Multilinear interpolation theorems with applications

Mieczysław Mastyło

Adam Mickiewicz University in Poznań, and Institute of Mathematics,
Polish Academy of Sciences (Poznań branch)

VI CIDAMA

Antequera, September 08-12, 2014

Outline

(1) Important bilinear operators
(2) Bilinear interpolation theorems
(3) Bilinear operators between Calderón-Lozanovskii spaces
(4) Applications
(5) Interpolation of analytic families of multilinear operators
(6) Applications to Hardy spaces
(7) An application to the bilinear Bochner-Riesz operators

Important bilinear operators

A bounded measurable function σ on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (called a multiplier) leads to a bilinear operator W_{σ} defined by

$$
W_{\sigma}(f, g)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \sigma(\xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i\langle x, \xi+\eta\rangle} d \xi d \eta
$$

for every f, g in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$, where $\langle\cdot, \cdot\rangle$ denotes the inner product in \mathbb{R}^{n}.

- The study of such bilinear multiplier operators was initiated by Coifman and Meyer (1978). They proved that if $1<p, q<\infty, 1 / r=1 / p+1 / q$ and σ satisfies

$$
\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} \sigma(\xi, \eta)\right| \leqslant C_{\alpha, \beta}(|\xi|+|\eta|)^{-|\alpha|-|\beta|}
$$

for sufficiently large multi-indices α and β, then W_{σ} extends to a bilinear operator from $L_{p}\left(\mathbb{R}^{n}\right) \times L_{q}\left(\mathbb{R}^{n}\right)$ into $L_{r, \infty}\left(\mathbb{R}^{n}\right)$ whenever $r>1$. Here as usual $L_{r, \infty}\left(\mathbb{R}^{n}\right)$ denotes the weak L_{r} space of Marcinkiewicz.

- This result was later extended to the range $1>r>1 / 2$ by Grafakos and Torres (1996) and Kenig and Stein (1999).
- Multipliers that satisfy the Marcinkiewicz condition were studied by Grafakos and Kalton (2001).
- The first significant boundedness results concerning non-smooth symbols were proved by Lacey and Thiele $(1997,1999)$ who established that W_{σ} with $\sigma(\xi, \eta)=\operatorname{sign}(\xi+\alpha \eta), \alpha \in \mathbb{R} \backslash\{0,1\}$ has a bounded extension from $L_{p}\left(\mathbb{R}^{n}\right) \times L_{q}\left(\mathbb{R}^{n}\right)$ to $L_{r}\left(\mathbb{R}^{n}\right)$ if $2 / 3<r<\infty, 1<p, q \leqslant \infty$, and $1 / r=1 / p+1 / q$. Extensions of this result was subsequently obtained by Gilbert and Nahmod (2001).
- The bilinear Hilbert transform H_{θ} is defined for a parameter $\theta \in \mathbb{R}$ by

$$
H_{\theta}(f, g)(x):=\lim _{\varepsilon \rightarrow 0} \int_{|t|>\varepsilon} f(x-t) g(x+\theta t) \frac{1}{t} d t, \quad x \in \mathbb{R}
$$

for functions f, g from the Schwartz class $\mathcal{S}(\mathbb{R})$. The family $\left\{H_{\theta}\right\}$ was introduced by Calderón in his study of the first commutator, an operator arising in a series decomposition of the Cauchy integral along Lipschitz curves. In 1977 Calderón posed the question whether H_{θ} satisfies any L_{p} estimates.

- In their fundamental work (Ann. of Math. 149 (1999), 475-496) Lacey and Thiele proved that if $\theta \neq-1$, then the bilinear Hilbert transform H_{θ} extends to a bilinear operator from $L_{p} \times L_{q}$ into L_{r} whenever $1<p, q \leqslant \infty$ and $1 / p+1 / q=1 / r<3 / 2$.
- The bilinear Hilbert transforms arise in a variety of other related known problems in bilinear Fourier analysis, e.g., in the study of the convergence of the mixed Fourier series of the form

$$
\lim _{N \rightarrow \infty} \sum_{\substack{|m-\theta n| \leqslant N \\|m-n| \leqslant N}} \sum \hat{f}(m) \hat{g}(n) e^{2 \pi i(m+n) x}
$$

- Fan and Sato in 2001 were able to show the boundedness of the bilinear Hilbert transform H on the torus \mathbb{T}

$$
H(f, g)(x):=\int_{\mathbb{T}} f(x-t) g(x+t) \operatorname{ctg}(\pi t) d t, \quad x \in \mathbb{T}
$$

by transferring the result from \mathbb{R}. Their proof relies upon some DeLeeuw (1969) type transference methods for multilinear multipliers.

Definition

A quasi-Banach lattice X is said to be p-convex if there exists a constant $C>0$ such that for any $x_{1}, \ldots, x_{n} \in X$, we have

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\right\|_{x} \leqslant C\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p} .
$$

The least C is denoted by $M^{(p)}(X)$.

Definition

Let X be a Banach space and $1 \leqslant p<\infty$. The sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}} \subset X$ is said to be weakly p-summable if the scalar sequences $\left\{x^{*}\left(x_{n}\right)\right\} \in \ell_{p}(\mathbb{Z})$ for every $x^{*} \in X^{*}$. The space of all weakly p-summing sequences in X is denoted by $\ell_{p}^{w}(X)$. It is a Banach space equipped with the norm

$$
\left\|\left\{x_{n}\right\}\right\|_{\ell_{p}^{w}(x)}:=\sup \left\{\left(\sum_{n \in \mathbb{Z}}\left|x^{*}\left(x_{n}\right)\right|^{p}\right)^{1 / p} ;\left\|x^{*}\right\|_{x^{*}} \leqslant 1\right\} .
$$

Bilinear interpolation theorems (M. M., 2013)

Let $\bar{X}=\left(X_{0}, X_{1}\right), \bar{Y}=\left(Y_{0}, Y_{1}\right)$ and $\bar{Z}=\left(Z_{0}, Z_{1}\right)$ be quasi-Banach couples.

Definition

(i) We will say that $T:=\left(T_{0}, T_{1}\right)$ is a bilinear operator from $\bar{X} \times \bar{Y}$ into \bar{Z}, and write $T: \bar{X} \times \bar{Y} \rightarrow \bar{Z}$ if $T_{0}: X_{0} \times Y_{0} \rightarrow Z_{0}$ and $T_{1}: X_{1} \times Y_{1} \rightarrow Z_{1}$ are bilinear operator such that $T_{0}(x, y)=T_{1}(x, y)$ for every $x \in X_{0} \cap X_{1}, y \in Y_{0} \cap Y_{1}$.
(ii) If additionally X, Y and Z are intermediate quasi-Banach spaces with respect to \bar{X}, \bar{Y} and \bar{Z}, respectively, then we say that $T: \bar{X} \times \bar{Y} \rightarrow \bar{Z}$ extends to a bilinear operator from $X \times Y$ into Z provided that T_{0} has a bilinear extension from $X \times Y$ into Z.

