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Important bilinear operators

Important bilinear operators

A bounded measurable function o on R” x R"” (called a multiplier) leads to a bilinear
operator W,, defined by

Wo(f, 8)(x) = / / o (&, mF()g(n)e™™ " d¢dy
R JRN
for every f, g in the Schwartz space S(R"), where (-, -) denotes the inner product in R".

e The study of such bilinear multiplier operators was initiated by Coifman and Meyer
(1978). They proved that if 1 < p,q < 0o, 1/r =1/p+ 1/q and o satisfies

|08 0 0(&,m)| < Cap(I€] + [n)) =1~

for sufficiently large multi-indices o and 3, then W,, extends to a bilinear operator
from L,(IR") x Lg(R") into L, o (R") whenever r > 1. Here as usual L, o (R")
denotes the weak L, space of Marcinkiewicz.
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Important bilinear operators

e This result was later extended to the range 1 > r > 1/2 by Grafakos and Torres
(1996) and Kenig and Stein (1999).

e Multipliers that satisfy the Marcinkiewicz condition were studied by Grafakos and
Kalton (2001).

e The first significant boundedness results concerning non-smooth symbols were
proved by Lacey and Thiele (1997, 1999) who established that W, with
o(&,n) =sign(§+ an), e € R\ {0,1} has a bounded extension from
Lp(R") x Lg(R™) to L,(R") if2/3 < r<oo,1<p,g<oo,andl/r=1/p+1/q.
Extensions of this result was subsequently obtained by Gilbert and Nahmod (2001).

e The bilinear Hilbert transform Hy is defined for a parameter 6 € R by

e—0

Ho(f, g)(x) := lim / f(x — tL)f,r(X—i—é’t“)%dt“7 xeR

for functions f, g from the Schwartz class S(R). The family {Hp} was introduced
by Calderén in his study of the first commutator, an operator arising in a series
decomposition of the Cauchy integral along Lipschitz curves. In 1977 Calderén
posed the question whether Hy satisfies any L, estimates.
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Important bilinear operators

e In their fundamental work (Ann. of Math. 149 (1999), 475-496) Lacey and Thiele
proved that if  # —1, then the bilinear Hilbert transform Hy extends to a bilinear
operator from L, x L, into L, whenever 1 < p,g<ococand 1/p+1/q=1/r <3/2.

e The bilinear Hilbert transforms arise in a variety of other related known problems in
bilinear Fourier analysis, e.g., in the study of the convergence of the mixed Fourier

NILmOo Z Z?(m)g(n)eQ"[(m+")X.

|m—6n|<N
|m—n|<N

series of the form

e Fan and Sato in 2001 were able to show the boundedness of the bilinear Hilbert
transform H on the torus T

H(f,g)(x) = / f(x —t)g(x + t)ctg(nt)dt, xeT

by transferring the result from R. Their proof relies upon some DelLeeuw (1969)
type transference methods for multilinear multipliers.
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Important bilinear operators

Definition
A quasi-Banach lattice X is said to be p-convex if there exists a constant C > 0 such

that for any xi, ..., x, € X, we have

" 1/p n 1/p
[(30er) ], < (i)™

k=1

The least C is denoted by M(P)(X).

Definition

Let X be a Banach space and 1 < p < co. The sequence {x,}nez C X is said to be
weakly p-summable if the scalar sequences {x*(x,)} € £,(Z) for every x* € X*. The
space of all weakly p-summing sequences in X is denoted by ¢;(X). It is a Banach
space equipped with the norm

1o Hlego = sup { (3 " (a)l?) VP et e < 1),

nEZ
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Bilinear interpolation theorems

Bilinear interpolation theorems (M. M., 2013)

Let X = (Xo, X1), Y = (Yo, Y1) and Z = (2, Z1) be quasi-Banach couples.
Definition

(i) We will say that T := (To, T1) is a bilinear operator from X x Y into Z, and write
T XxY—ZifTo: Xo x Yo— Zoand Ti: Xy x Y1 — Z; are bilinear operator
such that To(x,y) = Ti(x,y) for every x € Xo N X1, y € Yo N Yi.

