Composition operators on Hardy spaces

Episode III

VI Curso Internacional de Análisis Matemático en Andalucía

Antequera septiembre 2014

Pascal Lefèvre Université d'Artois, France
© Other operator ideals

- Schatten classes and approximation numbers.
- Absolutely summing composition operators (work in progress, with L. Rodríguez-Piazza).
- Some open questions...

Schatten Classes

Definition

Let H be a (separable) Hilbert spaces, and T a bounded operator on H.
For $p \geq 1$, define the Schatten p-norm of T as

$$
\|T\|_{\mathcal{S}^{p}}:=\left(\sum_{n \geq 1} \lambda_{n}^{p}(|T|)\right)^{1 / p}=\left(\operatorname{tr}\left(|T|^{p}\right)\right)^{1 / p}
$$

where
$\lambda_{1}(|T|) \geq \lambda_{2}(|T|) \geq \cdots \geq \lambda_{n}(|T|) \geq \cdots$ are the eigenvalues of $|T|=\sqrt{\left(T^{*} T\right)}$.

Schatten Classes

Definition

Let H be a (separable) Hilbert spaces, and T a bounded operator on H.
For $p \geq 1$, define the Schatten p-norm of T as

$$
\|T\|_{\mathcal{S}^{p}}:=\left(\sum_{n \geq 1} \lambda_{n}^{p}(|T|)\right)^{1 / p}=\left(\operatorname{tr}\left(|T|^{p}\right)\right)^{1 / p}
$$

where
$\lambda_{1}(|T|) \geq \lambda_{2}(|T|) \geq \cdots \geq \lambda_{n}(|T|) \geq \cdots$ are the eigenvalues of $|T|=\sqrt{\left(T^{*} T\right)}$.
T belongs to the Schatten class \mathcal{S}^{p} if its Schatten p-norm is finite.

Schatten Classes

Definition

Let H be a (separable) Hilbert spaces, and T a bounded operator on H.
For $p \geq 1$, define the Schatten p-norm of T as

$$
\|T\|_{\mathcal{S}^{p}}:=\left(\sum_{n \geq 1} \lambda_{n}^{p}(|T|)\right)^{1 / p}=\left(\operatorname{tr}\left(|T|^{p}\right)\right)^{1 / p}
$$

where
$\lambda_{1}(|T|) \geq \lambda_{2}(|T|) \geq \cdots \geq \lambda_{n}(|T|) \geq \cdots$ are the eigenvalues of $|T|=\sqrt{\left(T^{*} T\right)}$.
T belongs to the Schatten class \mathcal{S}^{p} if its Schatten p-norm is finite.

Remark: T belongs to \mathcal{S}^{2} if and only if T is Hilbert-Schmidt.

Classes de Schatten

The case \mathcal{S}_{2} is already known (lecture 1) and the general case was solved by Luecking:

Classes de Schatten

The case \mathcal{S}_{2} is already known (lecture 1) and the general case was solved by Luecking: its characterization uses Luecking windows = half dyadic Carleson's windows.

Classes de Schatten

The case \mathcal{S}_{2} is already known (lecture 1) and the general case was solved by Luecking: its characterization uses Luecking windows $=$ half dyadic Carleson's windows.

Let $n \geq 1$ and $0 \leq j \leq 2^{n}-1$:

$$
R_{n, j}=\left\{z \in \mathbb{D} ; 1-2^{-n} \leq|z|<1-2^{-n-1} \quad \text { and } \quad \frac{2 j \pi}{2^{n}} \leq \arg z<\frac{2(j+1) \pi}{2^{n}}\right\}
$$

Classes de Schatten

The case \mathcal{S}_{2} is already known (lecture 1) and the general case was solved by Luecking: its characterization uses Luecking windows $=$ half dyadic Carleson's windows.

Let $n \geq 1$ and $0 \leq j \leq 2^{n}-1$:

$$
R_{n, j}=\left\{z \in \mathbb{D} ; 1-2^{-n} \leq|z|<1-2^{-n-1} \quad \text { and } \quad \frac{2 j \pi}{2^{n}} \leq \arg z<\frac{2(j+1) \pi}{2^{n}}\right\}
$$

Schatten classes

(Luecking '87)

We assume that $\lambda_{\varphi}(\mathbb{T})=0$.

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(R_{n, j}\right)\right]^{p / 2}<+\infty
$$

Schatten classes

(Luecking '87)

We assume that $\lambda_{\varphi}(\mathbb{T})=0$.

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(R_{n, j}\right)\right]^{p / 2}<+\infty
$$

Actually (LLQR '08)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(W_{n, j}\right)\right]^{p / 2}<+\infty
$$

Schatten classes

(Luecking '87)

We assume that $\lambda_{\varphi}(\mathbb{T})=0$.

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(R_{n, j}\right)\right]^{p / 2}<+\infty
$$

Actually (LLQR '08)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(W_{n, j}\right)\right]^{p / 2}<+\infty .
$$

(Luecking-Zhu '92)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \int_{\mathbb{D}}\left(\frac{N_{\varphi}(z)}{\log (1 /|z|)}\right)^{p / 2} \frac{d \mathcal{A}}{\left(1-|z|^{2}\right)^{2}}<+\infty .
$$

Schatten classes

(Luecking '87)

We assume that $\lambda_{\varphi}(\mathbb{T})=0$.

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(R_{n, j}\right)\right]^{p / 2}<+\infty
$$

Actually (LLQR '08)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(W_{n, j}\right)\right]^{p / 2}<+\infty
$$

(Luecking-Zhu '92)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \int_{\mathbb{D}}\left(\frac{N_{\varphi}(z)}{\log (1 /|z|)}\right)^{p / 2} \frac{d \mathcal{A}}{\left(1-|z|^{2}\right)^{2}}<+\infty .
$$

Link with Carleson's measures ?

Schatten classes

(Luecking '87)

We assume that $\lambda_{\varphi}(\mathbb{T})=0$.

