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Important bilinear operators

Important bilinear operators

A bounded measurable function σ on ℝn × ℝn (called a multiplier) leads to a bilinear
operator Wσ defined by

Wσ(f , g)(x) =

∫
ℝn

∫
ℝn
σ(ξ, η)f̂ (ξ)ĝ(η)e2πi〈x,ξ+η〉dξdη

for every f , g in the Schwartz space S(ℝn), where 〈·, ·〉 denotes the inner product in ℝn.

∙ The study of such bilinear multiplier operators was initiated by Coifman and Meyer
(1978). They proved that if 1 < p, q <∞, 1/r = 1/p + 1/q and σ satisfies

|∂αξ ∂βη σ(ξ, η)| ¬ Cα,β(|ξ|+ |η|)−|α|−|β|

for sufficiently large multi-indices α and β, then Wσ extends to a bilinear operator
from Lp(ℝn)× Lq(ℝn) into Lr,∞(ℝn) whenever r > 1. Here as usual Lr,∞(ℝn)

denotes the weak Lr space of Marcinkiewicz.
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Important bilinear operators

∙ This result was later extended to the range 1 > r > 1/2 by Grafakos and Torres
(1996) and Kenig and Stein (1999).

∙ Multipliers that satisfy the Marcinkiewicz condition were studied by Grafakos and
Kalton (2001).

∙ The first significant boundedness results concerning non-smooth symbols were
proved by Lacey and Thiele (1997, 1999) who established that Wσ with
σ(ξ, η) = sign(ξ + αη), α ∈ ℝ \ {0, 1} has a bounded extension from
Lp(ℝn)× Lq(ℝn) to Lr (ℝn) if 2/3 < r <∞, 1 < p, q ¬ ∞, and 1/r = 1/p + 1/q.
Extensions of this result was subsequently obtained by Gilbert and Nahmod (2001).

∙ The bilinear Hilbert transform Hθ is defined for a parameter θ ∈ ℝ by

Hθ(f , g)(x) := lim
ε→0

∫
|t|>ε

f (x − t)g(x + θt)
1
t dt, x ∈ ℝ

for functions f , g from the Schwartz class S(ℝ). The family {Hθ} was introduced
by Calderón in his study of the first commutator, an operator arising in a series
decomposition of the Cauchy integral along Lipschitz curves. In 1977 Calderón
posed the question whether Hθ satisfies any Lp estimates.

M. Mastyło (UAM) Multilinear interpolation theorems with applications 4 / 40



Important bilinear operators

∙ In their fundamental work (Ann. of Math. 149 (1999), 475-496) Lacey and Thiele
proved that if θ 6= −1, then the bilinear Hilbert transform Hθ extends to a bilinear
operator from Lp × Lq into Lr whenever 1 < p, q ¬ ∞ and 1/p + 1/q = 1/r < 3/2.

∙ The bilinear Hilbert transforms arise in a variety of other related known problems in
bilinear Fourier analysis, e.g., in the study of the convergence of the mixed Fourier
series of the form

lim
N→∞

∑
|m−θn|¬N
|m−n|¬N

∑
f̂ (m)ĝ(n)e2πi(m+n)x .

∙ Fan and Sato in 2001 were able to show the boundedness of the bilinear Hilbert
transform H on the torus T

H(f , g)(x) :=

∫
T

f (x − t)g(x + t) ctg(πt) dt, x ∈ T

by transferring the result from ℝ. Their proof relies upon some DeLeeuw (1969)
type transference methods for multilinear multipliers.
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Important bilinear operators

Definition
A quasi-Banach lattice X is said to be p-convex if there exists a constant C > 0 such
that for any x1, ..., xn ∈ X , we have∥∥∥( n∑

k=1

|xk |p
)1/p∥∥∥

X
¬ C

( n∑
k=1

‖xk‖p
X

)1/p
.

The least C is denoted by M(p)(X).

Definition
Let X be a Banach space and 1 ¬ p <∞. The sequence {xn}n∈ℤ ⊂ X is said to be
weakly p-summable if the scalar sequences {x∗(xn)} ∈ `p(ℤ) for every x∗ ∈ X∗. The
space of all weakly p-summing sequences in X is denoted by `w

p (X). It is a Banach
space equipped with the norm

‖{xn}‖`w
p (X) := sup

{(∑
n∈ℤ

|x∗(xn)|p
)1/p

; ‖x∗‖X∗ ¬ 1
}
.
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Bilinear interpolation theorems

Bilinear interpolation theorems (M. M., 2013)

Let X = (X0,X1), Y = (Y0,Y1) and Z = (Z0,Z1) be quasi-Banach couples.

Definition

(i) We will say that T := (T0,T1) is a bilinear operator from X × Y into Z , and write
T : X × Y → Z if T0 : X0 × Y0 → Z0 and T1 : X1 × Y1 → Z1 are bilinear operator
such that T0(x , y) = T1(x , y) for every x ∈ X0 ∩ X1, y ∈ Y0 ∩ Y1.