(i) If additionally X, Y and Z are intermediate quasi-Banach spaces with respect to X,
Y and Z, respectively, then we say that T: X x Y — Z extends to a bilinear
operator from X x Y into Z provided that Ty has a bilinear extension from X x Y
into Z.
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Bilinear interpolation theorems

Lemma

Let Y be a maximal p-convex quasi-Banach lattice on (Q, ) and T: co X co — Y
be a bilinear operator. If a sequence {akm}«,mez is such that

Ci=suppes (D 4es |akm\2)1/2 < o0, then the series ), ., akm T (ex, en—x) converges
in'Y for each m € Z. If we put

Ym = Zaka(ek, em,k), meZ
keZ

then for any sequence {I,}ncz of disjoint sets |, C Z and any sequence {dm}mez of real
numbers with |6, < 1 for each m € Z, we have (ZnEZ ‘ Zmel 6mym}2)1/2 cY and

1/2
H(Z|deym’2) HY < CAP—ZM(P)(y) T lleox oy -

n€Z mel,
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Bilinear interpolation theorems

Definition

‘P denotes the set of all positive quasi-concave functions p on (0, c0), i.e. such that both
p and t — tp(1/t) are nondecreasing functions. We let Py denote the subset of P
consisting of all p such that p(t) — 0 as t — 0+, and p(t)/t — co as t — co. On P, we
define an involution by p*(t) = 1/p(1/t) for every t > 0 and we put P* := Py N (Po)".

Lemma

Let po, p1,p € Po be such that {p(2")} € £1+ £1(27") and p(st) > Cpo(s)pi(t) for some
C > 0 and for every s, t > 0. Assume that (Yo, Y1) is a Banach couple and

T: (co,@(27")) x (c0,@(27")) — (Yo, V1)

is a bilinear operator. Then we have

Z H Z EkNm—« To(ex, em—k)

meZ  keEZ

< 00
Yo+Y1

for every sequences {&n} and {nn} in co N (27").

M. Mastyto (UAM) Multilinear interpolation theorems with applications 9 /40



Bilinear interpolation theorems

Definition
Let (Xo, X1) be a Banach couple and let p € Py.

(i)

(i)

If {p(2")}nez € €2+ £2(27"), then the space G, 2(Xo, X1) consists of all elements
x € Xo + Xi for which x = ZnEZ Xn (convergence in Xo + X1), where the elements
xn € Xo N X1 are such that {2"x,/p(2")} € £5'(X;) for j = 0,1. G,2(Xo, X1) is

a Banach space equipped with the norm

Il = inf max {25/ 0(2") Hleg -

where the infimum is taken over all representations of x =Y _ x, as above.

ez
The space (Xo, X1), consists of all elements x € Xo + X1 such that x = _ xq
(convergence in Xg + X1), where the elements x, € Xo N X1 are such that

> nez Xn/p(2") is unconditionally convergent in Xo and ) 2"x,/p(2") is
unconditionally convergent in Xi. (Xp, X1), is equipped with the norm

x|| = inf max su H A2/ p(2" H ;
Il = infmaxsup [| > 22" /o(2)]|

neZ

where the supremum is taken over all complex valued sequences {\,} with |A,| <1

for all n, and the infimum is taken over all representations of x = EnEZ Xp.
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Bilinear interpolation theorems

Theorem

Let po, p1,p € Po be such that {p(2")} € (1 + (1(27") and p(st) = Cpo(s)p1(t)
for some C > 0 and every s, t > 0. Assume that (Yp, Y1) is a Banach couple and
T: (co,c0(27™)) X (co,c0(27")) — (Yo, Y1) is a bilinear operator. Then T extends
to a bilinear operator

T: co(1/po(2") x co(1/p1(2") = Gpa(Yo, Y1)