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(R_{n, j}\right)\right]^{p / 2}<+\infty
$$

Actually (LLQR '08)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \sum_{n \geq 0} \sum_{j=0}^{2^{n}-1}\left[2^{n} \lambda_{\varphi}\left(W_{n, j}\right)\right]^{p / 2}<+\infty
$$

(Luecking-Zhu '92)

$$
C_{\varphi} \in \mathcal{S}_{p} \quad \text { if and only if } \quad \int_{\mathbb{D}}\left(\frac{N_{\varphi}(z)}{\log (1 /|z|)}\right)^{p / 2} \frac{d \mathcal{A}}{\left(1-|z|^{2}\right)^{2}}<+\infty .
$$

Link with Carleson's measures ? With α-Carleson ?

A finite measure μ on \mathbb{D} is α-Carleson if $\rho_{\mu}(h)=\sup _{\xi \in \mathbb{T}} \mu(W(\xi, h))=O\left(h^{\alpha}\right)$.

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

A sufficient condition

If λ_{φ} is α-Carleson where $\alpha>1$, then $C_{\varphi} \in \mathcal{S}_{p}$ for any $p>\frac{2}{\alpha-1}$.

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

A sufficient condition

If λ_{φ} is α-Carleson where $\alpha>1$, then $C_{\varphi} \in \mathcal{S}_{p}$ for any $p>\frac{2}{\alpha-1}$.

On the other hand,

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

A sufficient condition

If λ_{φ} is α-Carleson where $\alpha>1$, then $C_{\varphi} \in \mathcal{S}_{p}$ for any $p>\frac{2}{\alpha-1}$.

(LLQR '08)

$\forall \alpha \in(1,2)$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
\rho_{\varphi_{1}}(h) \approx h \quad \text { et } \quad \rho_{\varphi_{2}}(h) \approx h^{\alpha}
$$

hence

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

A sufficient condition

If λ_{φ} is α-Carleson where $\alpha>1$, then $C_{\varphi} \in \mathcal{S}_{p}$ for any $p>\frac{2}{\alpha-1}$.

(LLQR '08)

$\forall \alpha \in(1,2)$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
\rho_{\varphi_{1}}(h) \approx h \quad \text { et } \quad \rho_{\varphi_{2}}(h) \approx h^{\alpha}
$$

For any $p>2$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
C_{\varphi_{2}} \in \mathcal{S}_{p} \quad \text { but } \quad C_{\varphi_{1}} \text { non compact. }
$$

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

A sufficient condition

If λ_{φ} is α-Carleson where $\alpha>1$, then $C_{\varphi} \in \mathcal{S}_{p}$ for any $p>\frac{2}{\alpha-1}$.

(LLQR '08)

$\forall \alpha \in(1,2)$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
\rho_{\varphi_{1}}(h) \approx h \quad \text { et } \quad \rho_{\varphi_{2}}(h) \approx h^{\alpha}
$$

For any $p>2$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
C_{\varphi_{2}} \in \mathcal{S}_{p} \quad \text { but } \quad C_{\varphi_{1}} \text { non compact. }
$$

" $p=\infty$ " (cf lecture 2: $\alpha=3 / 2$).

Schatten Classes

A necessary condition

$$
\text { If } C_{\varphi} \in \mathcal{S}_{p} \text {, then } \rho_{\varphi}(h)=o\left(h\left(\log \frac{1}{h}\right)^{-2 / p}\right)
$$

A sufficient condition

If λ_{φ} is α-Carleson where $\alpha>1$, then $C_{\varphi} \in \mathcal{S}_{p}$ for any $p>\frac{2}{\alpha-1}$.

(LLQR '08)

$\forall \alpha \in(1,2)$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
\rho_{\varphi_{1}}(h) \approx h \quad \text { et } \quad \rho_{\varphi_{2}}(h) \approx h^{\alpha}
$$

For any $p>2$, there exist two symbols φ_{1} and φ_{2} such that $\left|\varphi_{1}^{*}\right|=\left|\varphi_{2}^{*}\right|$ (a.e.), with

$$
C_{\varphi_{2}} \in \mathcal{S}_{p} \quad \text { but } \quad C_{\varphi_{1}} \text { non compact. }
$$

" $p=\infty$ " (cf lecture 2: $\alpha=3 / 2$). Cannot be true for $p=2$ (cf lecture 1) !!

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \operatorname{rank}(R)<n\}$

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\|$

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\| \quad$ a non-increasing sequence

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\| \quad$ a non-increasing sequence $a_{n}(T) \longrightarrow 0$ if and only if T is compact.

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \quad \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\| \quad$ a non-increasing sequence $a_{n}(T) \longrightarrow 0$ if and only if T is compact.

$$
\|T\|_{\mathcal{S}^{p}}=\left\|\left(a_{n}(T)\right)_{n}\right\|_{\ell^{p}}
$$

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \quad \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\| \quad$ a non-increasing sequence $a_{n}(T) \longrightarrow 0$ if and only if T is compact.

$$
\|T\|_{\mathcal{S}^{p}}=\left\|\left(a_{n}(T)\right)_{n}\right\|_{\ell^{p}}
$$

(Li-Queffélec-Rodríguez-Piazza '11-14)

- Given $\varepsilon_{n} \backslash 0$, there exists a symbol φ s.t. C_{φ} compact and $a_{n}\left(C_{\varphi}\right) \gtrsim \varepsilon_{n}$.

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \quad \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\| \quad$ a non-increasing sequence $a_{n}(T) \longrightarrow 0$ if and only if T is compact.

$$
\|T\|_{\mathcal{S}^{p}}=\left\|\left(a_{n}(T)\right)_{n}\right\|_{\ell^{\rho}}
$$

(Li-Queffélec-Rodríguez-Piazza '11-14)

- Given $\varepsilon_{n} \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_{n}\left(C_{\varphi}\right) \gtrsim \varepsilon_{n}$.
- If $\|\varphi\|_{\infty}<1$ then $\lim \left(a_{n}\left(C_{\varphi}\right)\right)^{1 / n}=e^{1 / \operatorname{Cap}(\varphi(\mathbb{D}))}$.