(ii) If additionally X , Y and Z are intermediate quasi-Banach spaces with respect to X ,
Y and Z , respectively, then we say that T : X × Y → Z extends to a bilinear
operator from X × Y into Z provided that T0 has a bilinear extension from X × Y
into Z .
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Bilinear interpolation theorems

Lemma
Let Y be a maximal p-convex quasi-Banach lattice on (Ω, µ) and T : c0 × c0 → Y
be a bilinear operator. If a sequence {akm}k,m∈ℤ is such that
C := supm∈ℤ

(∑
k∈ℤ |akm|2

)1/2
<∞, then the series

∑
k∈ℤ akmT (ek , em−k ) converges

in Y for each m ∈ ℤ. If we put

ym :=
∑
k∈ℤ

akmT (ek , em−k ), m ∈ ℤ

then for any sequence {In}n∈ℤ of disjoint sets In ⊂ ℤ and any sequence {δm}m∈ℤ of real
numbers with |δm| ¬ 1 for each m ∈ ℤ, we have

(∑
n∈ℤ

∣∣∑
m∈In

δmym
∣∣2)1/2 ∈ Y and∥∥∥(∑

n∈ℤ

∣∣∑
m∈In

δmym
∣∣2)1/2∥∥∥

Y
¬ CA−2

p M(p)(Y ) ‖T‖c0×c0→Y .
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Bilinear interpolation theorems

Definition
P denotes the set of all positive quasi-concave functions ρ on (0,∞), i.e. such that both
ρ and t 7→ tρ(1/t) are nondecreasing functions. We let P0 denote the subset of P
consisting of all ρ such that ρ(t)→ 0 as t → 0+, and ρ(t)/t →∞ as t →∞. On P, we
define an involution by ρ∗(t) = 1/ρ(1/t) for every t > 0 and we put P∗ := P0 ∩ (P0)∗.

Lemma

Let ρ0, ρ1, ρ ∈ P0 be such that {ρ(2n)} ∈ `1 + `1(2−n) and ρ(st)  Cρ0(s)ρ1(t) for some
C > 0 and for every s, t > 0. Assume that (Y0,Y1) is a Banach couple and

T : (c0, c0(2−n))× (c0, c0(2−n))→ (Y0,Y1)

is a bilinear operator. Then we have∑
m∈ℤ

∥∥∥∑
k∈ℤ

ξkηm−kT0(ek , em−k )
∥∥∥

Y0+Y1
<∞

for every sequences {ξn} and {ηn} in c0 ∩ c0(2−n).
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Bilinear interpolation theorems

Definition
Let (X0,X1) be a Banach couple and let ρ ∈ P0.

(i) If {ρ(2n)}n∈ℤ ∈ `2 + `2(2−n), then the space Gρ,2(X0,X1) consists of all elements
x ∈ X0 + X1 for which x =

∑
n∈ℤ xn (convergence in X0 + X1), where the elements

xn ∈ X0 ∩ X1 are such that {2jnxn/ρ(2n)} ∈ `w
2 (Xj ) for j = 0, 1. Gρ,2(X0,X1) is

a Banach space equipped with the norm

‖x‖ = inf max
j=0,1

∥∥{2jnxn/ρ(2n)}‖`w
2 (Xj ),

where the infimum is taken over all representations of x =
∑

n∈ℤ xn as above.

(ii) The space 〈X0,X1〉ρ consists of all elements x ∈ X0 + X1 such that x =
∑

n∈ℤ xn

(convergence in X0 + X1), where the elements xn ∈ X0 ∩ X1 are such that∑
n∈ℤ xn/ρ(2n) is unconditionally convergent in X0 and

∑
n∈ℤ 2nxn/ρ(2n) is

unconditionally convergent in X1. 〈X0,X1〉ρ is equipped with the norm

‖x‖ = inf max
j=0,1

sup
∥∥∥∑

n∈ℤ

λn2jnxn/ρ(2n)
∥∥∥

Xj
,

where the supremum is taken over all complex valued sequences {λn} with |λn| ¬ 1
for all n, and the infimum is taken over all representations of x =

∑
n∈ℤ xn.
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Bilinear interpolation theorems

Theorem

Let ρ0, ρ1, ρ ∈ P0 be such that {ρ(2n)} ∈ `1 + `1(2−n) and ρ(st)  Cρ0(s)ρ1(t)

for some C > 0 and every s, t > 0. Assume that (Y0,Y1) is a Banach couple and
T : (c0, c0(2−n))× (c0, c0(2−n))→ (Y0,Y1) is a bilinear operator. Then T extends
to a bilinear operator

T̃ : c0(1/ρ0(2n))× c0(1/ρ1(2n))→ Gρ,2(Y0,Y1).

