Decomposition norm theorem, L^{p} -behavior of reproducing kernels and two weight inequality for Bergman projection.

José Ángel Peláez

Departamento de Análisis Matemático Universidad de Málaga Supported by the Ramón y Cajal program of MICINN (Spain)

Joint works with O. Constantin and J. Rättyä

VI International Course of Mathematical Analysis in Andalucía Antequera

Outline of the lecture

• Introduction. A "classification" of sensible radial weights.

- Introduction. A "classification" of sensible radial weights.
- One weight problem for rapidly decreasing weights.

- Introduction. A "classification" of sensible radial weights.
- One weight problem for rapidly decreasing weights.
- L^p -behavior of Bergman reproducing kernels induced by doubling weights

- Introduction. A "classification" of sensible radial weights.
- One weight problem for rapidly decreasing weights.
- L^p-behavior of Bergman reproducing kernels induced by doubling weights
- Projections. Two weight problem. Regular weights. A Bekollé-Bonami type condition.

- Introduction. A "classification" of sensible radial weights.
- One weight problem for rapidly decreasing weights.
- L^p-behavior of Bergman reproducing kernels induced by doubling weights
- Projections. Two weight problem. Regular weights. A Bekollé-Bonami type condition.
- Projections. Some facts on the one weight problem.

$\begin{array}{c} \text{Outline of the lecture}\\ \textit{L}^{\textit{P}}\text{-behavior of Bergman reproducing kernels}\\ \text{Two weight problem} \end{array}$

Which are those weights (ω, v) satisfying the two weight inequality

$\|P_{\omega}(f)\|_{L^p_{\nu}}\lesssim \|f\|_{L^p_{\nu}},\quad f\in L^p_{\nu}?$

Regular weights.

A radial weight is called regular, $\omega \in \mathcal{R}$, if $\omega \in \widehat{\mathcal{D}}$ and

$$\omega(r) \asymp rac{\int_r^1 \omega(s)\,ds}{1-r}, \quad 0 \le r < 1.$$

Regular weights.

A radial weight is called regular, $\omega \in \mathcal{R}$, if $\omega \in \widehat{\mathcal{D}}$ and

$$\omega(r) \asymp rac{\int_r^1 \omega(s)\,ds}{1-r}, \quad 0\leq r<1.$$

$$\omega(r) = (1-r)^lpha \left(\log rac{{\mathsf e}}{1-r}
ight)^eta, \quad lpha > -1, eta \in {\mathbb R},$$

Regular weights.

A radial weight is called regular, $\omega \in \mathcal{R}$, if $\omega \in \widehat{\mathcal{D}}$ and

$$\omega(r) \asymp rac{\int_r^1 \omega(s)\,ds}{1-r}, \quad 0\leq r<1.$$

$$\omega(r) = (1-r)^{lpha} \left(\log rac{ extsf{e}}{1-r}
ight)^{eta}, \quad lpha > -1, eta \in \mathbb{R},$$

• If $\omega \in \mathcal{R}$,

$$C^{-1}\omega(t) \leq \omega(r) \leq C\omega(t), \quad 0 \leq r \leq t \leq rac{1+r}{2}, \quad (LS).$$

Regular weights.

A radial weight is called regular, $\omega \in \mathcal{R}$, if $\omega \in \widehat{\mathcal{D}}$ and

$$\omega(r) \asymp rac{\int_r^1 \omega(s) \, ds}{1-r}, \quad 0 \le r < 1.$$

$$\omega(r) = (1-r)^{lpha} \left(\log rac{{
m e}}{1-r}
ight)^{eta}, \quad lpha > -1, eta \in \mathbb{R},$$

• If $\omega \in \mathcal{R}$,

$$C^{-1}\omega(t) \leq \omega(r) \leq C\omega(t), \quad 0 \leq r \leq t \leq rac{1+r}{2}, \quad (LS).$$

• \mathcal{R} is a natural framework for an extension of the classical theory on the standard Bergman spaces A^p_{α} .

Rapidly increasing weights.

