000000000		
The ca	se $p \leq 2$: sk	ketch of proc	of			

The natural injection $j \colon H^p \to L^2(\nu)$ is a 2-summing operator

if and only if

$$\int_{\mathbb{T}} \left(\int_{\mathbb{D}} rac{1}{|z-w|^2} \, d
u(z)
ight)^{p'/2} d\lambda(w) < +\infty \, ,$$

In fact we have

$$\pi_2(j\colon H^p\to L^2(\nu))\approx \left(\int_{\mathbb{T}}\left(\int_{\mathbb{D}}\frac{d\nu(z)}{|z-w|^2}\right)^{p'/2}d\lambda(w)\right)^{1/p'}$$

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices O	Litterature
The cas	se $p\leq$ 2: sk	etch of proo	f			

 $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\inf\left\{\int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\mu(z)}{|z-w|^2 \cdot F(z)^2}\right)^{p'/2} d\lambda(w) : F \ge 0, \int F' \ d\mu \le 1 \right\} \text{ is finite}$$

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
The case $p \leq 2$: sketch of proof						

$$\begin{split} j_{\mu} \colon H^{p} &\to L^{p}(\mu) \text{ is 2-summing } \textit{if and only if} \\ \inf & \left\{ \int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\mu(z)}{|z-w|^{2} \cdot F(z)^{2}} \right)^{p'/2} d\lambda(w) : F \geq 0, \int F^{r} d\mu \leq 1 \right\} \text{ is finite} \end{split}$$

if and only if

$$\inf_{F \in B^+_{L^{r/2}(\mu)}} \sup_{g \in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{T}} \int_{\mathbb{D}} \frac{g(w)}{|z - w|^2 \cdot F(z)} d\mu(z) \, d\lambda(w) \text{ is finite}$$

where t is the conjugate of p'/2, and 1/r + 1/2 = 1/p.

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
The case $p \leq 2$: sketch of proof						

j

$$\underset{\mu}{:} H^{p} \to L^{p}(\mu) \text{ is 2-summing if and only if}$$

$$\inf \left\{ \int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\mu(z)}{|z-w|^{2} \cdot F(z)^{2}} \right)^{p'/2} d\lambda(w) : F \ge 0, \int F' d\mu \le 1 \right\} \text{ is finite}$$

if and only if

$$\inf_{F \in B^+_{L^{r/2}(\mu)}} \sup_{g \in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{T}} \int_{\mathbb{D}} \frac{g(w)}{|z - w|^2 \cdot F(z)} d\mu(z) \, d\lambda(w) \text{ is finite}$$

where t is the conjugate of p'/2, and 1/r + 1/2 = 1/p.

By Ky Fan's lemma the order of taking the sup and the inf can be interchanged.

Lemma

Let $h\colon \Omega \to [0,+\infty)$ be a measurable function on (Ω,Σ,μ) and p>0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

Lemma

Let $h\colon \Omega \to [0,+\infty)$ be a measurable function on (Ω,Σ,μ) and p>0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

Lemma

Let $h\colon \Omega \to [0,+\infty)$ be a measurable function on (Ω,Σ,μ) and p>0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in \mathcal{B}^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w) \right)^{p/2} d\mu(z) \quad \text{is finite}$$

Lemma

Let $h\colon \Omega \to [0,+\infty)$ be a measurable function on (Ω,Σ,μ) and p>0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w)\right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

Lemma

Let $h\colon \Omega \to [0,+\infty)$ be a measurable function on (Ω,Σ,μ) and p>0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w) \right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\frac{\mathcal{P}[g](z)}{1-|z|^2}\right)^{p/2} d\mu(z) \quad \text{is finite}$$

Lemma

Let $h\colon \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and p > 0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w)\right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\frac{\mathcal{P}[g](z)}{1-|z|^2}\right)^{p/2} d\mu(z) \quad \text{is finite}$$

But it means that the Poisson transform maps L^t to $L^{p/2}(\nu)$, where $d\nu(z) = \frac{d\mu(z)}{(1-|z|)^{p/2}}$

Lemma

Let $h\colon \Omega \to [0,+\infty)$ be a measurable function on (Ω,Σ,μ) and p>0. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^p\,d\mu\leq 1\right\}=\left(\int h^{p/(p+1)}\,d\mu\right)^{(p+1)/p}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w)\right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\frac{\mathcal{P}[g](z)}{1-|z|^2}\right)^{p/2} d\mu(z) \quad \text{is finite}$$

But it means that the Poisson transform maps L^t to $L^{p/2}(\nu)$, where $d\nu(z) = \frac{d\mu(z)}{(1-|z|)^{p/2}}$ Applying a result of Luccking, Blasco-Jarchow, we get the conclusion.

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

A few open problems...

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

A few open problems...

• Compute the exact norm of any composition operator acting on H^2 ...

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

A few open problems...

• Compute the exact norm of any composition operator acting on H^2 ...on H^p ...
Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

- Compute the exact norm of any composition operator acting on H^2 ...on H^p ...
- Compute the value of the approximation numbers of any composition operator acting on H^2 ...

Program ○	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

- Compute the exact norm of any composition operator acting on H^2 ...on H^p ...
- Compute the value of the approximation numbers of any composition operator acting on H^2 ...on H^p ...

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

- Compute the exact norm of any composition operator acting on H^2 ...on H^p ...
- Compute the value of the approximation numbers of any composition operator acting on H^2 ...on H^p ...
- Finish the characterization of summing composition operators,

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

- Compute the exact norm of any composition operator acting on H^2 ...on H^p ...
- Compute the value of the approximation numbers of any composition operator acting on H^2 ...on H^p ...
- Finish the characterization of summing composition operators, of other operator ideals

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices •	Litterature
Exercic	es (??)					

- Compute the exact norm of any composition operator acting on H^2 ...on H^p ...
- Compute the value of the approximation numbers of any composition operator acting on H^2 ...on H^p ...
- Finish the characterization of summing composition operators, of other operator ideals

There are many other questions of course...

Program O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature

• J. Shapiro: "Composition operators". Springer 1993.

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature

• J. Shapiro: "Composition operators". Springer 1993.

• C. Cowen, B. McCluer: "Composition operators of analytic functions" CRC Press 1995.

Program	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Exercices	Litterature
0	000	0	00000	0000000000000	0	

Merci !