Theorem

Let ρ0, ρ1 ∈ P∗ and ρ ∈ P0 be such that {ρ(2n)} ∈ `1 + `1(2−n) and ρ(st)  Cρ0(s)ρ1(t)

for some C > 0 and for every s, t > 0. Assume that T : (X0,X1)× (Y0,Y1)→ (Z0,Z1) is
a bilinear operator between Banach couples. Then T extends to a bilinear operator

T̃ : 〈X0,X1〉ρ0 × 〈Y0,Y1〉ρ1 → Gρ,2(Z0,Z1).
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Bilinear interpolation theorems

Definition

Given a Banach couple A = (A0,A1), 0 6= a ∈ A0 + A1 and any Banach couple X an
interpolation orbit of a in X is a Banach space

OrbA(a,X) :=
{

Ta; T : A→ X
}

equipped with the norm

‖x‖ = inf
{
‖T‖A→X ; x = Ta, T : A→ X

}
.

Lemma

Let ρ be a quasi-concave function such that ξρ := {ρ(2n)} ∈ `2 + `2(2−n). Then for any
Banach couple X, we have

Gρ,2(X) = Orb(`2,`2(2−n))(ξρ,X)

isometrically.
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Bilinear operators between Calderón–Lozanovskii spaces

Bilinear operators between Calderón–Lozanovskii spaces
Definition
Let Φ the set of all functions ϕ : ℝ+ × ℝ+ → ℝ+ that are positive, non-decreasing in
each variable, and homogeneous of degree one (that is, ϕ(λs, λt) = λϕ(s, t) for all
λ, s, t  0). Let ϕ ∈ Φ and X = (X0,X1) be a couple of quasi-Banach lattices on a
measure space (Ω, µ). Following Lozanovskii, we define the space ϕ(X) = ϕ(X0,X1) of
all x ∈ L0(µ) such that |x | = ϕ(|x0|, |x1|) for some xj ∈ Xj , j = 0, 1. It is a quasi-Banach
lattice equipped with the quasi-norm

‖x‖ = inf
{

max{‖x0‖X0 , ‖x1‖X1}; |x | = ϕ(|x0|, |x1|) xj ∈ Xj , j = 0, 1
}
.

Note that if ϕ is concave and (X0,X1) is a Banach couple, then ϕ(X) is a Banach lattice.

Definition

A quasi-concave function ρ is called a quasi-power ( ρ ∈ P+−) if sρ(t) = o(max(1, t)) as
t → 0 and t →∞, where sρ(t) := supu>0

(
ρ(tu)/ρ(u)

)
for every t > 0. The set of all

ϕ ∈ Φ such that ρ := ϕ(1, ·) ∈ P0 (resp., ρ ∈ P+−, ρ ∈ P∗) is denoted by Φ0 (resp.,
Φ+−, Φ∗); ϕ1 ∼ ϕ2 ( ϕ1

0∼ ϕ2 or ϕ1
∞∼ ϕ2) means that there exist C1,C2 and t0 or t∞

such that C1ϕ1(t) ¬ ϕ2(t) ¬ C2ϕ1(t) for all t > 0 (0 < t ¬ t0 or t  t∞, respectively).
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Bilinear operators between Calderón–Lozanovskii spaces

Theorem

Let ϕ ∈ Φ+− be a concave function and let ρ(t) = ϕ(1, t) for t > 0. Then for any
couple (Lp0 (w0), Lp1 (w1)) of weighted Lp-spaces on a measure space, we have

Gρ,2(Lp0 (w0), Lp1 (w1)) = ϕ(Lr0 (w0), Lr1 (w1)),

where 1/rj = max{0, 1/pj − 1/2} for j = 0, 1.

Theorem

Let ϕ ∈ Φ+− be a concave function such that ϕ(1, s)ϕ(1, t) ¬ Cϕ(1, st) for some C > 0
and every s, t > 0. If T : (X0,X1)× (Y0,Y1)→ (Lp0 (w0), Lp1 (w1)) is a bilinear operator,
then T extends to a bilinear operator

T̃ : ϕ(X0,X1)◦ × ϕ(Y0,Y1)◦ → ϕ(Lr0 (w0), Lr1 (w1)),

where 1/rj = max{0, 1/pj − 1/2} for j = 0, 1.
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Bilinear operators between Calderón–Lozanovskii spaces

Bilinear operators between Calderón–Lozanovskii spaces

Corollary

Let ρ0, ρ1, ρ ∈ P0 be such that {ρ(2n)} ∈ `1 + `1(2−n) and ρ(st)  Cρ0(s)ρ1(t) for some
C > 0 and every s, t > 0. If T : (c0, c0(2−n))× (c0, c0(2−n))→ (`1, `1(2n)), then T
extends to a bilinear operator

T̃ : c0(1/ρ0(2n))× c0(1/ρ1(2n))→ `2(1/ρ(2−n)).
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Bilinear operators between Calderón–Lozanovskii spaces

Bilinear operators between Calderón–Lozanovskii spaces
Definition
A quasi-Banach space X is said to be p-normable if there exists a constant C such that
for any x1, ..., xn ∈ X we have∥∥∥ n∑

j=1

xj

∥∥∥
X
¬ C

( n∑
j=1

‖xj‖p
X

)1/p
.