Approximation numbers on H^{2}

Definition

Let T be an operator: $a_{n}(T)=\inf \{\|T-R\| ; \quad \operatorname{rank}(R)<n\}$
Remarks: $a_{1}(T)=\|T\| \quad$ a non-increasing sequence $a_{n}(T) \longrightarrow 0$ if and only if T is compact.

$$
\|T\|_{\mathcal{S}^{p}}=\left\|\left(a_{n}(T)\right)_{n}\right\|_{\ell^{p}}
$$

(Li-Queffélec-Rodríguez-Piazza '11-14)

- Given $\varepsilon_{n} \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_{n}\left(C_{\varphi}\right) \gtrsim \varepsilon_{n}$.
- If $\|\varphi\|_{\infty}<1$ then $\lim \left(a_{n}\left(C_{\varphi}\right)\right)^{1 / n}=e^{1 / \operatorname{Cap}(\varphi(\mathbb{D}))}$.
- $\operatorname{Si} \varphi$ is the lens map (of index $\theta \in(0,1)$), then

$$
e^{-\alpha_{\theta} \sqrt{n}} \lesssim a_{n}\left(C_{\varphi}\right) \lesssim e^{-\beta_{\theta} \sqrt{n}}
$$

q-summing operators

Suppose $1 \leq q<+\infty$ and let $T: X \rightarrow Y$ be a (bounded) operator between Banach spaces.

We say T is a q-summing operator if there exists $C>0$ such that

$$
\left(\sum_{j=1}^{n}\left\|T x_{j}\right\|^{q}\right)^{1 / q} \leq C \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{j=1}^{n}\left|\left\langle x^{*}, x_{j}\right\rangle\right|^{q}\right)^{1 / q}=
$$

q-summing operators

Suppose $1 \leq q<+\infty$ and let $T: X \rightarrow Y$ be a (bounded) operator between Banach spaces.

We say T is a q-summing operator if there exists $C>0$ such that

$$
\left(\sum_{j=1}^{n}\left\|T x_{j}\right\|^{q}\right)^{1 / q} \leq C \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{j=1}^{n}\left|\left\langle x^{*}, x_{j}\right\rangle\right|^{q}\right)^{1 / q}=C \sup _{a \in B_{\ell q^{\prime}}}\left\|\sum_{j=1}^{n} a_{j} x_{j}\right\|
$$

for every finite sequence $x_{1}, x_{2}, \ldots, x_{n}$ in X.
The q-summing norm of T, denoted by $\pi_{q}(T)$, is the least suitable constant $C>0$.

q-summing operators

Suppose $1 \leq q<+\infty$ and let $T: X \rightarrow Y$ be a (bounded) operator between Banach spaces.

We say T is a q-summing operator if there exists $C>0$ such that

$$
\left(\sum_{j=1}^{n}\left\|T x_{j}\right\|^{q}\right)^{1 / q} \leq C \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{j=1}^{n}\left|\left\langle x^{*}, x_{j}\right\rangle\right|^{q}\right)^{1 / q}=C \sup _{a \in B_{\ell q^{\prime}}}\left\|\sum_{j=1}^{n} a_{j} x_{j}\right\|
$$

for every finite sequence $x_{1}, x_{2}, \ldots, x_{n}$ in X.
The q-summing norm of T, denoted by $\pi_{q}(T)$, is the least suitable constant $C>0$.

- This forms an operator ideal.
- 1-summing operators are also called absolutely summing operators.

Let (K, ν) a probability space, where K is compact and consider

$$
T: \quad \left\lvert\, \begin{array}{ccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}\right.
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed

Let (K, ν) a probability space, where K is compact and consider

$$
T: \quad \begin{array}{cccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed
Let $f_{1}, f_{2}, \ldots, f_{n}$ in $C(K)$.
$\sum_{j=1}^{n}\left\|T\left(f_{j}\right)\right\|_{q}^{q}=$

Let (K, ν) a probability space, where K is compact and consider

$$
T: \quad \begin{array}{cccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed
Let $f_{1}, f_{2}, \ldots, f_{n}$ in $C(K)$.
$\sum_{j=1}^{n}\left\|T\left(f_{j}\right)\right\|_{q}^{q}=\int_{K} \sum_{j=1}^{n}\left|f_{j}(x)\right|^{q} d \nu$

Let (K, ν) a probability space, where K is compact and consider

$$
T: \left\lvert\, \begin{array}{ccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}\right.
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed
Let $f_{1}, f_{2}, \ldots, f_{n}$ in $C(K)$.
$\sum_{j=1}^{n}\left\|T\left(f_{j}\right)\right\|_{q}^{q}=\int_{K} \sum_{j=1}^{n}\left|f_{j}(x)\right|^{q} d \nu \leq \int_{K} \sup _{\chi \in B_{C(K)^{*}}} \sum_{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q} d \nu$

Let (K, ν) a probability space, where K is compact and consider

$$
T: \left\lvert\, \begin{array}{ccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}\right.
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed
Let $f_{1}, f_{2}, \ldots, f_{n}$ in $C(K)$.
$\sum_{j=1}^{n}\left\|T\left(f_{j}\right)\right\|_{q}^{q}=\int_{K} \sum_{j=1}^{n}\left|f_{j}(x)\right|^{q} d \nu \leq \int_{K \chi \in B_{C(K)^{*}}} \sup _{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q} d \nu \leq \sup _{\chi \in B_{C(K)^{*}}} \sum_{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q}$

Let (K, ν) a probability space, where K is compact and consider

$$
T: \left\lvert\, \begin{array}{ccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}\right.
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed
Let $f_{1}, f_{2}, \ldots, f_{n}$ in $C(K)$.
$\sum_{j=1}^{n}\left\|T\left(f_{j}\right)\right\|_{q}^{q}=\int_{K} \sum_{j=1}^{n}\left|f_{j}(x)\right|^{q} d \nu \leq \int_{K \chi \in B_{C(K)^{*}}} \sup _{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q} d \nu \leq \sup _{\chi \in B_{C(K)^{*}}} \sum_{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q}$

Any restriction of this operator still works...