Lemma

Let Y be a maximal p-convex quasi-Banach lattice on (Ω, μ) and $T: c_{0} \times c_{0} \rightarrow Y$ be a bilinear operator. If a sequence $\left\{a_{k m}\right\}_{k, m \in \mathbb{Z}}$ is such that $C:=\sup _{m \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}}\left|a_{k m}\right|^{2}\right)^{1 / 2}<\infty$, then the series $\sum_{k \in \mathbb{Z}} a_{k m} T\left(e_{k}, e_{m-k}\right)$ converges in Y for each $m \in \mathbb{Z}$. If we put

$$
y_{m}:=\sum_{k \in \mathbb{Z}} a_{k m} T\left(e_{k}, e_{m-k}\right), \quad m \in \mathbb{Z}
$$

then for any sequence $\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ of disjoint sets $I_{n} \subset \mathbb{Z}$ and any sequence $\left\{\delta_{m}\right\}_{m \in \mathbb{Z}}$ of real numbers with $\left|\delta_{m}\right| \leqslant 1$ for each $m \in \mathbb{Z}$, we have $\left(\sum_{n \in \mathbb{Z}}\left|\sum_{m \in I_{n}} \delta_{m} y_{m}\right|^{2}\right)^{1 / 2} \in Y$ and

$$
\left\|\left(\sum_{n \in \mathbb{Z}}\left|\sum_{m \in I_{n}} \delta_{m} y_{m}\right|^{2}\right)^{1 / 2}\right\|_{Y} \leqslant C A_{p}^{-2} M^{(p)}(Y)\|T\|_{c_{0} \times c_{0} \rightarrow Y}
$$

Definition

\mathcal{P} denotes the set of all positive quasi-concave functions ρ on $(0, \infty)$, i.e. such that both ρ and $t \mapsto t \rho(1 / t)$ are nondecreasing functions. We let \mathcal{P}_{0} denote the subset of \mathcal{P} consisting of all ρ such that $\rho(t) \rightarrow 0$ as $t \rightarrow 0+$, and $\rho(t) / t \rightarrow \infty$ as $t \rightarrow \infty$. On \mathcal{P}, we define an involution by $\rho^{*}(t)=1 / \rho(1 / t)$ for every $t>0$ and we put $\mathcal{P}^{*}:=\mathcal{P}_{0} \cap\left(\mathcal{P}_{0}\right)^{*}$.

Lemma

Let $\rho_{0}, \rho_{1}, \rho \in \mathcal{P}_{0}$ be such that $\left\{\rho\left(2^{n}\right)\right\} \in \ell_{1}+\ell_{1}\left(2^{-n}\right)$ and $\rho(s t) \geqslant C \rho_{0}(s) \rho_{1}(t)$ for some $C>0$ and for every $s, t>0$. Assume that $\left(Y_{0}, Y_{1}\right)$ is a Banach couple and

$$
T:\left(c_{0}, c_{0}\left(2^{-n}\right)\right) \times\left(c_{0}, c_{0}\left(2^{-n}\right)\right) \rightarrow\left(Y_{0}, Y_{1}\right)
$$

is a bilinear operator. Then we have

$$
\sum_{m \in \mathbb{Z}}\left\|\sum_{k \in \mathbb{Z}} \xi_{k} \eta_{m-k} T_{0}\left(e_{k}, e_{m-k}\right)\right\|_{Y_{0}+Y_{1}}<\infty
$$

for every sequences $\left\{\xi_{n}\right\}$ and $\left\{\eta_{n}\right\}$ in $c_{0} \cap c_{0}\left(2^{-n}\right)$.

Definition

Let $\left(X_{0}, X_{1}\right)$ be a Banach couple and let $\rho \in \mathcal{P}_{0}$.
(i) If $\left\{\rho\left(2^{n}\right)\right\}_{n \in \mathbb{Z}} \in \ell_{2}+\ell_{2}\left(2^{-n}\right)$, then the space $G_{\rho, 2}\left(X_{0}, X_{1}\right)$ consists of all elements $x \in X_{0}+X_{1}$ for which $x=\sum_{n \in \mathbb{Z}} x_{n}$ (convergence in $X_{0}+X_{1}$), where the elements $x_{n} \in X_{0} \cap X_{1}$ are such that $\left\{2^{j n} x_{n} / \rho\left(2^{n}\right)\right\} \in \ell_{2}^{w}\left(X_{j}\right)$ for $j=0,1$. $G_{\rho, 2}\left(X_{0}, X_{1}\right)$ is a Banach space equipped with the norm

$$
\|x\|=\inf \max _{j=0,1}\left\|\left\{2^{j n} x_{n} / \rho\left(2^{n}\right)\right\}\right\|_{\ell_{2}^{w}\left(x_{j}\right)}
$$

where the infimum is taken over all representations of $x=\sum_{n \in \mathbb{Z}} x_{n}$ as above.
(ii) The space $\left\langle X_{0}, X_{1}\right\rangle_{\rho}$ consists of all elements $x \in X_{0}+X_{1}$ such that $x=\sum_{n \in \mathbb{Z}} x_{n}$ (convergence in $X_{0}+X_{1}$), where the elements $x_{n} \in X_{0} \cap X_{1}$ are such that $\sum_{n \in \mathbb{Z}} x_{n} / \rho\left(2^{n}\right)$ is unconditionally convergent in X_{0} and $\sum_{n \in \mathbb{Z}} 2^{n} x_{n} / \rho\left(2^{n}\right)$ is unconditionally convergent in $X_{1} .\left\langle X_{0}, X_{1}\right\rangle_{\rho}$ is equipped with the norm

$$
\|x\|=\inf \max _{j=0,1} \sup \left\|\sum_{n \in \mathbb{Z}} \lambda_{n} 2^{j n} x_{n} / \rho\left(2^{n}\right)\right\|_{x_{j}}
$$

where the supremum is taken over all complex valued sequences $\left\{\lambda_{n}\right\}$ with $\left|\lambda_{n}\right| \leqslant 1$ for all n, and the infimum is taken over all representations of $x=\sum_{n \in \mathbb{Z}} x_{n}$.