A continuous radial weight is called rapidly increasing, $\omega \in \mathcal{I},$ if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=+\infty.$$

Rapidly increasing weights.

A continuous radial weight is called rapidly increasing, $\omega \in \mathcal{I},$ if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=+\infty.$$

 $\bullet \ \mathcal{I} \subset \widehat{\mathcal{D}}$

Rapidly increasing weights.

A continuous radial weight is called rapidly increasing, $\omega \in \mathcal{I},$ if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=+\infty.$$

 $\bullet \ \mathcal{I} \subset \widehat{\mathcal{D}}$

$$v_{lpha}(r) = \left(\left(1-r
ight) \left(\lograc{ extbf{e}}{1-r}
ight)^{lpha}
ight)^{-1}, \quad 1 < lpha < \infty$$

Rapidly increasing weights.

A continuous radial weight is called rapidly increasing, $\omega \in \mathcal{I},$ if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=+\infty.$$

•
$$\mathcal{I} \subset \widehat{\mathcal{D}}$$

$v_lpha(r) = \left((1-r)\left(\lograc{e}{1-r} ight)^lpha ight)^{-1}, \quad 1<lpha<\infty.$

Rapidly increasing weights may admit a strong oscillatory behavior,

$$\omega(r) = \left| \sin\left(\log rac{1}{1-r}
ight) \right| v_lpha(r) + 1, \quad 1 < lpha < \infty.$$

Rapidly increasing weights.

A continuous radial weight is called rapidly increasing, $\omega \in \mathcal{I}$, if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=+\infty.$$

•
$$\mathcal{I} \subset \widehat{\mathcal{D}}$$

$v_lpha(r) = \left((1-r)\left(\lograc{e}{1-r} ight)^lpha ight)^{-1}, \quad 1<lpha<\infty.$

Rapidly increasing weights may admit a strong oscillatory behavior,

$$\omega(r) = \left| \sin\left(\log \frac{1}{1-r} \right) \right| v_{\alpha}(r) + 1, \quad 1 < \alpha < \infty.$$

$$H^{p} \subset A^{p}_{\omega} \subset \cap_{\alpha > -1} A^{p}_{\alpha}, \quad \omega \in \mathcal{I}.$$

Rapidly decreasing weights.

A radial weight $\boldsymbol{\omega}$ is called rapidly decreasing if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=0.$$

Rapidly decreasing weights.

A radial weight $\boldsymbol{\omega}$ is called rapidly decreasing if

$$\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{(1-r)\omega(r)}=0.$$

• Exponential type weights

$$\omega(r) = \exp\left(-\frac{C}{(1-r)^{\alpha}}\right), \quad C, \alpha > 0$$

are rapidly decreasing.

$\begin{array}{c} \text{Outline of the lecture}\\ \textit{L}^{\textit{P}}\text{-behavior of Bergman reproducing kernels}\\ \text{Two weight problem} \end{array}$

Theorem. (Dostanic (2004))

If $\omega(r) = (1 - r^2)^A \exp\left(\frac{-B}{(1 - r^2)^{\alpha}}\right)$, A > 0, $B > 0, 0 < \alpha \le 1$. Then, the Bergman projection is bounded from L^p_{ω} to L^p_{ω} only for p = 2.

Theorem. (Dostanic (2004))

If $\omega(r) = (1 - r^2)^A \exp\left(\frac{-B}{(1 - r^2)^{\alpha}}\right)$, A > 0, $B > 0, 0 < \alpha \le 1$. Then, the Bergman projection is bounded from L^{ρ}_{ω} to L^{ρ}_{ω} only for p = 2.

Theorem. Zeytuncu (2012), Constantin-P (2014)

Assume that $\omega(r) = e^{-2\phi(r)}$ is a radial weight such that $\phi : [0, 1) \to \mathbb{R}^+$ is a C^{∞} -function, ϕ' is positive on [0, 1), $\lim_{r\to 1^-} \phi(r) = \lim_{r\to 1^-} \phi'(r) = +\infty$ and

$$\lim_{r\to 1^-}\frac{\phi^{(n)}(r)}{(\phi'(r))^n}=0,\quad\text{for any }n\in\mathbb{N}\setminus\{1\}.$$

Then, the Bergman projection is bounded from L^p_{ω} to L^p_{ω} only for p = 2.