Let (K, ν) a probability space, where K is compact and consider

$$
T: \left\lvert\, \begin{array}{ccc}
C(K) & \longrightarrow & L^{q}(K, \nu) \\
f & \longmapsto & f
\end{array}\right.
$$

T is a q-summing operator and $\pi_{q}(T)=1$, indeed
Let $f_{1}, f_{2}, \ldots, f_{n}$ in $C(K)$.
$\sum_{j=1}^{n}\left\|T\left(f_{j}\right)\right\|_{q}^{q}=\int_{K} \sum_{j=1}^{n}\left|f_{j}(x)\right|^{q} d \nu \leq \int_{K} \sup _{\chi \in B_{C(K)^{*}}} \sum_{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q} d \nu \leq \sup _{\chi \in B_{C(K)^{*}}} \sum_{j=1}^{n}\left|\chi\left(f_{j}\right)\right|^{q}$

Any restriction of this operator still works...

Actually, up to factorizations, any q-summing looks like this:

Pietsch Theorem

(Pietsch '67)

$T: X \rightarrow Y$ is a q-summing operator
if and only if
there exists a (probability) measure ν on the compact $\left(B_{X^{*}}, w^{*}\right)$ s.t.

$$
\forall x \in X, \quad\|T(x)\| \lesssim\left(\int_{B_{X^{*}}}|\xi(x)|^{q} d \nu(\xi)\right)^{1 / q}
$$

if and only if

Pietsch Theorem

(Pietsch '67)

$T: X \rightarrow Y$ is a q-summing operator
if and only if
there exists a (probability) measure ν on the compact $\left(B_{X^{*}}, w^{*}\right)$ s.t.

$$
\forall x \in X, \quad\|T(x)\| \lesssim\left(\int_{B_{X^{*}}}|\xi(x)|^{q} d \nu(\xi)\right)^{1 / q}
$$

if and only if
we have the following factorization

for some probability measure ν on $B_{X *}$.

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator).

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \leq p \leq 2, H^{p}$ and L^{p} have cotype 2 .

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \leq p \leq 2, H^{p}$ and L^{p} have cotype 2. For $p>2$, they have cotype p.

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \leq p \leq 2, H^{p}$ and L^{p} have cotype 2. For $p>2$, they have cotype p. Hence
j_{μ} is q_{1}-summing if and only if j_{μ} is q_{2}-summing in the following cases:

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \leq p \leq 2, H^{p}$ and L^{p} have cotype 2. For $p>2$, they have cotype p. Hence
j_{μ} is q_{1}-summing if and only if j_{μ} is q_{2}-summing in the following cases:
- For $1 \leq p \leq 2$ and $q_{1}, q_{2} \geq 1$.

Pietsch Theorem

Consequences

- If $q_{1} \leq q_{2}$, every q_{1}-summing operator is q_{2}-summing.
- q-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \leq p \leq 2, H^{p}$ and L^{p} have cotype 2. For $p>2$, they have cotype p. Hence
j_{μ} is q_{1}-summing if and only if j_{μ} is q_{2}-summing in the following cases:
- For $1 \leq p \leq 2$ and $q_{1}, q_{2} \geq 1$.
- For $p>2$, and $1 \leq q_{1}, q_{2}<p^{\prime}$, where p^{\prime} is the conjugate exponent of p.

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1}
$$

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious),

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious), 1-summing (obvious)

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Petczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Petczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).
(2) Ingredient 2: ℓ^{1} has the lifting property:

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).
(2) Ingredient 2: ℓ^{1} has the lifting property:

Given a surjective map: $\sigma: X \rightarrow Y$, any operator $T: \ell^{1} \rightarrow Y$ factorizes as $T=\sigma \circ \widetilde{T}$.

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Pełczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).
(2) Ingredient 2: ℓ^{1} has the lifting property:

Given a surjective map: $\sigma: X \rightarrow Y$, any operator $T: \ell^{1} \rightarrow Y$ factorizes as $T=\sigma \circ \widetilde{T}$.

So the proof is now obvious: given $T: \ell^{1} \rightarrow \ell^{2}$.

A digression

(Grothendieck '56)

Every operator from ℓ^{1} to ℓ^{2} is absolutely summing.

Sketch of proof (Petczyński-Wojtaszczyk)
(1) Ingredient 1: the Paley projection P :

$$
f \in A(\mathbb{D}) \longrightarrow f \in H^{1} \longrightarrow\left(\widehat{f}\left(2^{n}\right)\right)_{n \in \mathbb{N}} \in \ell^{2}
$$

is well defined (not obvious), 1-summing (obvious), and onto (not obvious).
(2) Ingredient 2: ℓ^{1} has the lifting property:

Given a surjective map: $\sigma: X \rightarrow Y$, any operator $T: \ell^{1} \rightarrow Y$ factorizes as $T=\sigma \circ \widetilde{T}$.

So the proof is now obvious: given $T: \ell^{1} \rightarrow \ell^{2}$. We factorize $T=P \circ \widetilde{T}$, which is 1 -summing.

Carleson embeddings

Our problem now:
When a composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is q-summing ?

Carleson embeddings

Our problem now:
When a composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is q-summing ?
This problem is equivalent to:
When the identity $f \in H^{p} \mapsto f \in L^{p}\left(\overline{\mathbb{D}}, \lambda_{\varphi}\right)$ is q-summing ?

Hence we are interested in the following more general problem:

Carleson embeddings

Our problem now:

$$
\text { When a composition operator } C_{\varphi}: H^{p} \rightarrow H^{p} \text { is } q \text {-summing ? }
$$

This problem is equivalent to:
When the identity $f \in H^{p} \mapsto f \in L^{p}\left(\overline{\mathbb{D}}, \lambda_{\varphi}\right)$ is q-summing ?

Hence we are interested in the following more general problem:
Assume from now on that μ is concentrated in the open disk \mathbb{D}.
For μ a Carleson measure, when the Carleson embedding

$$
j_{\mu}: H^{p} \hookrightarrow L^{p}(\mu)
$$

is a q-summing operator ?