Theorem

Let po, p1 € P* and p € Py be such that {p(2")} € {1+ ¢1(27") and p(st) = Cpo(s)p1(t)
for some C > 0 and for every s, t > 0. Assume that T: (Xo, X1) X (Yo, Y1) — (2, Z1) is
a bilinear operator between Banach couples. Then T extends to a bilinear operator

T: <X07X1>P0 X <Y07 Y1>P1 - P,Q(Zovzl)'
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Bilinear interpolation theorems

Definition

Given a Banach couple A = (Ao, A1), 0 # a € Ao + A1 and any Banach couple X an
interpolation orbit of a in X is a Banach space

Orbz(a, X) := {Ta; T:A— Y}
equipped with the norm

Ix[| = inf {|| T ||z % x = Ta, T: A— X}.

Lemma

Let p be a quasi-concave function such that £, := {p(2")} € l» 4+ (2(27"). Then for any
Banach couple X, we have

Gp,2(Y) = Orb((;,[z@‘”))(ép? Y)

isometrically.
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Bilinear operators between Calderén—Lozanovskii spaces

Bilinear operators between Calderén—Lozanovskii spaces

Definition

Let @ the set of all functions p: Ry x Ry — Ry that are positive, non-decreasing in
each variable, and homogeneous of degree one (that is, p(As, At) = Ap(s, t) for all

A, 5,t>0). Let p € ® and X = (Xp, X1) be a couple of quasi-Banach lattices on a
measure space (£, ). Following Lozanovskii, we define the space ¢(X) = (X0, X1) of
all x € Lo(p) such that |x| = ¢(|xol, |x1|) for some x; € Xj, j = 0,1. It is a quasi-Banach
lattice equipped with the quasi-norm

x| = inf { max{[lxollxo; [Ixllx}i 1x] = @l [xl) x € X, j=0,1}.

Note that if ¢ is concave and (Xp, X1) is a Banach couple, then ¢(X) is a Banach lattice.

4

Definition

A quasi-concave function p is called a quasi-power ( p € PT7) if s,(t) = o(max(1, t)) as
t — 0 and t — oo, where s,(t) :=sup,- (p(tu)/p(u)) for every t > 0. The set of all

» € ® such that p:= (1,-) € Po (resp., p € P*~, p € P*) is denoted by ®q (resp.,
T, O*); 1~ 2 (1 2 @2 Or Y1 ~ ©y) means that there exist Ci, G and to or teo
such that Crp1(t) < p2(t) < Gpi(t) forall t >0 (0 < t < ty or t > too, respectively).
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Bilinear operators between Calderén—Lozanovskii spaces

Theorem

Let o € ®*~ be a concave function and let p(t) = p(1,t) for t > 0. Then for any
couple (Lpy(wo), Lp,(w1)) of weighted L,-spaces on a measure space, we have

Gp2(Lpy (w0), Lpy (w1)) = @(Lry(wo), L (w1)),

where 1/r; = max{0,1/p; — 1/2} for j =0, 1.

Theorem

Let o € @~ be a concave function such that o(1,s)p(1,t) < Cy(1,st) for some C > 0
and every s, t > 0. If T: (Xo, X1) X (Yo, Y1) — (Lpy(w0), Lp,(w1)) is a bilinear operator,
then T extends to a bilinear operator

T (X0, X1)° X @Yo, Y1)° — @(Lry (W), L (1)),

where 1/r; = max{0,1/p; — 1/2} for j =0, 1.
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Bilinear operators between Calderén—Lozanovskii spaces

Bilinear operators between Calderén—Lozanovskii spaces

Corollary

Let po, p1, p € Po be such that {p(2")} € £1+ £1(27") and p(st) = Cpo(s)p1(t) for some
C>0andeverys,t >0.If T: (co,c0(27")) X (co,c0(27")) — (¢1,¢1(2")), then T
extends to a bilinear operator

T+ a(1/po(27) x @(1/p(27) — (1/p(27")).
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Bilinear operators between Calderén—Lozanovskii spaces

Bilinear operators between Calderén—Lozanovskii spaces

Definition
A quasi-Banach space X is said to be p-normable if there exists a constant C such that
for any xi,...,x, € X we have

P

n n 1/
HZXJ <C(ZHXJH§> :
P =1

It is well known that a fundamental theorem of Aoki and Rolewicz asserts that every
quasi-Banach space is p-normable for some 0 < p < 1.