$\begin{array}{c} \text{Outline of the lecture}\\ \textit{L}^{\textit{P}}\text{-behavior of Bergman reproducing kernels}\\ \text{Two weight problem} \end{array}$

Theorem. Constantin-P (2014)

Let
$$v(r) = \exp\left(-\frac{\alpha}{1-r}\right)$$
, $\alpha > 0$, and $1 \le p < \infty$. Then, the Bergman projection
 $P_v(f)(z) = \int_{\mathbb{D}} f(\zeta) B^v(z,\zeta) v(z) dm(\zeta)$

is bounded from $L^{p}(\mathbb{D}, v^{p/2})$ to $A^{p}_{v^{p/2}}$.

$\begin{array}{c} \text{Outline of the lecture}\\ \textit{L}^{\textit{P}}\text{-behavior of Bergman reproducing kernels}\\ \text{Two weight problem} \end{array}$

Proposition. Constantin-P (2014)

Let $v(r) = \exp\left(-\frac{\alpha}{1-r}\right)$, $\alpha > 0$, and let $B^{\nu}(z) = \sum_{n=0}^{\infty} \frac{z^n}{v_{2n+1}}$. Then, there is a positive constant C such that

$$M_1(r,B^{\mathbf{v}}) \asymp rac{\exp\left(rac{lpha}{1-\sqrt{r}}
ight)}{(1-r)^{rac{3}{2}}}, \quad r o 1^-,$$

where

$$M_1(r, B^v) = \int_0^{2\pi} |B^v(re^{it})| \, dt, \quad 0 < r < 1.$$

Proposition. Constantin-P (2014)

Let $v(r) = \exp\left(-\frac{\alpha}{1-r}\right)$, $\alpha > 0$, and let $B^{\nu}(z) = \sum_{n=0}^{\infty} \frac{z^n}{v_{2n+1}}$. Then, there is a positive constant C such that

$$M_1(r,B^{\nu}) \asymp rac{\exp\left(rac{lpha}{1-\sqrt{r}}
ight)}{(1-r)^{rac{3}{2}}}, \quad r o 1^-,$$

where

$$M_1(r, B^v) = \int_0^{2\pi} |B^v(re^{it})| \, dt, \quad 0 < r < 1.$$

 A more general result have been obtained by Arrousi-Pau (2014) by using (Marzo-Ortega approach for weighted Fock spaces) and Hörmander (Berndtsson) L²-estimates for solutions of the ∂-equation. L^p-behavior of Bergman reproducing kernels for doubling weights

L^p-behavior of Bergman reproducing kernels for doubling weights

• If
$$\omega$$
 is radial, $\widehat{\omega}(r) = \int_r^1 \omega(s) \, ds$

L^p-behavior of Bergman reproducing kernels for doubling weights

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• If $\omega(z) = (1-|z|^2)^{lpha}$,

$$M_{p}^{p}\left(r,B_{a}^{\omega}
ight) \asymp \int_{-\pi}^{\pi} rac{d heta}{|1-ar{\mathsf{a}}re^{i heta}|^{(2+lpha)p}}$$

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• If $\omega(z) = (1 - |z|^2)^{lpha}$,

$$M_{p}^{p}\left(r,B_{a}^{\omega}
ight) \asymp \int_{-\pi}^{\pi}rac{d heta}{|1-ar{\mathsf{a}}re^{i heta}|^{(2+lpha)p}}$$

For $v(z) = (1 - |z|^2)^{\beta}$,

$$\|B^{\omega}_{a}\|^{p}_{\mathcal{A}^{p}_{v}} \asymp \int_{\mathbb{D}} \frac{(1-|z|^{2})^{\beta} dA(z)}{|1-\bar{a}z|^{(2+\alpha)p}} \asymp \int_{0}^{1} \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1-|a|re^{i\theta}|^{(2+\alpha)p}}\right) (1-r)^{\beta} dr$$