Known facts

(Shapiro-Taylor '73)

Let $p \geq 2$. The composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is p-summing if and only if

$$
\int_{\mathbb{T}} \frac{1}{1-\left|\varphi^{*}\right|} d \lambda<+\infty .
$$

Known facts

(Shapiro-Taylor '73)

Let $p \geq 2$. The composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is p-summing if and only if

$$
\int_{\mathbb{T}} \frac{1}{1-\left|\varphi^{*}\right|} d \lambda<+\infty .
$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)<+\infty$
Actually,

Known facts

(Shapiro-Taylor '73)

Let $p \geq 2$. The composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is p-summing if and only if

$$
\int_{\mathbb{T}} \frac{1}{1-\left|\varphi^{*}\right|} d \lambda<+\infty
$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)<+\infty$
Actually,
Let $p \geq 1$.

$$
\int_{\mathbb{T}} \frac{1}{1-|z|} d \mu<+\infty \quad \text { if and only if } \quad j_{\mu}: H^{p} \hookrightarrow L^{p}(\mu) \text { is order bounded. }
$$

Known facts

(Shapiro-Taylor '73)

Let $p \geq 2$. The composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is p-summing if and only if

$$
\int_{\mathbb{T}} \frac{1}{1-\left|\varphi^{*}\right|} d \lambda<+\infty
$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)<+\infty$
Actually,
Let $p \geq 1$.

$$
\int_{\mathbb{T}} \frac{1}{1-|z|} d \mu<+\infty \quad \text { if and only if } \quad j_{\mu}: H^{p} \hookrightarrow L^{p}(\mu) \text { is order bounded. }
$$

In particular, the condition implies that j_{μ} is p-summing for every $p \geq 1$. But the converse is false for $p \in[1,2)$

Known facts

(Shapiro-Taylor '73)

Let $p \geq 2$. The composition operator $C_{\varphi}: H^{p} \rightarrow H^{p}$ is p-summing if and only if

$$
\int_{\mathbb{T}} \frac{1}{1-\left|\varphi^{*}\right|} d \lambda<+\infty .
$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)<+\infty$
Actually,
Let $p \geq 1$.

$$
\int_{\mathbb{T}} \frac{1}{1-|z|} d \mu<+\infty \quad \text { if and only if } \quad j_{\mu}: H^{p} \hookrightarrow L^{p}(\mu) \text { is order bounded. }
$$

In particular, the condition implies that j_{μ} is p-summing for every $p \geq 1$. But the converse is false for $p \in[1,2)$

(Domenig '99)

Let $p \in[1,2)$. There exist p-summing composition operators on H^{p} which are not order bounded.

First results: the annulus case.

Let us fix a finite measure μ on \mathbb{D} and an integer n.
We denote by μ_{n} the restriction of μ to the annulus

$$
\Gamma_{n}=\left\{z \in \mathbb{D}: 1-2^{-n} \leq|z|<1-2^{-n-1}\right\}
$$

and by j_{n} the inclusion of H^{p} into $L^{p}\left(\mu_{n}\right)$.

First results: the annulus case.

Let us fix a finite measure μ on \mathbb{D} and an integer n.
We denote by μ_{n} the restriction of μ to the annulus

$$
\Gamma_{n}=\left\{z \in \mathbb{D}: 1-2^{-n} \leq|z|<1-2^{-n-1}\right\}
$$

and by j_{n} the inclusion of H^{p} into $L^{p}\left(\mu_{n}\right)$.
Γ_{n} is the union of the 2^{n} Luecking windows $R_{n, j}$.

First results: the annulus case.

Let us fix a finite measure μ on \mathbb{D} and an integer n.
We denote by μ_{n} the restriction of μ to the annulus

$$
\Gamma_{n}=\left\{z \in \mathbb{D}: 1-2^{-n} \leq|z|<1-2^{-n-1}\right\}
$$

and by j_{n} the inclusion of H^{p} into $L^{p}\left(\mu_{n}\right)$.
Γ_{n} is the union of the 2^{n} Luecking windows $R_{n, j}$.
Now consider, for $n \in \mathbb{N}$, the 2^{n}-dimensional subspace H_{n}^{p} of H^{p} generated by the monomials z^{k}, with $2^{n} \leq k<2^{n+1}$.

First results: the annulus case.

Let us fix a finite measure μ on \mathbb{D} and an integer n.
We denote by μ_{n} the restriction of μ to the annulus

$$
\Gamma_{n}=\left\{z \in \mathbb{D}: 1-2^{-n} \leq|z|<1-2^{-n-1}\right\}
$$

and by j_{n} the inclusion of H^{p} into $L^{p}\left(\mu_{n}\right)$.
Γ_{n} is the union of the 2^{n} Luecking windows $R_{n, j}$.
Now consider, for $n \in \mathbb{N}$, the 2^{n}-dimensional subspace H_{n}^{p} of H^{p} generated by the monomials z^{k}, with $2^{n} \leq k<2^{n+1}$.
We have, the decomposition

$$
\left\{f \in H^{p}: f(0)=0\right\}=\bigoplus_{n \geq 0} H_{n}^{p}
$$

which is an orthogonal decomposition when $p=2$ (i.e. for H^{2}).

First results: the annulus case.

Let us fix a finite measure μ on \mathbb{D} and an integer n.
We denote by μ_{n} the restriction of μ to the annulus

$$
\Gamma_{n}=\left\{z \in \mathbb{D}: 1-2^{-n} \leq|z|<1-2^{-n-1}\right\}
$$

and by j_{n} the inclusion of H^{p} into $L^{p}\left(\mu_{n}\right)$.
Γ_{n} is the union of the 2^{n} Luecking windows $R_{n, j}$.
Now consider, for $n \in \mathbb{N}$, the 2^{n}-dimensional subspace H_{n}^{p} of H^{p} generated by the monomials z^{k}, with $2^{n} \leq k<2^{n+1}$.
We have, the decomposition

$$
\left\{f \in H^{p}: f(0)=0\right\}=\bigoplus_{n \geq 0} H_{n}^{p}
$$

which is an orthogonal decomposition when $p=2$ (i.e. for H^{2}).

First results: the annulus case.

Let us fix a finite measure μ on \mathbb{D} and an integer n.
We denote by μ_{n} the restriction of μ to the annulus

$$
\Gamma_{n}=\left\{z \in \mathbb{D}: 1-2^{-n} \leq|z|<1-2^{-n-1}\right\}
$$

and by j_{n} the inclusion of H^{p} into $L^{p}\left(\mu_{n}\right)$.
Γ_{n} is the union of the 2^{n} Luecking windows $R_{n, j}$.
Now consider, for $n \in \mathbb{N}$, the 2^{n}-dimensional subspace H_{n}^{p} of H^{p} generated by the monomials z^{k}, with $2^{n} \leq k<2^{n+1}$.
We have, the decomposition

$$
\left\{f \in H^{p}: f(0)=0\right\}=\bigoplus_{n \geq 0} H_{n}^{p}
$$

which is an orthogonal decomposition when $p=2$ (i.e. for H^{2}).
Moreover

$$
H_{n}^{p} \sim \ell_{2^{n}}^{p}
$$

Let α_{n} be the restriction of j_{n} to H_{n}^{p}.