It is well known that a fundamental theorem of Aoki and Rolewicz asserts that every
quasi-Banach space is p-normable for some 0 < p ¬ 1.

Theorem

Let ϕ0, ϕ1, ϕ ∈ P∗ and ϕ ∈ Φ∗ be such that {ϕ(1, 2n)} ∈ `p + `p(2−n) for some
0 < p ¬ 1 and let supm∈ℤ

(∑
k∈ℤ

(
ρ0(2k )ρ1(2k−m)/ϕ(1, 2m)

)2)1/2
<∞. Assume that

T : (X0,X1)× (Y0,Y1)→ (Z0,Z1) is a bilinear operator between couples of quasi-Banach
lattices. If both Z0 and Z1 are p-normable with nontrivial concavity, then T extends to a
bilinear operator

T̃ : ϕ0(X0,X1)◦ × ϕ1(Y0,Y1)◦ → ϕ(Z0,Z1).
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Bilinear operators between Calderón–Lozanovskii spaces

Definition
We define a subclass Pp ( 1 ¬ p <∞) of P containing of all ρ satisfying the condition:

sup
m∈ℤ

1
ρ(2m)

(∑
k∈ℤ

(ρ(2k )ρ(2m−k )
)2
)1/2

<∞.

Theorem

Let ϕ ∈ Φ+− be such that ρ = ϕ(1, ·) ∈ P2. Assume that
T : (X0,X1)× (Y0,Y1)→ (Z0,Z1) is a bilinear operator between quasi-Banach lattices.
If Z0 and Z1 have nontrivial concavity, then T extends to a bilinear operator

T̃ : ϕ(X0,X1)◦ × ϕ(Y0,Y1)◦ → ϕ(Z0,Z1).

Theorem

Let ϕ ∈ Φ+− be such that ρ = ϕ(1, ·) ∈ P2. Assume that
T : (X0,X1)× (Y0,Y1)→ (Z0,Z1) is a bilinear operator between Banach couples.
Then T extends to a bilinear operator

T̃ : 〈X0,X1〉ρ × 〈Y0,Y1〉ρ → ϕu(Z0,Z1).
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Bilinear operators between Calderón–Lozanovskii spaces

We give examples of functions satisfying a stronger condition than the one required in
proceeding theorems. Following Astashkin, we define φ by

φ(t) =

{
ta lnc (C1/t), 0 < t ¬ 1,
tb lnd (C2 t), t > 1,

where 0 < a < b < 1, c > 1, d > 1 and constants C1 > ec/a, C2 > edd/(1− b) are
chosen such that φ is continuous. Then φ is a quasi-power and satisfies

sup
m∈ℤ

∑
k∈ℤ

φ(2m)

φ(2k )φ(2m−k )
<∞.

In consequence ρ defined by ρ(t) := t/φ(t) for every t > 0 satisfies

sup
m∈ℤ

1
ρ(2m)

∑
k∈ℤ

ρ(2k )ρ(2m−k ) <∞,

and whence ρ ∈ P2.

Lemma
Suppose ρ0, ρ1 ∈ Pp for some 1 ¬ p <∞. If ϕ ∈ Φ is such that
Cϕ(1, st)  ϕ(1, s)ϕ(1, t) for some C > 0 and every s, t > 0, then ρ ∈ Pp , where
ρ(t) := ϕ(ρ0(t), ρ1(t)) for all t > 0.
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Applications

Applications

We recall that if ψ is an Orlicz function (i.e., ψ : [0,∞)→ [0,∞) is increasing,
continuous and ψ(0) = 0), then the Orlicz space Lψ on a given measure space (Ω, µ) is
defined to be a subspace of L0(µ) consisting of all f ∈ L0(µ) such that for some λ > 0
holds ∫

Ω

ψ(λ|f |) dµ <∞.

If there exists C > 0 such that ψ(t/C) ¬ ψ(t)/2 for every t > 0, then Lψ is
a quasi-Banach lattice with the quasi-norm ‖ · ‖ satisfying

‖f + g‖ ¬ C(‖f ‖+ ‖g‖), f , g ∈ Lψ,

where ‖f ‖ := inf
{
λ > 0;

∫
Ω
ψ
(
|f |
λ

)
dµ ¬ 1

}
. A simple calculation shows for any couple

(Lp0 , Lp1 ) of Lp-spaces on a measure space (Ω, µ) with 0 < p0, p1 ¬ ∞, we have

ϕ(Lp0 , Lp1 ) = Lψ

with equivalence of the quasi-norms, where ψ−1(t) = ϕ(t1/p0 , t1/p1 ) for every t  0.
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Applications