Theorem

Let $\rho_{0}, \rho_{1}, \rho \in \mathcal{P}_{0}$ be such that $\left\{\rho\left(2^{n}\right)\right\} \in \ell_{1}+\ell_{1}\left(2^{-n}\right)$ and $\rho(s t) \geqslant C \rho_{0}(s) \rho_{1}(t)$ for some $C>0$ and every $s, t>0$. Assume that $\left(Y_{0}, Y_{1}\right)$ is a Banach couple and $T:\left(c_{0}, c_{0}\left(2^{-n}\right)\right) \times\left(c_{0}, c_{0}\left(2^{-n}\right)\right) \rightarrow\left(Y_{0}, Y_{1}\right)$ is a bilinear operator. Then T extends to a bilinear operator

$$
\widetilde{T}: c_{0}\left(1 / \rho_{0}\left(2^{n}\right)\right) \times c_{0}\left(1 / \rho_{1}\left(2^{n}\right)\right) \rightarrow G_{\rho, 2}\left(Y_{0}, Y_{1}\right)
$$

Theorem

Let $\rho_{0}, \rho_{1} \in \mathcal{P}^{*}$ and $\rho \in \mathcal{P}_{0}$ be such that $\left\{\rho\left(2^{n}\right)\right\} \in \ell_{1}+\ell_{1}\left(2^{-n}\right)$ and $\rho(s t) \geqslant C \rho_{0}(s) \rho_{1}(t)$ for some $C>0$ and for every $s, t>0$. Assume that $T:\left(X_{0}, X_{1}\right) \times\left(Y_{0}, Y_{1}\right) \rightarrow\left(Z_{0}, Z_{1}\right)$ is a bilinear operator between Banach couples. Then T extends to a bilinear operator

$$
\widetilde{T}:\left\langle X_{0}, X_{1}\right\rangle_{\rho_{0}} \times\left\langle Y_{0}, Y_{1}\right\rangle_{\rho_{1}} \rightarrow G_{\rho, 2}\left(Z_{0}, Z_{1}\right)
$$

Definition

Given a Banach couple $\bar{A}=\left(A_{0}, A_{1}\right), 0 \neq a \in A_{0}+A_{1}$ and any Banach couple \bar{X} an interpolation orbit of a in \bar{X} is a Banach space

$$
\operatorname{Orb}_{\bar{A}}(a, \bar{X}):=\{T a ; T: \bar{A} \rightarrow \bar{X}\}
$$

equipped with the norm

$$
\|x\|=\inf \left\{\|T\|_{\bar{A} \rightarrow \bar{X}} ; x=T a, T: \bar{A} \rightarrow \bar{X}\right\} .
$$

Lemma

Let ρ be a quasi-concave function such that $\xi_{\rho}:=\left\{\rho\left(2^{n}\right)\right\} \in \ell_{2}+\ell_{2}\left(2^{-n}\right)$. Then for any Banach couple \bar{X}, we have

$$
G_{\rho, 2}(\bar{X})=\operatorname{Orb}_{\left(\ell_{2}, \ell_{2}\left(2^{-n}\right)\right)}\left(\xi_{\rho}, \bar{X}\right)
$$

isometrically.

Bilinear operators between Calderón-Lozanovskii spaces

Definition

Let Φ the set of all functions $\varphi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$that are positive, non-decreasing in each variable, and homogeneous of degree one (that is, $\varphi(\lambda s, \lambda t)=\lambda \varphi(s, t)$ for all $\lambda, s, t \geqslant 0)$. Let $\varphi \in \Phi$ and $\bar{X}=\left(X_{0}, X_{1}\right)$ be a couple of quasi-Banach lattices on a measure space (Ω, μ). Following Lozanovskii, we define the space $\varphi(\bar{X})=\varphi\left(X_{0}, X_{1}\right)$ of all $x \in L_{0}(\mu)$ such that $|x|=\varphi\left(\left|x_{0}\right|,\left|x_{1}\right|\right)$ for some $x_{j} \in X_{j}, j=0,1$. It is a quasi-Banach lattice equipped with the quasi-norm

$$
\|x\|=\inf \left\{\max \left\{\left\|x_{0}\right\| x_{0},\left\|x_{1}\right\| x_{1}\right\} ;|x|=\varphi\left(\left|x_{0}\right|,\left|x_{1}\right|\right) x_{j} \in X_{j}, j=0,1\right\} .
$$

Note that if φ is concave and $\left(X_{0}, X_{1}\right)$ is a Banach couple, then $\varphi(\bar{X})$ is a Banach lattice.

Definition

A quasi-concave function ρ is called a quasi-power $\left(\rho \in \mathcal{P}^{+-}\right)$if $s_{\rho}(t)=o(\max (1, t))$ as $t \rightarrow 0$ and $t \rightarrow \infty$, where $s_{\rho}(t):=\sup _{u>0}(\rho(t u) / \rho(u))$ for every $t>0$. The set of all $\varphi \in \Phi$ such that $\rho:=\varphi(1, \cdot) \in \mathcal{P}_{0}$ (resp., $\rho \in \mathcal{P}^{+-}, \rho \in \mathcal{P}^{*}$) is denoted by Φ_{0} (resp., $\left.\Phi^{+-}, \Phi^{*}\right) ; \varphi_{1} \sim \varphi_{2}\left(\varphi_{1} \stackrel{0}{\sim} \varphi_{2}\right.$ or $\left.\varphi_{1} \stackrel{\infty}{\sim} \varphi_{2}\right)$ means that there exist C_{1}, C_{2} and t_{0} or t_{∞} such that $C_{1} \varphi_{1}(t) \leqslant \varphi_{2}(t) \leqslant C_{2} \varphi_{1}(t)$ for all $t>0\left(0<t \leqslant t_{0}\right.$ or $t \geqslant t_{\infty}$, respectively).

Theorem

Let $\varphi \in \Phi^{+-}$be a concave function and let $\rho(t)=\varphi(1, t)$ for $t>0$. Then for any couple $\left(L_{p_{0}}\left(w_{0}\right), L_{p_{1}}\left(w_{1}\right)\right)$ of weighted L_{p}-spaces on a measure space, we have

$$
G_{\rho, 2}\left(L_{p_{0}}\left(w_{0}\right), L_{p_{1}}\left(w_{1}\right)\right)=\varphi\left(L_{r_{0}}\left(w_{0}\right), L_{r_{1}}\left(w_{1}\right)\right)
$$

where $1 / r_{j}=\max \left\{0,1 / p_{j}-1 / 2\right\}$ for $j=0,1$.

Theorem

Let $\varphi \in \Phi^{+-}$be a concave function such that $\varphi(1, s) \varphi(1, t) \leqslant C \varphi(1, s t)$ for some $C>0$ and every $s, t>0$. If $T:\left(X_{0}, X_{1}\right) \times\left(Y_{0}, Y_{1}\right) \rightarrow\left(L_{p_{0}}\left(w_{0}\right), L_{p_{1}}\left(w_{1}\right)\right)$ is a bilinear operator, then T extends to a bilinear operator

$$
\widetilde{T}: \varphi\left(X_{0}, X_{1}\right)^{\circ} \times \varphi\left(Y_{0}, Y_{1}\right)^{\circ} \rightarrow \varphi\left(L_{r_{0}}\left(w_{0}\right), L_{r_{1}}\left(w_{1}\right)\right),
$$

where $1 / r_{j}=\max \left\{0,1 / p_{j}-1 / 2\right\}$ for $j=0,1$.