Proposition

For $1<p<+\infty$, the following quantities are equivalent:
(1) $\pi_{q}\left(j_{n}: H^{p} \rightarrow L^{p}\left(\mu_{n}\right)\right)$

Let α_{n} be the restriction of j_{n} to H_{n}^{p}.

Proposition

For $1<p<+\infty$, the following quantities are equivalent:
(1) $\pi_{q}\left(j_{n}: H^{p} \rightarrow L^{p}\left(\mu_{n}\right)\right)$
(2) $\pi_{q}\left(\alpha_{n}: H_{n}^{p} \rightarrow L^{p}\left(\mu_{n}\right)\right)$

the annulus case

Let α_{n} be the restriction of j_{n} to H_{n}^{p}.

Proposition

For $1<p<+\infty$, the following quantities are equivalent:
(1) $\pi_{q}\left(j_{n}: H^{p} \rightarrow L^{p}\left(\mu_{n}\right)\right)$
(2) $\pi_{q}\left(\alpha_{n}: H_{n}^{p} \rightarrow L^{p}\left(\mu_{n}\right)\right)$
(3) $\pi_{q}\left(D_{\mathrm{a}}\right)$, where $D_{\mathrm{a}}: \ell_{2^{n}}^{p} \rightarrow \ell_{2^{n}}^{p}$ is the diagonal operator whose multipliers are $a_{j}=\left(2^{n} \mu\left(R_{n, j}\right)\right)^{1 / p} \quad\left(\right.$ where $\left.j=1,2, \ldots, 2^{n}\right)$.

But the summing norms of multipliers on sequence spaces are known, so:
(1) $1<p \leq 2: \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{2 / p}\right)^{1 / 2}$.

But the summing norms of multipliers on sequence spaces are known, so:
(1) $1<p \leq 2: \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{2 / p}\right)^{1 / 2}$.
(2) $p>2$:

$$
\text { - if } 1 \leq q \leq p^{\prime} . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{p^{\prime} / p}\right)^{1 / p^{\prime}},
$$

the annulus case

But the summing norms of multipliers on sequence spaces are known, so:
(1) $1<p \leq 2: \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{2 / p}\right)^{1 / 2}$.
(2) $p>2$:

- if $1 \leq q \leq p^{\prime} . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{p^{\prime} / p}\right)^{1 / p^{\prime}}$,
- if $p^{\prime} \leq q \leq p . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{q / p}\right)^{1 / q}$,

the annulus case

But the summing norms of multipliers on sequence spaces are known, so:
(1) $1<p \leq 2: \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{2 / p}\right)^{1 / 2}$.
(2) $p>2$:

- if $1 \leq q \leq p^{\prime} . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{p^{\prime} / p}\right)^{1 / p^{\prime}}$,
- if $p^{\prime} \leq q \leq p . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{q / p}\right)^{1 / q}$,
- if $p \leq q . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]\right)^{1 / p}$,

the annulus case

But the summing norms of multipliers on sequence spaces are known, so:
(1) $1<p \leq 2: \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{2 / p}\right)^{1 / 2}$.
(2) $p>2$:

- if $1 \leq q \leq p^{\prime} . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{p^{\prime} / p}\right)^{1 / p^{\prime}}$,
- if $p^{\prime} \leq q \leq p . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{q / p}\right)^{1 / q}$,
- if $p \leq q . \quad \pi_{q}\left(j_{n}\right) \approx\left(\sum_{j=1}^{2^{n}}\left[2^{n} \mu\left(R_{n, j}\right)\right]\right)^{1 / p}$,

How to glue the pieces ?

First results

In some cases, we can glue:

Theorem

In the case $q \geq p \geq 2$ we have:

$$
\begin{aligned}
\pi_{q}\left(j_{\mu}\right) & \approx\left(\sum_{n}\left[\pi_{q}\left(j_{n}\right)\right]^{p}\right)^{1 / p} \approx\left(\sum_{n, j}\left[2^{n} \mu\left(R_{n, j}\right)\right]\right)^{1 / p} \\
& \approx\left(\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)\right)^{1 / p}
\end{aligned}
$$

First results

In some cases, we can glue:

Theorem

In the case $q \geq p \geq 2$ we have:

$$
\begin{aligned}
\pi_{q}\left(j_{\mu}\right) & \approx\left(\sum_{n}\left[\pi_{q}\left(j_{n}\right)\right]^{p}\right)^{1 / p} \approx\left(\sum_{n, j}\left[2^{n} \mu\left(R_{n, j}\right)\right]\right)^{1 / p} \\
& \approx\left(\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)\right)^{1 / p}
\end{aligned}
$$

In the case $2 \leq q \leq p$ we have:

$$
\pi_{q}\left(j_{\mu}\right) \approx\left(\sum_{n}\left[\pi_{q}\left(j_{n}\right)\right]^{q}\right)^{1 / q} \approx\left(\sum_{n, j}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{q / p}\right)^{1 / p}
$$

First results

In some cases, we can glue:

Theorem

In the case $q \geq p \geq 2$ we have:

$$
\begin{aligned}
\pi_{q}\left(j_{\mu}\right) & \approx\left(\sum_{n}\left[\pi_{q}\left(j_{n}\right)\right]^{p}\right)^{1 / p} \approx\left(\sum_{n, j}\left[2^{n} \mu\left(R_{n, j}\right)\right]\right)^{1 / p} \\
& \approx\left(\int_{\mathbb{D}} \frac{1}{1-|z|} d \mu(z)\right)^{1 / p}
\end{aligned}
$$

In the case $2 \leq q \leq p$ we have:

$$
\pi_{q}\left(j_{\mu}\right) \approx\left(\sum_{n}\left[\pi_{q}\left(j_{n}\right)\right]^{q}\right)^{1 / q} \approx\left(\sum_{n, j}\left[2^{n} \mu\left(R_{n, j}\right)\right]^{q / p}\right)^{1 / p}
$$

For $p>2$, the case $1 \leq q<2$ is still open (our tube of glue is empty...).