Theorem

Let @o, 1,0 € P* and ¢ € ®* be such that {p(1,2")} € £, + £,(27") for some
0<p<1andletsup,., (Zkez (po(2k)p1(2k7m)/ap(1,2”’))2)1/2 < 00. Assume that
T: (Xo, X1) x (Yo, Y1) — (2o, Z1) is a bilinear operator between couples of quasi-Banach
lattices. If both Zy and Zy are p-normable with nontrivial concavity, then T extends to a
bilinear operator

T po(Xo, X1)° x @1( Yo, Y1)° — ©(Zo, Z1).
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Bilinear operators between Calderén—Lozanovskii spaces

Definition

We define a subclass P, ( 1 < p < o0) of P containing of all p satisfying the condition:

sup — 1 (S (o202 )) < o

meZ kez

Theorem

Let ¢ € ®T~ be such that p = ¢(1,-) € Pa. Assume that
T: (Xo, X1) X (Yo, Y1) — (2o, Z1) is a bilinear operator between quasi-Banach lattices.
If Zy and Zi have nontrivial concavity, then T extends to a bilinear operator

T: (X0, X1)° x (Y0, Y1)° — ©(Z, Z1).

Theorem

Let ¢ € ®"~ be such that p = ¢(1,-) € Pa. Assume that
T: (Xo, X1) x (Yo, Y1) — (2o, Z1) is a bilinear operator between Banach couples.
Then T extends to a bilinear operator

T (X0, X1), % (Yo, Yo)p — @u(Zo, Z4).
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Bilinear operators between Calderén—Lozanovskii spaces

We give examples of functions satisfying a stronger condition than the one required in
proceeding theorems. Following Astashkin, we define ¢ by

t? In°(Gi/t), 0<t<1,
t) =
o(t) { PInd(Gt), t>1,

where 0 <a< b<1 c¢>1 d>1and constants C; > e/?, C, > e’d/(1 — b) are
chosen such that ¢ is continuous. Then ¢ is a quasi—power and satisfies

SUPZ¢2k 2m k)<<>o.

meZ

In consequence p defined by p(t) := t/¢(t) for every t > 0 satisfies

1 Ky (om—k
Sup ——-5 p(27)p(277) < oo,
and whence p € Ps.

Lemma

Suppose po, p1 € Pp for some 1 < p < co. If o € & is such that
Co(1,st) > p(1,s)p(1, t) for some C > 0 and every s, t > 0, then p € P,, where
p(t) == @(po(t), p1(t)) for all t > 0.
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Applications

Applications

We recall that if ¢ is an Orlicz function (i.e., ¥: [0, 00) — [0, 00) is increasing,
continuous and ¥(0) = 0), then the Orlicz space L on a given measure space (2, i) is
defined to be a subspace of Lo(p) consisting of all f € Lo(p) such that for some A > 0
holds

/1@’1()\|f\) du < oo.
Q

If there exists C > 0 such that ¢(t/C) < v(t)/2 for every t > 0, then Ly is
a quasi-Banach lattice with the quasi-norm || - || satisfying

If +ell < C(Ifll + llgll), f.g€ Ly,

where ||f|| := inf {)\ > 0; fﬂ 1)(%) dp < 15. A simple calculation shows for any couple

(Lpy, Lp,) of Lp-spaces on a measure space (£2, 1) with 0 < pg, p1 < 00, we have

@(Lpys Lpy) = Ly

with equivalence of the quasi-norms, where 1~ *(t) = ga(tl/"o, tl/”l) for every t > 0.
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Applications

Theorem

Assume p € P2, 1 < uj,v; < 00 and 0 < s; < oo for j = 0,1 and let
T: (Lyy, L) x (Lyy, L) — (Ls, Ls,) be a bilinear operator between couples of L,
spaces. Then T extends to a bounded bilinear operator

T Lyg % Ly, — Ly
between Orlicz spaces with
R O RN ERY (SR

o Ui ~ e ep(et/ T,

° d)—l(t) ~ tl/sop(tl/slfl/so).
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Applications

An important class of Orlicz spaces are Zygmund classes.