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• If $\omega(z) = (1-|z|^2)^{lpha}$,

$$M^p_p(r, B^\omega_a) \asymp \int_{-\pi}^{\pi} rac{d heta}{|1 - \bar{\mathsf{a}} r e^{i heta}|^{(2+lpha)p}}$$

For $v(z) = (1 - |z|^2)^{\beta}$,

$$\|B^{\omega}_{a}\|^{p}_{A^{\rho}_{v}} \asymp \int_{\mathbb{D}} \frac{(1-|z|^{2})^{\beta} dA(z)}{|1-\bar{a}z|^{(2+\alpha)\rho}} \asymp \int_{0}^{1} \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1-|a|re^{i\theta}|^{(2+\alpha)\rho}}\right) (1-r)^{\beta} dr$$

•

$$M^{p}_{p}\left(r,B^{\omega}_{a}
ight) \asymp \int_{0}^{|a|r} rac{dt}{(1-t)^{(2+lpha)p}}$$

- If ω is radial, $\widehat{\omega}(r) = \int_{r}^{1} \omega(s) \, ds$
- \bullet The class $\widehat{\mathcal{D}}$ consists of the radial weights ω such that

$$\sup_{0\leq r<1}\frac{\widehat{\omega}(r)}{\widehat{\omega}(\frac{1+r}{2})}<\infty.$$

• If $\omega(z) = (1 - |z|^2)^{lpha}$,

$$M_{p}^{p}\left(r,B_{a}^{\omega}
ight) \asymp \int_{-\pi}^{\pi} rac{d heta}{|1-\bar{\mathsf{a}}re^{i heta}|^{(2+lpha)p}}$$

For $v(z) = (1 - |z|^2)^{\beta}$,

$$\|B_{a}^{\omega}\|_{A_{\nu}^{p}}^{p} \asymp \int_{\mathbb{D}} \frac{(1-|z|^{2})^{\beta} dA(z)}{|1-\bar{a}z|^{(2+\alpha)p}} \asymp \int_{0}^{1} \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1-|a|re^{i\theta}|^{(2+\alpha)p}}\right) (1-r)^{\beta} dr$$

$$M^p_p(r, B^\omega_a) \asymp \int_0^{|a|r} rac{dt}{(1-t)^{(2+\alpha)p}}$$

$$\|B^{\omega}_{a}\|^{p}_{A^{p}_{v}} \asymp \int_{0}^{1} (1-r)^{\beta} \left(\int_{0}^{|a|r} \frac{dt}{(1-t)^{(2+\alpha)p}} \right) \, dr \asymp \int_{0}^{|a|} \frac{1}{(1-r)^{(2+\alpha)p-(\beta+1)}} \, dr, \quad |a| \to 1^{-1}$$
• If
$$\omega(z) = (1 - |z|^2)^{\alpha}$$
 and $v(z) = (1 - |z|^2)^{\beta}$,
 $M_p^p(r, B_a^{\omega}) \asymp \int_0^{|a|r} \frac{dt}{(1 - t)^{(2 + \alpha)p}} \asymp \int_0^{|a|r} \frac{dt}{\widehat{\omega}(t)^p (1 - t)^p} \quad r, |a| \to 1^-,$

• If
$$\omega(z) = (1 - |z|^2)^{\alpha}$$
 and $v(z) = (1 - |z|^2)^{\beta}$,
 $M_p^p(r, B_a^{\omega}) \asymp \int_0^{|a|r} \frac{dt}{(1 - t)^{(2 + \alpha)p}} \asymp \int_0^{|a|r} \frac{dt}{\widehat{\omega}(t)^p (1 - t)^p} \quad r, |a| \to 1^-,$

$$\|B^{\omega}_{a}\|^{p}_{A^{p}_{\nu}} \asymp \int_{0}^{|a|} \frac{1}{(1-r)^{(2+\alpha)p-\beta+1}} \, dr \asymp \int_{0}^{|a|} \frac{\widehat{\nu}(r)}{\widehat{\omega}(r)^{p}(1-r)^{p}} \, dr, \quad |a| \to 1^{-}.$$