The case $p \leq 2$.

Thanks to the Littlewood-Paley decomposition (where $f_{n} \in H_{n}^{p}$)

$$
\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx\left\|\left(\sum_{n}\left|f_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\mathbb{T})}
$$

The case $p \leq 2$.

Thanks to the Littlewood-Paley decomposition (where $f_{n} \in H_{n}^{p}$)

$$
\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx\left\|\left(\sum_{n}\left|f_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\mathbb{T})}
$$

and since H^{p} has cotype 2 and type p :

The case $p \leq 2$.

Thanks to the Littlewood-Paley decomposition (where $f_{n} \in H_{n}^{p}$)

$$
\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx\left\|\left(\sum_{n}\left|f_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\mathbb{T})}
$$

and since H^{p} has cotype 2 and type p :

$$
\left(\sum_{n}\left\|f_{n}\right\|_{H^{p}}^{2}\right)^{1 / 2} \lesssim\left\|\sum_{n} f_{n}\right\|_{H^{p}} \lesssim\left(\sum_{n}\left\|f_{n}\right\|_{H^{p}}^{p}\right)^{1 / p}
$$

The case $p \leq 2$.

Thanks to the Littlewood-Paley decomposition (where $f_{n} \in H_{n}^{p}$)

$$
\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx\left\|\left(\sum_{n}\left|f_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\mathbb{T})}
$$

and since H^{p} has cotype 2 and type p :

$$
\left(\sum_{n}\left\|f_{n}\right\|_{H^{p}}^{2}\right)^{1 / 2} \lesssim\left\|\sum_{n} f_{n}\right\|_{H^{p}} \lesssim\left(\sum_{n}\left\|f_{n}\right\|_{H^{p}}^{p}\right)^{1 / p}
$$

This can be used to prove

$$
\left(\sum_{n} \pi_{2}\left(j_{n}\right)^{2}\right)^{1 / 2} \lesssim \pi_{2}\left(j_{\mu}\right) \lesssim\left(\sum_{n} \pi_{2}\left(j_{n}\right)^{p}\right)^{1 / p}
$$

But none of these two estimates is the correct one.

The case $p \leq 2$.

Thanks to the Littlewood-Paley decomposition (where $f_{n} \in H_{n}^{p}$)

$$
\left\|\sum_{n} f_{n}\right\|_{H^{p}} \approx\left\|\left(\sum_{n}\left|f_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\mathbb{T})}
$$

and since H^{p} has cotype 2 and type p :

$$
\left(\sum_{n}\left\|f_{n}\right\|_{H^{p}}^{2}\right)^{1 / 2} \lesssim\left\|\sum_{n} f_{n}\right\|_{H^{p}} \lesssim\left(\sum_{n}\left\|f_{n}\right\|_{H^{p}}^{p}\right)^{1 / p}
$$

This can be used to prove

$$
\left(\sum_{n} \pi_{2}\left(j_{n}\right)^{2}\right)^{1 / 2} \lesssim \pi_{2}\left(j_{\mu}\right) \lesssim\left(\sum_{n} \pi_{2}\left(j_{n}\right)^{p}\right)^{1 / p}
$$

But none of these two estimates is the correct one.
Our characterization is of different nature...

The case $p \leq 2$.

Theorem

Let $1<p \leq 2$. The Carleson embedding $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is absolutely summing if and only if

$$
\int_{\mathbb{T}}\left(\int_{\Gamma(\xi)} \frac{d \mu(z)}{(1-|z|)^{1+p / 2}}\right)^{2 / p} d \lambda(\xi)<+\infty
$$

where $\Gamma(\xi)$ is the Stolz domain in ξ :

The case $p \leq 2$: sketch of proof

Step 1 (via Maurey factorization theorem)

Let $r>1$ with $1 / r+1 / 2=1 / p$ and $T: X \rightarrow L^{p}(\mu)$ a bounded operator.

The case $p \leq 2$: sketch of proof

Step 1 (via Maurey factorization theorem)

Let $r>1$ with $1 / r+1 / 2=1 / p$ and $T: X \rightarrow L^{p}(\mu)$ a bounded operator.

T is a 2 -summing operator

if and only if
There exists $F \in L^{r}(\mu)$, with $F>0 \mu$-a.e., such that $T: X \rightarrow L^{2}(\nu)$ is well defined and 2 -summing, where ν is the measure defined by

$$
d \nu(z)=\frac{1}{F(z)^{2}} d \mu(z)
$$

The case $p \leq 2$: sketch of proof

Step 1 (via Maurey factorization theorem)

Let $r>1$ with $1 / r+1 / 2=1 / p$ and $T: X \rightarrow L^{p}(\mu)$ a bounded operator.

T is a 2 -summing operator

if and only if
There exists $F \in L^{r}(\mu)$, with $F>0 \mu$-a.e., such that $T: X \rightarrow L^{2}(\nu)$ is well defined and 2 -summing, where ν is the measure defined by

$$
d \nu(z)=\frac{1}{F(z)^{2}} d \mu(z) .
$$

Moreover, we have

$$
\begin{aligned}
\pi_{2}(T: X & \left.\rightarrow L^{p}(\mu)\right) \\
& \approx \\
\inf \left\{\pi_{2}\left(T: X \rightarrow L^{2}(\nu)\right): d \nu\right. & \left.=d \mu / F^{2}, F \geq 0, \int F^{r} d \mu \leq 1\right\}
\end{aligned}
$$

The case $p \leq 2$: sketch of proof

Step 2

The natural injection $j: H^{p} \rightarrow L^{2}(\nu)$ is a 2-summing operator if and only if

$$
\int_{\mathbb{T}}\left(\int_{\mathbb{D}} \frac{1}{|z-w|^{2}} d \nu(z)\right)^{p^{\prime} / 2} d \lambda(w)<+\infty
$$