For 0 < a, < 0o and 0 < p, g < oo the Zygmund space Z,ﬁf’f on a measure space
(82, ) consists of all f € Lo(p) such that

/ |f1P(1 — log |f])* du+/ £19(1 + log | f])” dp < oo.
JAIFI<1} JAIf[>1}

It is clear that if ¢: [0,00) — [0, 00) is an Orlicz function such that

P(t) R tP(1 — log t)® and ¥ (t) < t9(1 + log t)7, then Z5 coincides with Lo. We
equipped Z5 with the quasi-norm || - ||e generated by shown ®.

Theorem

For every 6 # —1 the bilinear Hilbert transform Hy extends to a bilinear operator from
Zp0 b0 s zeu B into 22 provided 1 < py < qo < 00, 1 < p1 < qi < 00,
1/po+1/p1=1/p <3/2, ao/po=ca/pr=a/p>1and fo/q = pi/q = B/q > 1.
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Interpolation of analytic families of multilinear operators

Interpolation of analytic families of multilinear operators
(L. Grafakos & M. M., 2014)

e Stein’s interpolation theorem [Trans. Amer. Math. Soc. (1956)] for analytic
families of operators between L” spaces (p > 1) has found several significant
applications in harmonic analysis. This theorem provides a generalization of
the classical single-operator Riesz-Thorin interpolation theorem to a family
{T.} of operators that depend analytically on a complex variable z.

e In the framework of Banach spaces, interpolation for analytic families of
multilinear operators can be obtained via duality in a way similar to that used
in the linear case. For instance, one may adapt the proofs in Zygmund book
and Berg and Lofstrom for a single multilinear operator to a family of
multilinear operators. However, this duality-based approach is not applicable
to quasi-Banach spaces since their topological dual spaces may be trivial.
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Interpolation of analytic families of multilinear operators

The open strip {z; 0 < Rez < 1} in the complex plane is denoted by S, its
closure by S and its boundary by 0S.

Definition Let A(S) be the space of scalar-valued functions, analytic in S and
continuous and bounded in S. For a given couple (Ag, A;) of quasi-Banach
spaces and A another quasi-Banach space satisfying A C Ay N A1, we denote
by F(A) the space of all functions f: S — A that can be written as finite
sums of the form

N
f(2)=> ¢u(@)ar, z€S,
k=1
where a, € A and ¢, € A(S). For every f € F(A) we set

1£1l7(a) = max { sup [[£(it) ] a,, sup [ F(1 + it) [ a, }-
teR teR
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Interpolation of analytic families of multilinear operators

Remark Clearly we have that ||al|p < ||a||a,na, for every a € Ay N Ay, and
notice that || - || could be identically zero.

Definition A quasi-Banach couple is said to be admissible whenever || - ||
is a quasi-norm on Ag N A1, and in this case, the quasi-normed space
(Ao N A1, - |lg) is denoted by (Ag, A1)g.

Remark If A is dense in Ag N Az, then for every a € A we have

lallo = inf{[|f|l (a): f € F(A), £(6) = a}.