Theorem

Assume ρ ∈ P2, 1 ¬ uj , vj <∞ and 0 < sj <∞ for j = 0, 1 and let
T : (Lu0 , Lu1 )× (Lv0 , Lv1 )→ (Ls0 , Ls1 ) be a bilinear operator between couples of Lp

spaces. Then T extends to a bounded bilinear operator

T̃ : Lψ0 × Lψ1 → Lψ

between Orlicz spaces with

∙ ψ−1
0 (t) ∼ t1/u0ρ(t1/u1−1/u0 ),

∙ ψ−1
1 (t) ∼ t1/v0ρ(t1/v1−1/v0 ),

∙ ψ−1(t) ∼ t1/s0ρ(t1/s1−1/s0 ).
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Applications

An important class of Orlicz spaces are Zygmund classes.

For 0 < α, β <∞ and 0 < p, q <∞ the Zygmund space Zα,βp,q on a measure space
(Ω, µ) consists of all f ∈ L0(µ) such that∫

{|f |¬1}
|f |p(1− log |f |)α dµ+

∫
{|f |>1}

|f |q(1 + log |f |)β dµ <∞.

It is clear that if ψ : [0,∞)→ [0,∞) is an Orlicz function such that
ψ(t)

0∼ tp(1− log t)α and ψ(t)
∞∼ tq(1 + log t)q, then Zα,βp,q coincides with LΦ. We

equipped Zα,βp,q with the quasi-norm ‖ · ‖Φ generated by shown Φ.

Theorem
For every θ 6= −1 the bilinear Hilbert transform Hθ extends to a bilinear operator from
Zα0,β0

p0,q0 ×Z
α1,β1
p1,q1 into Zα,βp,q provided 1 < p0 < q0 <∞, 1 < p1 < q1 <∞,

1/p0 + 1/p1 = 1/p < 3/2, α0/p0 = α1/p1 = α/p > 1 and β0/q0 = β1/q1 = β/q > 1.
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Interpolation of analytic families of multilinear operators

Interpolation of analytic families of multilinear operators
(L. Grafakos & M. M., 2014)

∙ Stein’s interpolation theorem [Trans. Amer. Math. Soc. (1956)] for analytic
families of operators between Lp spaces (p  1) has found several significant
applications in harmonic analysis. This theorem provides a generalization of
the classical single-operator Riesz -Thorin interpolation theorem to a family
{Tz} of operators that depend analytically on a complex variable z .

∙ In the framework of Banach spaces, interpolation for analytic families of
multilinear operators can be obtained via duality in a way similar to that used
in the linear case. For instance, one may adapt the proofs in Zygmund book
and Berg and Löfstrom for a single multilinear operator to a family of
multilinear operators. However, this duality-based approach is not applicable
to quasi-Banach spaces since their topological dual spaces may be trivial.
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Interpolation of analytic families of multilinear operators

The open strip {z ; 0 < Re z < 1} in the complex plane is denoted by S, its
closure by S and its boundary by ∂S.

Definition Let A(S) be the space of scalar-valued functions, analytic in S and
continuous and bounded in S. For a given couple (A0,A1) of quasi-Banach
spaces and A another quasi-Banach space satisfying A ⊂ A0 ∩ A1, we denote
by F(A) the space of all functions f : S → A that can be written as finite
sums of the form

f (z) =
N∑

k=1
ϕk(z)ak , z ∈ S,

where ak ∈ A and ϕk ∈ A(S). For every f ∈ F(A) we set

‖f ‖F(A) = max
{

sup
t∈ℝ
‖f (it)‖A0 , sup

t∈ℝ
‖f (1 + it)‖A1

}
.
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Interpolation of analytic families of multilinear operators

Remark Clearly we have that ‖a‖θ ¬ ‖a‖A0∩A1 for every a ∈ A0 ∩ A1, and
notice that ‖ · ‖θ could be identically zero.

Definition A quasi-Banach couple is said to be admissible whenever ‖ · ‖θ
is a quasi-norm on A0 ∩ A1, and in this case, the quasi-normed space
(A0 ∩ A1, ‖ · ‖θ) is denoted by (A0,A1)θ.

Remark If A is dense in A0 ∩ A1, then for every a ∈ A we have

‖a‖θ = inf{‖f ‖F(A); f ∈ F(A), f (θ) = a}.

Definition If there is a completion of (A0,A1)θ which is set-theoretically
contained in A0 + A1, then it is denoted by [A0,A1]θ.
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Interpolation of analytic families of multilinear operators

Definition A continuous function F : S → ℂ which is analytic in S is said to
be of admissible growth if there is 0 ¬ α < π such that

sup
z∈S

log |F (z)|
eα|Im z| <∞.