The case $p \leq 2$: sketch of proof

Step 2

The natural injection $j: H^{p} \rightarrow L^{2}(\nu)$ is a 2-summing operator if and only if

$$
\int_{\mathbb{T}}\left(\int_{\mathbb{D}} \frac{1}{|z-w|^{2}} d \nu(z)\right)^{p^{\prime} / 2} d \lambda(w)<+\infty
$$

In fact we have

$$
\pi_{2}\left(j: H^{p} \rightarrow L^{2}(\nu)\right) \approx\left(\int_{\mathbb{T}}\left(\int_{\mathbb{D}} \frac{d \nu(z)}{|z-w|^{2}}\right)^{p^{\prime} / 2} d \lambda(w)\right)^{1 / p^{\prime}}
$$

The case $p \leq 2$: sketch of proof

Step 3

$j_{\mu}: H^{p} \rightarrow L^{P}(\mu)$ is 2-summing if and only if

$$
\inf \left\{\int_{\mathbb{T}}\left(\int_{\mathbb{D}} \frac{d \mu(z)}{|z-w|^{2} \cdot F(z)^{2}}\right)^{p^{\prime} / 2} d \lambda(w): F \geq 0, \int F^{r} d \mu \leq 1\right\} \text { is finite }
$$

The case $p \leq 2$: sketch of proof

Step 3

$j_{\mu}: H^{p} \rightarrow L^{P}(\mu)$ is 2-summing if and only if

$$
\inf \left\{\int_{\mathbb{T}}\left(\int_{\mathbb{D}} \frac{d \mu(z)}{|z-w|^{2} \cdot F(z)^{2}}\right)^{p^{\prime} / 2} d \lambda(w): F \geq 0, \int F^{r} d \mu \leq 1\right\} \text { is finite }
$$

if and only if

$$
\inf _{F \in B_{L^{r / 2}(\mu)}^{+}} \sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{T}} \int_{\mathbb{D}} \frac{g(w)}{|z-w|^{2} \cdot F(z)} d \mu(z) d \lambda(w) \text { is finite }
$$

where t is the conjugate of $p^{\prime} / 2$, and $1 / r+1 / 2=1 / p$.

The case $p \leq 2$: sketch of proof

Step 3

$j_{\mu}: H^{p} \rightarrow L^{P}(\mu)$ is 2-summing if and only if

$$
\inf \left\{\int_{\mathbb{T}}\left(\int_{\mathbb{D}} \frac{d \mu(z)}{|z-w|^{2} \cdot F(z)^{2}}\right)^{p^{\prime} / 2} d \lambda(w): F \geq 0, \int F^{r} d \mu \leq 1\right\} \text { is finite }
$$

if and only if

$$
\inf _{F \in B_{L^{r / 2}(\mu)}^{+}} \sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{T}} \int_{\mathbb{D}} \frac{g(w)}{|z-w|^{2} \cdot F(z)} d \mu(z) d \lambda(w) \text { is finite }
$$

where t is the conjugate of $p^{\prime} / 2$, and $1 / r+1 / 2=1 / p$.
By Ky Fan's lemma the order of taking the sup and the inf can be interchanged.

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

We obtain that $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is 2-summing if and only if

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

We obtain that $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is 2-summing if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^{2}} d \lambda(w)\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

We obtain that $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is 2-summing if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^{2}} d \lambda(w)\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

if and only if

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

We obtain that $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is 2-summing if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^{2}} d \lambda(w)\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\frac{\mathcal{P}[g](z)}{1-|z|^{2}}\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

We obtain that $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is 2-summing if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^{2}} d \lambda(w)\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\frac{\mathcal{P}[g](z)}{1-|z|^{2}}\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

But it means that the Poisson transform maps L^{t} to $L^{p / 2}(\nu)$, where $d \nu(z)=\frac{d \mu(z)}{(1-|z|)^{p / 2}}$

The case $p \leq 2$: sketch of proof

Using Fubini and the following result:

Lemma

Let $h: \Omega \rightarrow[0,+\infty)$ be a measurable function on (Ω, Σ, μ) and $p>0$. Then

$$
\inf \left\{\int \frac{h}{F} d \mu: F \geq 0, \int F^{p} d \mu \leq 1\right\}=\left(\int h^{p /(p+1)} d \mu\right)^{(p+1) / p}
$$

We obtain that $j_{\mu}: H^{p} \rightarrow L^{p}(\mu)$ is 2-summing if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^{2}} d \lambda(w)\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

if and only if

$$
\sup _{g \in B_{L^{t}(\mathbb{T})}^{+}} \int_{\mathbb{D}}\left(\frac{\mathcal{P}[g](z)}{1-|z|^{2}}\right)^{p / 2} d \mu(z) \quad \text { is finite }
$$

But it means that the Poisson transform maps L^{t} to $L^{p / 2}(\nu)$, where $d \nu(z)=\frac{d \mu(z)}{(1-|z|)^{p / 2}}$
Applying a result of Luecking, Blasco-Jarchow, we get the conclusion.

[^0]Exercices (??)

A few open problems...

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...on $H^{p} .$.

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...on H^{p}...
- Compute the value of the approximation numbers of any composition operator acting on H^{2}...

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...on H^{p}...
- Compute the value of the approximation numbers of any composition operator acting on $H^{2} \ldots$ on $H^{p} \ldots$

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...on H^{p}...
- Compute the value of the approximation numbers of any composition operator acting on H^{2}...on $H^{p} \ldots$
- Finish the characterization of summing composition operators,

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...on $H^{p} .$.
- Compute the value of the approximation numbers of any composition operator acting on H^{2}...on $H^{p} \ldots$
- Finish the characterization of summing composition operators, of other operator ideals

Exercices (??)

A few open problems...

- Compute the exact norm of any composition operator acting on H^{2}...on $H^{p} .$.
- Compute the value of the approximation numbers of any composition operator acting on H^{2}...on $H^{p} \ldots$
- Finish the characterization of summing composition operators, of other operator ideals

There are many other questions of course...

- J. Shapiro: "Composition operators". Springer 1993.
- J. Shapiro: "Composition operators". Springer 1993.
- C. Cowen, B. McCluer: "Composition operators of analytic functions" CRC Press 1995.

Merci !

[^0]: VI Curso Internacional de Análisis Matemático en Andalucía