Definition If there is a completion of (Ao, A1)p which is set-theoretically
contained in Ag + Ay, then it is denoted by [Ag, A1]y.
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Interpolation of analytic families of multilinear operators

Definition A continuous function F: S — C which is analytic in S is said to
be of admissible growth if there is 0 < a < 7 such that

log |F(2)|

sup o|Im z|

zeS €

Lemma [I.1. Hirchman, J. Analyse Math. (1953)] If a function F: S — C is
analytic, continuous on S, and is of admissible growth, then

oo

log |F(it)| Po(0, t) dt + / log |F(1+ it)| P1(0, t) dt,

—00

og|F(6)] < |
where P; (j = 0,1) are the Poisson kernels for the strip given by
e ™(t=Y) sin x

sin? mx 4 (cos x — (—1)e=m(t=y))2

Pi(x +iy,t) = ., x+iy€eSs.
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Interpolation of analytic families of multilinear operators

Definition Let (2, X, 1) be a measure space and let X},..., X, be linear
spaces. The family { 7.} _< of multilinear operators

T: X% x Xy — L9(p) is said to be analytic if for any

(X1y .00y Xn) € Xy X -+ X X, and for almost every w € Q the function

z Ty(x, e Xm)(w), z€S

is analytic in S and continuous on S. Additionally, if for j =0 and j = 1 the

function
(t,(.U) = j+it(X17 "'7Xn)(w)7 (t7w) ER X Q (*)

is (£ x X)-measurable for every (x1,...,x,) € X1 X -+ X X, and for almost
every w € Q the function given by formula (x) is of admissible growth, then
the family {T,} is said to be an admissible analytic family. Here £ is the
o-algebra of Lebesgue measurable sets in R.
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Interpolation of analytic families of multilinear operators

Theorem For each 1 < i < m, let X; = (Xo;, X1;) be admissible couples of
quasi-Banach spaces, and let (Yo, Y1) be a couple of maximal quasi-Banach
lattices on a measure space (€, X, ;1) such that each Y] is pj-convex for

j =0,1. Assume that X is a dense linear subspace of Xy; N Xj; for each

1 < i< m, and that {Tz}ze§ is an admissible analytic family of multilinear
operators T,: X7 X -+ - x X, — Yo N Yi. Suppose that for every
(X1, s Xm) EX1 X -+ X Xy, t ERand j =0, 1,

T Oxs wees xim) [y < KG(E) Xl = - llxim 1

where K are Lebesgue measurable functions such that K; € LP(P;(6,-) dt)
for all & € (0,1). Then for all (x1,...,xm) € X1 X -+ x X, all s € R, and all
0 <0 <1 we have

)179

p m
|| T9+,'5(X1, ~~~7Xm)Hy01*9y19 < (M(pO)(YO) (M(pl)(yl)) K(’(S) H HXI'H(Xoi,Xli)ev
i=1

where

IogKg(s):/Po(G,t)IogKo(t—i—s)dt—i-/P1(9, t)log Ki(t + s) dt.
R R
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Interpolation of analytic families of multilinear operators

Lemma Let (Xp, X1) be a couple of complex quasi-Banach lattices on
a measure space (€2, X, 1) such that Xy is pp-convex and Xj is p;-convex.
Then for every 0 < 6 < 1 we have

Ixllxa-nxs < (MO ) (M X0)Y [0 X € Xo N1 Xe.

In particular (Xp, X1) is an admissible quasi-Banach couple.

Lemma Let (Xp, X1) be a couple of complex quasi-Banach lattices on
a measure (Q, X, ). If x; € X; are such that |x;| (j =0, 1) are bounded
above and their non-zero values have positive lower bounds, then

Ixol'|x1|? € (Xo, X1)o

and
ol bal? g x, < I0lli a1 -
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Interpolation of analytic families of multilinear operators

Corollary Let (Xp, X1) be a couple of complex quasi-Banach lattices on
a measure space (2, X, u). If x € Xo N Xy has an order continuous norm in
X}7X!, then for every 0 < 6 < 1,

||X||(X0,X1)e < ”XHXO“‘QXf'
Theorem Let (Xp, X1) be a couple of complex quasi-Banach lattices on

a measure space with nontrivial lattice convexity constants. If the space
X01_9X19 has order continuous quasi-norm, then