Lemma [I. I. Hirchman, J. Analyse Math. (1953)] If a function F : S → ℂ is
analytic, continuous on S, and is of admissible growth, then

log |F (θ)| ¬
∫ ∞
−∞

log |F (it)|P0(θ, t) dt +

∫ ∞
−∞

log |F (1 + it)|P1(θ, t) dt,

where Pj (j = 0, 1) are the Poisson kernels for the strip given by

Pj(x + iy , t) =
e−π(t−y) sinπx

sin2 πx + (cos πx − (−1)je−π(t−y))2 , x + iy ∈ S.
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Interpolation of analytic families of multilinear operators

Definition Let (Ω,Σ, µ) be a measure space and let X1,...,Xm be linear
spaces. The family {Tz}z∈S of multilinear operators
T : X1 × · · · × Xm → L̃0(µ) is said to be analytic if for any
(x1, ..., xn) ∈ X1 × · · · × Xm and for almost every ω ∈ Ω the function

z 7→ Tz (x1, ..., xm)(ω), z ∈ S

is analytic in S and continuous on S. Additionally, if for j = 0 and j = 1 the
function

(t, ω) 7→ Tj+it(x1, ..., xn)(ω), (t, ω) ∈ ℝ× Ω (∗)

is (L × Σ)-measurable for every (x1, ..., xn) ∈ X1 × · · · × Xm, and for almost
every ω ∈ Ω the function given by formula (∗) is of admissible growth, then
the family {Tz} is said to be an admissible analytic family. Here L is the
σ-algebra of Lebesgue measurable sets in ℝ.
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Interpolation of analytic families of multilinear operators

Theorem For each 1 ¬ i ¬ m, let X i = (X0i ,X1i ) be admissible couples of
quasi-Banach spaces, and let (Y0,Y1) be a couple of maximal quasi-Banach
lattices on a measure space (Ω,Σ, µ) such that each Yj is pj -convex for
j = 0, 1. Assume that Xi is a dense linear subspace of X0i ∩ X1i for each
1 ¬ i ¬ m, and that {Tz}z∈S is an admissible analytic family of multilinear
operators Tz : X1 × · · · × Xm → Y0 ∩ Y1. Suppose that for every
(x1, ..., xm) ∈ X1 × · · · × Xm, t ∈ ℝ and j = 0, 1,

‖Tj+it(x1, ..., xm)‖Yj ¬ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm

where Kj are Lebesgue measurable functions such that Kj ∈ Lpj (Pj(θ, ·) dt)

for all θ ∈ (0, 1). Then for all (x1, ..., xm) ∈ X1 × · · · × Xm, all s ∈ ℝ, and all
0 < θ < 1 we have

‖Tθ+is(x1, ..., xm)‖Y 1−θ
0 Y θ1

¬ (M(p0)(Y0))
1−θ

(M(p1)(Y1))
θKθ(s)

m∏
i=1
‖xi‖(X0i ,X1i )θ ,

where

log Kθ(s) =

∫
ℝ

P0(θ, t) log K0(t + s) dt +

∫
ℝ

P1(θ, t) log K1(t + s) dt.
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Interpolation of analytic families of multilinear operators

Lemma Let (X0,X1) be a couple of complex quasi-Banach lattices on
a measure space (Ω,Σ, µ) such that X0 is p0-convex and X1 is p1-convex.
Then for every 0 < θ < 1 we have

‖x‖X 1−θ
0 Xθ1

¬ (M(p0)(X0))1−θ(M(p1)(X1))θ ‖x‖(X0,X1)θ , x ∈ X0 ∩ X1.

In particular (X0,X1) is an admissible quasi-Banach couple.

Lemma Let (X0,X1) be a couple of complex quasi-Banach lattices on
a measure (Ω,Σ, µ). If xj ∈ Xj are such that |xj | (j = 0, 1) are bounded
above and their non-zero values have positive lower bounds, then

|x0|1−θ|x1|θ ∈ (X0,X1)θ

and ∥∥|x0|1−θ|x1|θ
∥∥

(X0,X1)θ
¬ ‖x0‖1−θ

X0
‖x1‖θX1

.
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Interpolation of analytic families of multilinear operators

Corollary Let (X0,X1) be a couple of complex quasi-Banach lattices on
a measure space (Ω,Σ, µ). If x ∈ X0 ∩ X1 has an order continuous norm in
X 1−θ

0 X θ
1 , then for every 0 < θ < 1,

‖x‖(X0,X1)θ ¬ ‖x‖X 1−θ
0 Xθ1

.