Bilinear operators between Calderón-Lozanovskii spaces

Corollary
Let $\rho_{0}, \rho_{1}, \rho \in \mathcal{P}_{0}$ be such that $\left\{\rho\left(2^{n}\right)\right\} \in \ell_{1}+\ell_{1}\left(2^{-n}\right)$ and $\rho(s t) \geqslant C \rho_{0}(s) \rho_{1}(t)$ for some $C>0$ and every $s, t>0$. If $T:\left(c_{0}, c_{0}\left(2^{-n}\right)\right) \times\left(c_{0}, c_{0}\left(2^{-n}\right)\right) \rightarrow\left(\ell_{1}, \ell_{1}\left(2^{n}\right)\right)$, then T extends to a bilinear operator

$$
\widetilde{T}: c_{0}\left(1 / \rho_{0}\left(2^{n}\right)\right) \times c_{0}\left(1 / \rho_{1}\left(2^{n}\right)\right) \rightarrow \ell_{2}\left(1 / \rho\left(2^{-n}\right)\right)
$$

Bilinear operators between Calderón-Lozanovskii spaces

Definition

A quasi-Banach space X is said to be p-normable if there exists a constant C such that for any $x_{1}, \ldots, x_{n} \in X$ we have

$$
\left\|\sum_{j=1}^{n} x_{j}\right\|_{X} \leqslant C\left(\sum_{j=1}^{n}\left\|x_{j}\right\|_{X}^{p}\right)^{1 / p} .
$$

It is well known that a fundamental theorem of Aoki and Rolewicz asserts that every quasi-Banach space is p-normable for some $0<p \leqslant 1$.

Theorem

Let $\varphi_{0}, \varphi_{1}, \varphi \in \mathcal{P}^{*}$ and $\varphi \in \Phi^{*}$ be such that $\left\{\varphi\left(1,2^{n}\right)\right\} \in \ell_{p}+\ell_{p}\left(2^{-n}\right)$ for some $0<p \leqslant 1$ and let $\sup _{m \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}}\left(\rho_{0}\left(2^{k}\right) \rho_{1}\left(2^{k-m}\right) / \varphi\left(1,2^{m}\right)\right)^{2}\right)^{1 / 2}<\infty$. Assume that $T:\left(X_{0}, X_{1}\right) \times\left(Y_{0}, Y_{1}\right) \rightarrow\left(Z_{0}, Z_{1}\right)$ is a bilinear operator between couples of quasi-Banach lattices. If both Z_{0} and Z_{1} are p-normable with nontrivial concavity, then T extends to a bilinear operator

$$
\widetilde{T}: \varphi_{0}\left(X_{0}, X_{1}\right)^{\circ} \times \varphi_{1}\left(Y_{0}, Y_{1}\right)^{\circ} \rightarrow \varphi\left(Z_{0}, Z_{1}\right)
$$

Definition

We define a subclass $\mathcal{P}_{p}(1 \leqslant p<\infty)$ of \mathcal{P} containing of all ρ satisfying the condition:

$$
\sup _{m \in \mathbb{Z}} \frac{1}{\rho\left(2^{m}\right)}\left(\sum_{k \in \mathbb{Z}}\left(\rho\left(2^{k}\right) \rho\left(2^{m-k}\right)\right)^{2}\right)^{1 / 2}<\infty
$$

Theorem
Let $\varphi \in \Phi^{+-}$be such that $\rho=\varphi(1, \cdot) \in \mathcal{P}_{2}$. Assume that
$T:\left(X_{0}, X_{1}\right) \times\left(Y_{0}, Y_{1}\right) \rightarrow\left(Z_{0}, Z_{1}\right)$ is a bilinear operator between quasi-Banach lattices.
If Z_{0} and Z_{1} have nontrivial concavity, then T extends to a bilinear operator

$$
\widetilde{T}: \varphi\left(X_{0}, X_{1}\right)^{\circ} \times \varphi\left(Y_{0}, Y_{1}\right)^{\circ} \rightarrow \varphi\left(Z_{0}, Z_{1}\right)
$$

Theorem

Let $\varphi \in \Phi^{+-}$be such that $\rho=\varphi(1, \cdot) \in \mathcal{P}_{2}$. Assume that $T:\left(X_{0}, X_{1}\right) \times\left(Y_{0}, Y_{1}\right) \rightarrow\left(Z_{0}, Z_{1}\right)$ is a bilinear operator between Banach couples.
Then T extends to a bilinear operator

$$
\widetilde{T}:\left\langle X_{0}, X_{1}\right\rangle_{\rho} \times\left\langle Y_{0}, Y_{1}\right\rangle_{\rho} \rightarrow \varphi_{u}\left(Z_{0}, Z_{1}\right)
$$

We give examples of functions satisfying a stronger condition than the one required in proceeding theorems. Following Astashkin, we define ϕ by

$$
\phi(t)=\left\{\begin{array}{l}
t^{a} \ln ^{c}\left(C_{1} / t\right), \quad 0<t \leqslant 1 \\
t^{b} \ln ^{d}\left(C_{2} t\right), \quad t>1
\end{array}\right.
$$

where $0<a<b<1, c>1, d>1$ and constants $C_{1}>e^{c / a}, C_{2}>e^{d} d /(1-b)$ are chosen such that ϕ is continuous. Then ϕ is a quasi-power and satisfies

$$
\sup _{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \frac{\phi\left(2^{m}\right)}{\phi\left(2^{k}\right) \phi\left(2^{m-k}\right)}<\infty
$$

In consequence ρ defined by $\rho(t):=t / \phi(t)$ for every $t>0$ satisfies

$$
\sup _{m \in \mathbb{Z}} \frac{1}{\rho\left(2^{m}\right)} \sum_{k \in \mathbb{Z}} \rho\left(2^{k}\right) \rho\left(2^{m-k}\right)<\infty
$$

and whence $\rho \in \mathcal{P}_{2}$.

Lemma

Suppose $\rho_{0}, \rho_{1} \in \mathcal{P}_{p}$ for some $1 \leqslant p<\infty$. If $\varphi \in \Phi$ is such that $C \varphi(1, s t) \geqslant \varphi(1, s) \varphi(1, t)$ for some $C>0$ and every $s, t>0$, then $\rho \in \mathcal{P}_{p}$, where $\rho(t):=\varphi\left(\rho_{0}(t), \rho_{1}(t)\right)$ for all $t>0$.