[Xo, X1]o = XgOX{

up equivalences of norms (isometrically, provided that lattice convexity
constants are equal to 1). In particular this holds if at least one of the spaces
Xp or Xj is order continuous.
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Interpolation of analytic families of multilinear operators

Theorem For each 1 < i < m, let (Xp;, X1;) be complex quasi-Banach
function lattices and let Y; be complex p;-convex maximal quasi-Banach
function lattices with p;-convexity constants equal 1 for j = 0, 1. Suppose
that either Xp; or Xj; is order continuous for each 1 < i< m. Let T be

a multilinear operator defined on (Xo; + Xi1) X - - - X (Xom + Xim) and
taking values in Yy + Yj such that

T: X x-XXim—Y;
is bounded with quasi-norm M; for i = 0,1. Then for 0 < 0 < 1,
T: (Xor)' (X11)? x -+ x (Xom)' ™ (Xam)? — Y Yf
is bounded with the quasi-norm

1T < Mo M.
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Interpolation of analytic families of multilinear operators

As an application we obtain the following interpolation theorem for operators
was proved by Kalton (1990), which was applied to study a problem in
uniqueness of structure in quasi-Banach lattices (Kalton's proof uses a deep
theorem by Nikishin and the theory of Hardy H,-spaces on the unit disc).

Theorem Let (Q1, %1, 1) and (22, X2, 112) be measures spaces. Let X;,

i = 0,1, be complex p;-convex quasi-Banach lattices on (21, X1, 1) and let
Y; be complex p;-convex maximal quasi-Banach lattices on (5, ¥, 112) with
pi-convexity constants equal 1. Suppose that either Xy or Xj is order
continuous. Let T: Xo + X; — L%(j1») be a continuous operator such that
T(Xo) C Yoand T(X;) C Yi. Thenfor 0 <6 <1,

T: X 'X{ — vy

and
-0
1T lxg-oxoyi-oys < T 1% 1T
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Applications to Hardy spaces

Applications to Hardy spaces

Suppose that there is an operator M defined on a linear subspace of ZO(Q, Y )
and taking values in L°(Q2, X, ;1) such that:

(a) For j =0 and j =1 the function (t,x) — M(h(j + it,"))(w), (t,w) € R x Q
is £ x Y-measurable for any function h: 9S x Q2 — C such that
w +— h(j + it,w) is X-measurable for almost all t € R.

(b) M(AR)(w) = |AM(h)(w) for all A € C.

(¢c) For every function h as in above there is an exceptional set E;, € ¥ with
1(Ep) = 0 such that for j € {0,1}

M(/Zh( )P(9tdt) / M(h (w)P;(6,t) dt

forall ze C, all § € (0,1), and all w ¢ E,. Moreover, E;, = Ej, for every
analytic function ) on S which is bounded on S.
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Applications to Hardy spaces

For each 1 < i< m, let X; = (Xo;, X1;) be admissible couples of
quasi-Banach spaces, and let (Yo, Y1) be a couple of complex maximal
quasi-Banach lattices on a measure space (€2, %, ;1) such that each Y] is
pj-convex for j = 0, 1. Assume that A is a dense linear subspace of Xo; N Xi;
for each 1 < i < m, and that {Tz}zeE is an admissible analytic family of
multilinear operators T,: X7 X --- X X, — Yp N Y7. Assume that M is
defined on the range of T, takes values in L9(2, ¥, 11), and satisfies
conditions (a), (b) and (¢).
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Applications to Hardy spaces

Theorem Suppose that for every (xi,...,xym) € Xy X -+ - x X, t € R and

IM( Tyt e xa))lly, < K(Ollallx - Ixmllxg, = 0,1,

where K are Lebesgue measurable functions such that K; € LP(P;(6,-) dt)
for all @ € (0,1). Then for all (x1,...,xp) € X1 X -+ x X, s € R, and
0<o<1,

HM(THHS(XD ~~7Xm))Hy01*9y9 < G K9 H ||X,|| (Xoi,X1i)e

where
1-6

Co = (M®)(Ve))' " (M) (7))’