Theorem Let (X0,X1) be a couple of complex quasi-Banach lattices on
a measure space with nontrivial lattice convexity constants. If the space
X 1−θ

0 X θ
1 has order continuous quasi-norm, then

[X0,X1]θ = X 1−θ
0 X θ

1

up equivalences of norms (isometrically, provided that lattice convexity
constants are equal to 1). In particular this holds if at least one of the spaces
X0 or X1 is order continuous.
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Interpolation of analytic families of multilinear operators

Theorem For each 1 ¬ i ¬ m, let (X0i ,X1i ) be complex quasi-Banach
function lattices and let Yj be complex pj -convex maximal quasi-Banach
function lattices with pj -convexity constants equal 1 for j = 0, 1. Suppose
that either X0i or X1i is order continuous for each 1 ¬ i ¬ m. Let T be
a multilinear operator defined on (X01 + X11)× · · · × (X0m + X1m) and
taking values in Y0 + Y1 such that

T : Xi1 × · · · × Xim → Yi

is bounded with quasi-norm Mi for i = 0, 1. Then for 0 < θ < 1,

T : (X01)1−θ(X11)θ × · · · × (X0m)1−θ(X1m)θ → Y 1−θ
0 Y θ

1

is bounded with the quasi-norm

‖T‖ ¬ M1−θ
0 Mθ

1 .
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Interpolation of analytic families of multilinear operators

As an application we obtain the following interpolation theorem for operators
was proved by Kalton (1990), which was applied to study a problem in
uniqueness of structure in quasi-Banach lattices (Kalton’s proof uses a deep
theorem by Nikishin and the theory of Hardy Hp-spaces on the unit disc).

Theorem Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measures spaces. Let Xi ,
i = 0, 1, be complex pi -convex quasi-Banach lattices on (Ω1,Σ1, µ1) and let
Yi be complex pi -convex maximal quasi-Banach lattices on (Ω2,Σ2, µ2) with
pi -convexity constants equal 1. Suppose that either X0 or X1 is order
continuous. Let T : X0 + X1 → L0(µ2) be a continuous operator such that
T (X0) ⊂ Y0 and T (X1) ⊂ Y1. Then for 0 < θ < 1,

T : X 1−θ
0 X θ

1 → Y 1−θ
0 Y θ

1

and
‖T‖X 1−θ

0 Xθ1→Y 1−θ
0 Y θ1

¬ ‖T‖1−θ
X0→Y0

‖T‖θX1→Y1
.
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Applications to Hardy spaces

Applications to Hardy spaces

Suppose that there is an operator M defined on a linear subspace of L̃0(Ω,Σ, µ)

and taking values in L̃0(Ω,Σ, µ) such that:

(a) For j = 0 and j = 1 the function (t, x) 7→ M(h(j + it, ·))(ω), (t, ω) ∈ ℝ× Ω

is L × Σ-measurable for any function h : ∂S × Ω→ ℂ such that
ω 7→ h(j + it, ω) is Σ-measurable for almost all t ∈ ℝ.

(b) M(λh)(ω) = |λ|M(h)(ω) for all λ ∈ ℂ.
(c) For every function h as in above there is an exceptional set Eh ∈ Σ with

µ(Eh) = 0 such that for j ∈ {0, 1}

M
(∫ ∞
−∞

h(t, ·)Pj(θ, t) dt
)

(ω) ¬
∫ ∞
−∞
M(h(t, ·))(ω)Pj(θ, t) dt

for all z ∈ ℂ, all θ ∈ (0, 1), and all ω /∈ Eh. Moreover, Eψh = Eh for every
analytic function ψ on S which is bounded on S.
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Applications to Hardy spaces

For each 1 ¬ i ¬ m, let X i = (X0i ,X1i ) be admissible couples of
quasi-Banach spaces, and let (Y0,Y1) be a couple of complex maximal
quasi-Banach lattices on a measure space (Ω,Σ, µ) such that each Yj is
pj -convex for j = 0, 1. Assume that Xi is a dense linear subspace of X0i ∩ X1i
for each 1 ¬ i ¬ m, and that {Tz}z∈S is an admissible analytic family of
multilinear operators Tz : X1 × · · · × Xm → Y0 ∩ Y1. Assume that M is
defined on the range of Tz , takes values in L0(Ω,Σ, µ), and satisfies
conditions (a), (b) and (c).
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Applications to Hardy spaces

Theorem Suppose that for every (x1, ..., xm) ∈ X1 × · · · × Xm, t ∈ ℝ and

‖M(Tj+it(x1, ..., xm))‖Yj ¬ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm , j = 0, 1,

where Kj are Lebesgue measurable functions such that Kj ∈ Lpj (Pj(θ, ·) dt)

for all θ ∈ (0, 1). Then for all (x1, ..., xm) ∈ X1 × · · · × Xm, s ∈ ℝ, and
0 < θ < 1,

‖M(Tθ+is(x1, ..., xm))‖Y 1−θ
0 Y θ1

¬ Cθ Kθ(s)
m∏

i=1
‖xi‖(X0i ,X1i )θ ,

where
Cθ = (M(p0)(Y0))

1−θ
(M(p1)(Y1))

θ
,

log Kθ(s) =

∫
ℝ

P0(θ, t) log K0(t + s) dt +

∫
ℝ

P1(θ, t) log K1(t + s) dt.
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Applications to Hardy spaces

The preceding theorem has an important application to interpolation of
multilinear operators that take values in Hardy spaces. A particular case of
the above Theorem arises when:

∙ Ω = ℝn, µ is Lebesgue measure, and

M(h)(x) = sup
δ>0
|φδ ∗ h(x)|, x ∈ ℝn

where φ is a Schwartz function on ℝn with nonvanishing integral.