Applications

We recall that if ψ is an Orlicz function (i.e., $\psi:[0, \infty) \rightarrow[0, \infty)$ is increasing, continuous and $\psi(0)=0$), then the Orlicz space L_{ψ} on a given measure space (Ω, μ) is defined to be a subspace of $L_{0}(\mu)$ consisting of all $f \in L_{0}(\mu)$ such that for some $\lambda>0$ holds

$$
\int_{\Omega} \psi(\lambda|f|) d \mu<\infty
$$

If there exists $C>0$ such that $\psi(t / C) \leqslant \psi(t) / 2$ for every $t>0$, then L_{ψ} is a quasi-Banach lattice with the quasi-norm $\|\cdot\|$ satisfying

$$
\|f+g\| \leqslant C(\|f\|+\|g\|), \quad f, g \in L_{\psi}
$$

where $\|f\|:=\inf \left\{\lambda>0 ; \int_{\Omega} \psi\left(\frac{|f|}{\lambda}\right) d \mu \leqslant 1\right\}$. A simple calculation shows for any couple $\left(L_{p_{0}}, L_{p_{1}}\right)$ of L_{p}-spaces on a measure space (Ω, μ) with $0<p_{0}, p_{1} \leqslant \infty$, we have

$$
\varphi\left(L_{p_{0}}, L_{p_{1}}\right)=L_{\psi}
$$

with equivalence of the quasi-norms, where $\psi^{-1}(t)=\varphi\left(t^{1 / p_{0}}, t^{1 / p_{1}}\right)$ for every $t \geqslant 0$.

Theorem

Assume $\rho \in \mathcal{P}_{2}, 1 \leqslant u_{j}, v_{j}<\infty$ and $0<s_{j}<\infty$ for $j=0,1$ and let $T:\left(L_{u_{0}}, L_{u_{1}}\right) \times\left(L_{v_{0}}, L_{v_{1}}\right) \rightarrow\left(L_{s_{0}}, L_{s_{1}}\right)$ be a bilinear operator between couples of L_{p} spaces. Then T extends to a bounded bilinear operator

$$
\widetilde{T}: L_{\psi_{0}} \times L_{\psi_{1}} \rightarrow L_{\psi}
$$

between Orlicz spaces with

- $\psi_{0}^{-1}(t) \sim t^{1 / u_{0}} \rho\left(t^{1 / u_{1}-1 / u_{0}}\right)$,
- $\psi_{1}^{-1}(t) \sim t^{1 / v_{0}} \rho\left(t^{1 / v_{1}-1 / v_{0}}\right)$,
- $\quad \psi^{-1}(t) \sim t^{1 / s_{0}} \rho\left(t^{1 / s_{1}-1 / s_{0}}\right)$.

An important class of Orlicz spaces are Zygmund classes.
For $0<\alpha, \beta<\infty$ and $0<p, q<\infty$ the Zygmund space $\mathcal{Z}_{p, q}^{\alpha, \beta}$ on a measure space (Ω, μ) consists of all $f \in L_{0}(\mu)$ such that

$$
\int_{\{|f| \leqslant 1\}}|f|^{p}(1-\log |f|)^{\alpha} d \mu+\int_{\{|f|>1\}}|f|^{q}(1+\log |f|)^{\beta} d \mu<\infty
$$

It is clear that if $\psi:[0, \infty) \rightarrow[0, \infty)$ is an Orlicz function such that $\psi(t) \stackrel{0}{\sim} t^{p}(1-\log t)^{\alpha}$ and $\psi(t) \stackrel{\infty}{\sim} t^{q}(1+\log t)^{q}$, then $\mathcal{Z}_{p, q}^{\alpha, \beta}$ coincides with L_{ϕ}. We equipped $\mathcal{Z}_{p, q}^{\alpha, \beta}$ with the quasi-norm $\|\cdot\|_{\Phi}$ generated by shown Φ.

Theorem
For every $\theta \neq-1$ the bilinear Hilbert transform H_{θ} extends to a bilinear operator from $\mathcal{Z}_{p_{0}, q_{0}}^{\alpha_{0}, \beta_{0}} \times \mathcal{Z}_{p_{1}, q_{1}}^{\alpha_{1}, \beta_{1}}$ into $\mathcal{Z}_{p, q}^{\alpha, \beta}$ provided $1<p_{0}<q_{0}<\infty, 1<p_{1}<q_{1}<\infty$, $1 / p_{0}+1 / p_{1}=1 / p<3 / 2, \alpha_{0} / p_{0}=\alpha_{1} / p_{1}=\alpha / p>1$ and $\beta_{0} / q_{0}=\beta_{1} / q_{1}=\beta / q>1$.

Interpolation of analytic families of multilinear operators (L. Grafakos \& M. M., 2014)

- Stein's interpolation theorem [Trans. Amer. Math. Soc. (1956)] for analytic families of operators between L^{p} spaces $(p \geqslant 1)$ has found several significant applications in harmonic analysis. This theorem provides a generalization of the classical single-operator Riesz-Thorin interpolation theorem to a family $\left\{T_{z}\right\}$ of operators that depend analytically on a complex variable z.
- In the framework of Banach spaces, interpolation for analytic families of multilinear operators can be obtained via duality in a way similar to that used in the linear case. For instance, one may adapt the proofs in Zygmund book and Berg and Löfstrom for a single multilinear operator to a family of multilinear operators. However, this duality-based approach is not applicable to quasi-Banach spaces since their topological dual spaces may be trivial.

The open strip $\{z ; 0<\operatorname{Re} z<1\}$ in the complex plane is denoted by S, its closure by \bar{S} and its boundary by ∂S.

Definition Let $A(S)$ be the space of scalar-valued functions, analytic in S and continuous and bounded in \bar{S}. For a given couple $\left(A_{0}, A_{1}\right)$ of quasi-Banach spaces and A another quasi-Banach space satisfying $A \subset A_{0} \cap A_{1}$, we denote by $\mathcal{F}(A)$ the space of all functions $f: S \rightarrow A$ that can be written as finite sums of the form

$$
f(z)=\sum_{k=1}^{N} \varphi_{k}(z) a_{k}, \quad z \in \bar{S},
$$

where $a_{k} \in A$ and $\varphi_{k} \in A(S)$. For every $f \in \mathcal{F}(A)$ we set

$$
\|f\|_{\mathcal{F}(A)}=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{A_{0}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{A_{1}}\right\}
$$

Remark Clearly we have that $\|a\|_{\theta} \leqslant\|a\|_{A_{0} \cap A_{1}}$ for every $a \in A_{0} \cap A_{1}$, and notice that $\|\cdot\|_{\theta}$ could be identically zero.

Definition A quasi-Banach couple is said to be admissible whenever $\|\cdot\|_{\theta}$ is a quasi-norm on $A_{0} \cap A_{1}$, and in this case, the quasi-normed space $\left(A_{0} \cap A_{1},\|\cdot\|_{\theta}\right)$ is denoted by $\left(A_{0}, A_{1}\right)_{\theta}$.

Remark If A is dense in $A_{0} \cap A_{1}$, then for every $a \in A$ we have

$$
\|a\|_{\theta}=\inf \left\{\|f\|_{\mathcal{F}(A)} ; f \in \mathcal{F}(A), f(\theta)=a\right\} .
$$

Definition If there is a completion of $\left(A_{0}, A_{1}\right)_{\theta}$ which is set-theoretically contained in $A_{0}+A_{1}$, then it is denoted by $\left[A_{0}, A_{1}\right]_{\theta}$.