IogKg(s):/P0(9,t)|ogKo(t+s)dt+/P1(9, t) log Ki(t + s) dt.
R R
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Applications to Hardy spaces

The preceding theorem has an important application to interpolation of
multilinear operators that take values in Hardy spaces. A particular case of
the above Theorem arises when:

e Q =R" pis Lebesgue measure, and

M(h)(x) = sup|¢s * h(x)], x €R"
§>0

where ¢ is a Schwartz function on R” with nonvanishing integral.

e Yy =LP, Y] = LP, in which case Y01_9Y19 = LP, where
1/p=(1-0)/po+0/p1.

Definition The classical Hardy space HP of Fefferman and Stein is defined by

[Al[me = | M(h)][ -
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Corollary If {T,} is an admissible analytic family is such that

” TJ'+it(X1ﬂ "'ﬂXm)”H"f < Kj(t)”XlHXﬂ e ”Xm”ijﬂ j=0,1,
then
” T9+S(X17 sy X HHP X H ”Xl” (XoisX1i)o
for 0 < pg,p1 < oo, s€R,and 0 <6 < 1. Analogous estimates hold for the
Hardy-Lorentz spaces H9" where estimates of the form

[ Ttie Ot woos X s < KG () Ixa L - - - (Xm0

for admissible analytic families { T,} when j = 0,1 imply

| Tois (X0, ooy Xm) || Hr < C Ko(s H 1]l (61,3016

szé(“qéequ( do )%( a )%
log 2 o — Po n—p/
O<pi<g<oopj<rp<ooandl/q=(1-0)/q0+6/q,

1/r=(1-0)/ro+6/rn while u =1if 1 < qo,q1 <ooand 1< rp,n < oo
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An application to the bilinear Bochner-Riesz operators

An application to the bilinear Bochner-Riesz operators

Stein's motivation to study analytic families of operators might have been the
study of the Bochner-Riesz operators

B(F)(x) = / (1 |E2)° Fe)em<de.
[€1<1

in which the “smoothness” variable ¢ affects the degree p of integrability of
B(f) on LP(R"). Here f is a Schwartz function on R” and f is its Fourier
transform defined by

() = / f(x)e 2™ ¢dx, € eR".
Remark Using interpolation for analytic families of operators, Stein showed
that whenever § > (n—1)|1/p — 1/2|, then
B’: [P(R") — LP(R")

is bounded for every 1 < p < 0.
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An application to the bilinear Bochner-Riesz operators

e The bilinear Bochner-Riesz operators are defined on § x S by

f 1_ 2 I~ 27ix-(§4m) ¢ of
D= [[ Al ) TR Dy

for every f,g € S.

e The bilinear Bochner-Riesz means 57 is defined by

S%(F,8)(x) = / / Ke(x = yi,x — o) F(y2)&(y2)dys s,

where that the kernel of S°*7 is given by

r(5 + 1+ /t) J5+,-t+,,(27T|X|)
o+it |X|<S+it+n ?

Ksvit(x1, x2) = x = (x1, x2).
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An application to the bilinear Bochner-Riesz operators

If 6 > n—1/2, then using known asymptotics for Bessel functions we have

that this kernel satisfies an estimate of the form:

C(n+d+it)

|Ksit(x1, x2)| < W»

where C(n+ § + it) is a constant that satisfies
C(n+6+it) < CpseBltr

for some B > 0 and so we have

B|t|2 1 ].

|Ksrit(x1,%0)| < Coys €

with € = £(§ — n— 1/2). It follows that the bilinear operator S is
bounded by a product of two linear operators, each of which has a good

integrable kernel. It follows that
K5+it: Ll X Ll N L1/2

with constant Ky (t) < C’ ;eBl!" whenever § > n—1/2.

+5€
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An application to the bilinear Bochner-Riesz operators

Theorem Let 1 < p < 2. Forany A > (2n—1)(1/p—1/2)

S*: [P(R") x LP(R") — LP/2(R") is bounded.
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