∙ Y0 = Lp0 , Y1 = Lp1 , in which case Y 1−θ
0 Y θ

1 = Lp, where
1/p = (1− θ)/p0 + θ/p1.

Definition The classical Hardy space Hp of Fefferman and Stein is defined by

‖h‖Hp := ‖M(h)‖Lp .
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Applications to Hardy spaces

Corollary If {Tz} is an admissible analytic family is such that

‖Tj+it(x1, ..., xm)‖Hpj ¬ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm , j = 0, 1,

then

‖Tθ+s(x1, ..., xm)‖Hp ¬ Kθ(s)
m∏

i=1
‖xi‖(X0i ,X1i )θ

for 0 < p0, p1 <∞, s ∈ ℝ, and 0 < θ < 1. Analogous estimates hold for the
Hardy-Lorentz spaces Hq,r where estimates of the form

‖Tj+it(x1, ..., xm)‖Hqj ,rj ¬ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm

for admissible analytic families {Tz} when j = 0, 1 imply

‖Tθ+is(x1, ..., xm)‖Hq,r ¬ C Kθ(s)
m∏

i=1
‖xi‖(X0i ,X1i )θ ,

where
C = 2

1
q

(
u q1−θ

0 qθ1
log 2

)u( q0
q0 − p0

) 1−θ
p0
( q1

q1 − p1

) θ
p1
,

0 < pj < qj <∞, pj ¬ rj ¬ ∞ and 1/q = (1− θ)/q0 + θ/q1,
1/r = (1− θ)/r0 + θ/r1 while u = 1 if 1 < q0, q1 <∞ and 1 ¬ r0, r1 ¬ ∞
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An application to the bilinear Bochner-Riesz operators

An application to the bilinear Bochner-Riesz operators

Stein’s motivation to study analytic families of operators might have been the
study of the Bochner-Riesz operators

Bδ(f )(x) :=

∫
|ξ|¬1

(
1− |ξ|2

)δ f̂ (ξ)e2πix ·ξdξ.

in which the “smoothness” variable δ affects the degree p of integrability of
Bδ(f ) on Lp(ℝn). Here f is a Schwartz function on ℝn and f̂ is its Fourier
transform defined by

f̂ (ξ) =

∫
ℝn

f (x)e−2πix ·ξdx , ξ ∈ ℝn.

Remark Using interpolation for analytic families of operators, Stein showed
that whenever δ > (n − 1)|1/p − 1/2|, then

Bδ : Lp(ℝn)→ Lp(ℝn)

is bounded for every 1 ¬ p ¬ ∞.
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An application to the bilinear Bochner-Riesz operators

∙ The bilinear Bochner-Riesz operators are defined on S × S by

Sδ(f , g)(x) :=

∫∫
|ξ|2+|η|2¬1

(
1− |ξ|2 − |η|2

)δ f̂ (ξ)ĝ(η)e2πix ·(ξ+η)dξdη

for every f , g ∈ S.

∙ The bilinear Bochner-Riesz means Sz is defined by

Sz (f , g)(x) =

∫ ∫
Kz (x − y1, x − y2)f (y1)g(y2)dy1 dy2,

where that the kernel of Sδ+it is given by

Kδ+it(x1, x2) =
Γ(δ + 1 + it)

πδ+it
Jδ+it+n(2π|x |)
|x |δ+it+n , x = (x1, x2).
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An application to the bilinear Bochner-Riesz operators

If δ > n − 1/2, then using known asymptotics for Bessel functions we have
that this kernel satisfies an estimate of the form:

|Kδ+it(x1, x2)| ¬ C(n + δ + it)

(1 + |x |)δ+n+1/2 ,

where C(n + δ + it) is a constant that satisfies

C(n + δ + it) ¬ Cn+δeB |t|2

for some B > 0 and so we have

|Kδ+it(x1, x2)| ¬ Cn+δ eB|t|2 1
(1 + |x1|)n+ε

1
(1 + |x2|)n+ε

,

with ε = 1
2 (δ − n − 1/2). It follows that the bilinear operator Sδ+it is

bounded by a product of two linear operators, each of which has a good
integrable kernel. It follows that

K δ+it : L1 × L1 → L1/2

with constant K1(t) ¬ C ′n+δeB|t|2 whenever δ > n − 1/2.
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An application to the bilinear Bochner-Riesz operators

Theorem Let 1 < p < 2. For any λ > (2n − 1)(1/p − 1/2)

Sλ : Lp(ℝn)× Lp(ℝn)→ Lp/2(ℝn) is bounded .
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