Definition A continuous function $F: \bar{S} \rightarrow \mathbb{C}$ which is analytic in S is said to be of admissible growth if there is $0 \leqslant \alpha<\pi$ such that

$$
\sup _{z \in \bar{S}} \frac{\log |F(z)|}{e^{\alpha|\operatorname{Im} z|}}<\infty
$$

Lemma [I. I. Hirchman, J. Analyse Math. (1953)] If a function $F: \bar{S} \rightarrow \mathbb{C}$ is analytic, continuous on \bar{S}, and is of admissible growth, then

$$
\log |F(\theta)| \leqslant \int_{-\infty}^{\infty} \log |F(i t)| P_{0}(\theta, t) d t+\int_{-\infty}^{\infty} \log |F(1+i t)| P_{1}(\theta, t) d t
$$

where $P_{j}(j=0,1)$ are the Poisson kernels for the strip given by

$$
P_{j}(x+i y, t)=\frac{e^{-\pi(t-y)} \sin \pi x}{\sin ^{2} \pi x+\left(\cos \pi x-(-1)^{j} e^{-\pi(t-y)}\right)^{2}}, \quad x+i y \in \bar{S} .
$$

Definition Let (Ω, Σ, μ) be a measure space and let $\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}$ be linear spaces. The family $\left\{T_{z}\right\}_{z \in \bar{S}}$ of multilinear operators
$T: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \widetilde{L}^{0}(\mu)$ is said to be analytic if for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}$ and for almost every $\omega \in \Omega$ the function

$$
z \mapsto T_{z}\left(x_{1}, \ldots, x_{m}\right)(\omega), \quad z \in \bar{S}
$$

is analytic in S and continuous on \bar{S}. Additionally, if for $j=0$ and $j=1$ the function

$$
\begin{equation*}
(t, \omega) \mapsto T_{j+i t}\left(x_{1}, \ldots, x_{n}\right)(\omega), \quad(t, \omega) \in \mathbb{R} \times \Omega \tag{*}
\end{equation*}
$$

is $(\mathcal{L} \times \Sigma)$-measurable for every $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}$, and for almost every $\omega \in \Omega$ the function given by formula $(*)$ is of admissible growth, then the family $\left\{T_{z}\right\}$ is said to be an admissible analytic family. Here \mathcal{L} is the σ-algebra of Lebesgue measurable sets in \mathbb{R}.

Theorem For each $1 \leqslant i \leqslant m$, let $\bar{X}_{i}=\left(X_{0 i}, X_{1 i}\right)$ be admissible couples of quasi-Banach spaces, and let (Y_{0}, Y_{1}) be a couple of maximal quasi-Banach lattices on a measure space (Ω, Σ, μ) such that each Y_{j} is p_{j}-convex for $j=0,1$. Assume that \mathcal{X}_{i} is a dense linear subspace of $X_{0 i} \cap X_{1 i}$ for each $1 \leqslant i \leqslant m$, and that $\left\{T_{z}\right\}_{z \in \bar{S}}$ is an admissible analytic family of multilinear operators $T_{z}: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow Y_{0} \cap Y_{1}$. Suppose that for every $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}, t \in \mathbb{R}$ and $j=0,1$,

$$
\left\|T_{j+i t}\left(x_{1}, \ldots, x_{m}\right)\right\|_{Y_{j}} \leqslant K_{j}(t)\left\|x_{1}\right\|_{x_{j 1}} \cdots\left\|x_{m}\right\|_{x_{j m}}
$$

where K_{j} are Lebesgue measurable functions such that $K_{j} \in L^{p_{j}}\left(P_{j}(\theta, \cdot) d t\right)$ for all $\theta \in(0,1)$. Then for all $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}$, all $s \in \mathbb{R}$, and all $0<\theta<1$ we have

$$
\left\|T_{\theta+i s}\left(x_{1}, \ldots, x_{m}\right)\right\|_{Y_{0}^{1-\theta} Y_{1}^{\theta}} \leqslant\left(M^{\left(p_{0}\right)}\left(Y_{0}\right)\right)^{1-\theta}\left(M^{\left(p_{1}\right)}\left(Y_{1}\right)\right)^{\theta} K_{\theta}(s) \prod_{i=1}^{m}\left\|x_{i}\right\|_{\left(X_{0 i}, X_{1 i}\right)_{\theta}}
$$

where

$$
\log K_{\theta}(s)=\int_{\mathbb{R}} P_{0}(\theta, t) \log K_{0}(t+s) d t+\int_{\mathbb{R}} P_{1}(\theta, t) \log K_{1}(t+s) d t
$$

Lemma Let (X_{0}, X_{1}) be a couple of complex quasi-Banach lattices on a measure space (Ω, Σ, μ) such that X_{0} is p_{0}-convex and X_{1} is p_{1}-convex. Then for every $0<\theta<1$ we have

$$
\|x\|_{X_{0}^{1-\theta} X_{1}^{\theta}} \leqslant\left(M^{\left(p_{0}\right)}\left(X_{0}\right)\right)^{1-\theta}\left(M^{\left(p_{1}\right)}\left(X_{1}\right)\right)^{\theta}\|x\|_{\left(X_{0}, X_{1}\right)_{\theta}}, \quad x \in X_{0} \cap X_{1}
$$

In particular $\left(X_{0}, X_{1}\right)$ is an admissible quasi-Banach couple.
Lemma Let $\left(X_{0}, X_{1}\right)$ be a couple of complex quasi-Banach lattices on a measure (Ω, Σ, μ). If $x_{j} \in X_{j}$ are such that $\left|x_{j}\right|(j=0,1)$ are bounded above and their non-zero values have positive lower bounds, then

$$
\left|x_{0}\right|^{1-\theta}\left|x_{1}\right|^{\theta} \in\left(X_{0}, X_{1}\right)_{\theta}
$$

and

$$
\left\|\left|x_{0}\right|^{1-\theta}\left|x_{1}\right|^{\theta}\right\|_{\left(X_{0}, X_{1}\right)_{\theta}} \leqslant\left\|x_{0}\right\|_{X_{0}}^{1-\theta}\left\|x_{1}\right\|_{X_{1}}^{\theta} .
$$

Corollary Let $\left(X_{0}, X_{1}\right)$ be a couple of complex quasi-Banach lattices on a measure space (Ω, Σ, μ). If $x \in X_{0} \cap X_{1}$ has an order continuous norm in $X_{0}^{1-\theta} X_{1}^{\theta}$, then for every $0<\theta<1$,

$$
\|x\|_{\left(X_{0}, X_{1}\right)_{\theta}} \leqslant\|x\|_{X_{0}^{1-\theta} X_{1}^{\theta}} .
$$

Theorem Let $\left(X_{0}, X_{1}\right)$ be a couple of complex quasi-Banach lattices on a measure space with nontrivial lattice convexity constants. If the space $X_{0}^{1-\theta} X_{1}^{\theta}$ has order continuous quasi-norm, then

$$
\left[X_{0}, X_{1}\right]_{\theta}=X_{0}^{1-\theta} X_{1}^{\theta}
$$

up equivalences of norms (isometrically, provided that lattice convexity constants are equal to 1). In particular this holds if at least one of the spaces X_{0} or X_{1} is order continuous.

Theorem For each $1 \leqslant i \leqslant m$, let ($X_{0 i}, X_{1 i}$) be complex quasi-Banach function lattices and let Y_{j} be complex p_{j}-convex maximal quasi-Banach function lattices with p_{j}-convexity constants equal 1 for $j=0,1$. Suppose that either $X_{0 i}$ or $X_{1 i}$ is order continuous for each $1 \leqslant i \leqslant m$. Let T be a multilinear operator defined on $\left(X_{01}+X_{11}\right) \times \cdots \times\left(X_{0 m}+X_{1 m}\right)$ and taking values in $Y_{0}+Y_{1}$ such that

$$
T: X_{i 1} \times \cdots \times X_{i m} \rightarrow Y_{i}
$$

is bounded with quasi-norm M_{i} for $i=0,1$. Then for $0<\theta<1$,

$$
T:\left(X_{01}\right)^{1-\theta}\left(X_{11}\right)^{\theta} \times \cdots \times\left(X_{0 m}\right)^{1-\theta}\left(X_{1 m}\right)^{\theta} \rightarrow Y_{0}^{1-\theta} Y_{1}^{\theta}
$$

is bounded with the quasi-norm

$$
\|T\| \leqslant M_{0}^{1-\theta} M_{1}^{\theta}
$$

As an application we obtain the following interpolation theorem for operators was proved by Kalton (1990), which was applied to study a problem in uniqueness of structure in quasi-Banach lattices (Kalton's proof uses a deep theorem by Nikishin and the theory of Hardy H_{p}-spaces on the unit disc).

Theorem Let $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ be measures spaces. Let X_{i}, $i=0,1$, be complex p_{i}-convex quasi-Banach lattices on $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and let Y_{i} be complex p_{i}-convex maximal quasi-Banach lattices on $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ with p_{i}-convexity constants equal 1 . Suppose that either X_{0} or X_{1} is order continuous. Let $T: X_{0}+X_{1} \rightarrow L^{0}\left(\mu_{2}\right)$ be a continuous operator such that $T\left(X_{0}\right) \subset Y_{0}$ and $T\left(X_{1}\right) \subset Y_{1}$. Then for $0<\theta<1$,

$$
T: X_{0}^{1-\theta} X_{1}^{\theta} \rightarrow Y_{0}^{1-\theta} Y_{1}^{\theta}
$$

and

$$
\|T\|_{X_{0}^{1-\theta} X_{1}^{\theta} \rightarrow Y_{0}^{1-\theta} Y_{1}^{\theta}} \leqslant\|T\|_{X_{0} \rightarrow Y_{0}}^{1-\theta}\|T\|_{X_{1} \rightarrow Y_{1}}^{\theta}
$$

Applications to Hardy spaces

Suppose that there is an operator \mathcal{M} defined on a linear subspace of $\widetilde{L}^{0}(\Omega, \Sigma, \mu)$ and taking values in $\widetilde{L}^{0}(\Omega, \Sigma, \mu)$ such that:
(a) For $j=0$ and $j=1$ the function $(t, x) \mapsto \mathcal{M}(h(j+i t, \cdot))(\omega),(t, \omega) \in \mathbb{R} \times \Omega$ is $\mathcal{L} \times \Sigma$-measurable for any function $h: \partial S \times \Omega \rightarrow \mathbb{C}$ such that $\omega \mapsto h(j+i t, \omega)$ is Σ-measurable for almost all $t \in \mathbb{R}$.
(b) $\mathcal{M}(\lambda h)(\omega)=|\lambda| \mathcal{M}(h)(\omega)$ for all $\lambda \in \mathbb{C}$.
(c) For every function h as in above there is an exceptional set $E_{h} \in \Sigma$ with $\mu\left(E_{h}\right)=0$ such that for $j \in\{0,1\}$

$$
\mathcal{M}\left(\int_{-\infty}^{\infty} h(t, \cdot) P_{j}(\theta, t) d t\right)(\omega) \leqslant \int_{-\infty}^{\infty} \mathcal{M}(h(t, \cdot))(\omega) P_{j}(\theta, t) d t
$$

for all $z \in \mathbb{C}$, all $\theta \in(0,1)$, and all $\omega \notin E_{h}$. Moreover, $E_{\psi h}=E_{h}$ for every analytic function ψ on S which is bounded on \bar{S}.

For each $1 \leqslant i \leqslant m$, let $\bar{X}_{i}=\left(X_{0 i}, X_{1 i}\right)$ be admissible couples of quasi-Banach spaces, and let (Y_{0}, Y_{1}) be a couple of complex maximal quasi-Banach lattices on a measure space (Ω, Σ, μ) such that each Y_{j} is p_{j}-convex for $j=0,1$. Assume that \mathcal{X}_{i} is a dense linear subspace of $X_{0 i} \cap X_{1 i}$ for each $1 \leqslant i \leqslant m$, and that $\left\{T_{z}\right\}_{z \in \bar{S}}$ is an admissible analytic family of multilinear operators $T_{z}: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow Y_{0} \cap Y_{1}$. Assume that \mathcal{M} is defined on the range of T_{z}, takes values in $L^{0}(\Omega, \Sigma, \mu)$, and satisfies conditions (a), (b) and (c).

Theorem Suppose that for every $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}, t \in \mathbb{R}$ and

$$
\left\|\mathcal{M}\left(T_{j+i t}\left(x_{1}, \ldots, x_{m}\right)\right)\right\|_{Y_{j}} \leqslant K_{j}(t)\left\|x_{1}\right\|_{x_{j 1}} \cdots\left\|x_{m}\right\|_{x_{j m}}, \quad j=0,1,
$$

where K_{j} are Lebesgue measurable functions such that $K_{j} \in L^{p_{j}}\left(P_{j}(\theta, \cdot) d t\right)$ for all $\theta \in(0,1)$. Then for all $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}, s \in \mathbb{R}$, and $0<\theta<1$,

$$
\left\|\mathcal{M}\left(T_{\theta+i s}\left(x_{1}, \ldots, x_{m}\right)\right)\right\|_{Y_{0}^{1-\theta} Y_{1}^{\theta}} \leqslant C_{\theta} K_{\theta}(s) \prod_{i=1}^{m}\left\|x_{i}\right\|_{\left(x_{0 i}, X_{1 i}\right)},
$$

where

$$
\begin{gathered}
C_{\theta}=\left(M^{\left(p_{0}\right)}\left(Y_{0}\right)\right)^{1-\theta}\left(M^{\left(p_{1}\right)}\left(Y_{1}\right)\right)^{\theta} \\
\log K_{\theta}(s)=\int_{\mathbb{R}} P_{0}(\theta, t) \log K_{0}(t+s) d t+\int_{\mathbb{R}} P_{1}(\theta, t) \log K_{1}(t+s) d t
\end{gathered}
$$

The preceding theorem has an important application to interpolation of multilinear operators that take values in Hardy spaces. A particular case of the above Theorem arises when:

- $\Omega=\mathbb{R}^{n}, \mu$ is Lebesgue measure, and

$$
\mathcal{M}(h)(x)=\sup _{\delta>0}\left|\phi_{\delta} * h(x)\right|, \quad x \in \mathbb{R}^{n}
$$

where ϕ is a Schwartz function on \mathbb{R}^{n} with nonvanishing integral.

- $Y_{0}=L^{p_{0}}, Y_{1}=L^{p_{1}}$, in which case $Y_{0}^{1-\theta} Y_{1}^{\theta}=L^{p}$, where $1 / p=(1-\theta) / p_{0}+\theta / p_{1}$.

Definition The classical Hardy space H^{p} of Fefferman and Stein is defined by

$$
\|h\|_{H^{p}}:=\|\mathcal{M}(h)\|_{L^{p}} .
$$

Corollary If $\left\{T_{z}\right\}$ is an admissible analytic family is such that

$$
\left\|T_{j+i t}\left(x_{1}, \ldots, x_{m}\right)\right\|_{H^{\rho_{j}}} \leqslant K_{j}(t)\left\|x_{1}\right\|_{x_{j 1}} \cdots\left\|x_{m}\right\|_{X_{j m}}, \quad j=0,1,
$$

then

$$
\left\|T_{\theta+s}\left(x_{1}, \ldots, x_{m}\right)\right\|_{H^{p}} \leqslant K_{\theta}(s) \prod_{i=1}^{m}\left\|x_{i}\right\|_{\left(X_{0} i, X_{1 i}\right)_{\theta}}
$$

for $0<p_{0}, p_{1}<\infty, s \in \mathbb{R}$, and $0<\theta<1$. Analogous estimates hold for the Hardy-Lorentz spaces $H^{q, r}$ where estimates of the form

$$
\left\|T_{j+i t}\left(x_{1}, \ldots, x_{m}\right)\right\|_{H^{q_{j}, r_{j}}} \leqslant K_{j}(t)\left\|x_{1}\right\|_{x_{j 1}} \cdots\left\|x_{m}\right\|_{x_{j m}}
$$

for admissible analytic families $\left\{T_{z}\right\}$ when $j=0,1$ imply

$$
\left.\left\|T_{\theta+i s}\left(x_{1}, \ldots, x_{m}\right)\right\|_{H^{q}, r} \leqslant C K_{\theta}(s) \prod_{i=1}^{m}\left\|x_{i}\right\|_{\left(X_{0} ;\right.}, x_{1 i}\right)_{\theta}
$$

where

$$
C=2^{\frac{1}{q}}\left(\frac{u q_{0}^{1-\theta} q_{1}^{\theta}}{\log 2}\right)^{u}\left(\frac{q_{0}}{q_{0}-p_{0}}\right)^{\frac{1-\theta}{p_{0}}}\left(\frac{q_{1}}{q_{1}-p_{1}}\right)^{\frac{\theta}{p_{1}}}
$$

$0<p_{j}<q_{j}<\infty, p_{j} \leqslant r_{j} \leqslant \infty$ and $1 / q=(1-\theta) / q_{0}+\theta / q_{1}$, $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$ while $u=1$ if $1<q_{0}, q_{1}<\infty$ and $1 \leqslant r_{0} r_{1} \leqslant \infty$

An application to the bilinear Bochner-Riesz operators

Stein's motivation to study analytic families of operators might have been the study of the Bochner-Riesz operators

$$
B^{\delta}(f)(x):=\int_{|\xi| \leqslant 1}\left(1-|\xi|^{2}\right)^{\delta \widehat{f}}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

in which the "smoothness" variable δ affects the degree p of integrability of $B^{\delta}(f)$ on $L^{p}\left(\mathbb{R}^{n}\right)$. Here f is a Schwartz function on \mathbb{R}^{n} and \widehat{f} is its Fourier transform defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n}
$$

Remark Using interpolation for analytic families of operators, Stein showed that whenever $\delta>(n-1)|1 / p-1 / 2|$, then

$$
B^{\delta}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)
$$

is bounded for every $1 \leqslant p \leqslant \infty$.

- The bilinear Bochner-Riesz operators are defined on $\mathcal{S} \times \mathcal{S}$ by

$$
S^{\delta}(f, g)(x):=\iint_{|\xi|^{2}+|\eta|^{2} \leqslant 1}\left(1-|\xi|^{2}-|\eta|^{2}\right)^{\delta} \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i x \cdot(\xi+\eta)} d \xi d \eta
$$

for every $f, g \in \mathcal{S}$.

- The bilinear Bochner-Riesz means S^{z} is defined by

$$
S^{z}(f, g)(x)=\iint K_{z}\left(x-y_{1}, x-y_{2}\right) f\left(y_{1}\right) g\left(y_{2}\right) d y_{1} d y_{2},
$$

where that the kernel of $S^{\delta+i t}$ is given by

$$
K_{\delta+i t}\left(x_{1}, x_{2}\right)=\frac{\Gamma(\delta+1+i t)}{\pi^{\delta+i t}} \frac{J_{\delta+i t+n}(2 \pi|x|)}{|x|^{\delta+i t+n}}, \quad x=\left(x_{1}, x_{2}\right) .
$$

If $\delta>n-1 / 2$, then using known asymptotics for Bessel functions we have that this kernel satisfies an estimate of the form:

$$
\left|K_{\delta+i t}\left(x_{1}, x_{2}\right)\right| \leqslant \frac{C(n+\delta+i t)}{(1+|x|)^{\delta+n+1 / 2}}
$$

where $C(n+\delta+i t)$ is a constant that satisfies

$$
C(n+\delta+i t) \leqslant C_{n+\delta} e^{B|t|^{2}}
$$

for some $B>0$ and so we have

$$
\left|K_{\delta+i t}\left(x_{1}, x_{2}\right)\right| \leqslant C_{n+\delta} e^{B|t|^{2}} \frac{1}{\left(1+\left|x_{1}\right|\right)^{n+\epsilon}} \frac{1}{\left(1+\left|x_{2}\right|\right)^{n+\epsilon}}
$$

with $\epsilon=\frac{1}{2}(\delta-n-1 / 2)$. It follows that the bilinear operator $S^{\delta+i t}$ is bounded by a product of two linear operators, each of which has a good integrable kernel. It follows that

$$
K^{\delta+i t}: L^{1} \times L^{1} \rightarrow L^{1 / 2}
$$

with constant $K_{1}(t) \leqslant C_{n+\delta}^{\prime} e^{B|t|^{2}}$ whenever $\delta>n-1 / 2$.

Theorem Let $1<p<2$. For any $\lambda>(2 n-1)(1 / p-1 / 2)$ $S^{\lambda}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p / 2}\left(\mathbb{R}^{n}\right) \quad$ is bounded.