Theorem (P-Rättyä 2014)

Let $0 , <math>\omega \in \widehat{D}$ and $N \in \mathbb{N} \cup \{0\}$. Then the following assertions hold: (i) $M_p^p\left(r, (B_a^{\omega})^{(N)}\right) \asymp \int_0^{|a|r} \frac{dt}{\widehat{\omega}(t)^p(1-t)^{p(N+1)}}, \quad r, |a| \to 1^-.$

Theorem (P-Rättyä 2014)

Let $0 , <math>\omega \in \widehat{D}$ and $N \in \mathbb{N} \cup \{0\}$. Then the following assertions hold: (i) $M_p^p\left(r, (B_a^{\omega})^{(N)}\right) \asymp \int_0^{|a|r} \frac{dt}{\widehat{\omega}(t)^p(1-t)^{p(N+1)}}, \quad r, |a| \to 1^-.$ (ii) If $v \in \widehat{D}$, then

$$\|(B^\omega_a)^{(N)}\|^p_{A^p_\nu} symp \int_0^{|\sigma|} rac{v(t)}{\widehat{\omega}(t)^p(1-t)^{p(N+1)}} \, dt, \quad |a| o 1^-.$$

Theorem (P-Rättyä 2014)

Let $0 , <math>\omega \in \widehat{\mathcal{D}}$ and $N \in \mathbb{N} \cup \{0\}$. Then the following assertions hold: (i) $M_p^p\left(r, (B_a^{\omega})^{(N)}\right) \asymp \int_0^{|a|r} \frac{dt}{\widehat{\omega}(t)^p(1-t)^{p(N+1)}}, \quad r, |a| \to 1^-.$ (ii) If $v \in \widehat{\mathcal{D}}$, then $\| (B_a^{\omega})^{(N)} \|_{A_v^p}^p \asymp \int_0^{|a|} \frac{\widehat{v}(t)}{\widehat{\omega}(t)^p(1-t)^{p(N+1)}} dt, \quad |a| \to 1^-.$

The inequality \lesssim in (ii) is actually valid for any radial weight v.

Corollary (P-Rättyä 2014)

Let $0 , <math>\omega \in \widehat{D}$ and $N \in \mathbb{N} \cup \{0\}$. Then the following assertions hold. (i) $M_p^p\left(r, (B_a^{\omega})^{(N)}\right) \asymp \frac{1}{\widehat{\omega}(ar)^p(1-|a|r)^{p(N+1)-1}}, \quad r, |a| \to 1^-,$ if and only if

$$\int_0^{|\boldsymbol{a}|} \frac{dt}{\widehat{\omega}(t)^p (1-t)^{p(N+1)}} \lesssim \frac{1}{\widehat{\omega}(\boldsymbol{a})^p (1-|\boldsymbol{a}|)^{p(N+1)-1}}, \quad |\boldsymbol{a}| \to 1^-.$$

Corollary (P-Rättyä 2014)

Let $0 , <math>\omega \in \widehat{D}$ and $N \in \mathbb{N} \cup \{0\}$. Then the following assertions hold. (i) $M_p^p\left(r, (B_a^{\omega})^{(N)}\right) \approx \frac{1}{\widehat{\omega}(ar)^p(1-|a|r)^{p(N+1)-1}}, \quad r, |a| \to 1^-,$ if and only if

$$\int_0^{|\boldsymbol{a}|} \frac{dt}{\widehat{\omega}(t)^p(1-t)^{p(N+1)}} \lesssim \frac{1}{\widehat{\omega}(\boldsymbol{a})^p(1-|\boldsymbol{a}|)^{p(N+1)-1}}, \quad |\boldsymbol{a}| \to 1^-.$$

(ii) If $v \in \widehat{\mathcal{D}}$, then

$$\| (B^{\omega}_{a})^{(N)} \|^{p}_{\mathcal{A}^{p}_{v}} \asymp rac{\widehat{v}(a)}{\widehat{\omega}(a)^{p}(1-r)^{p(N+1)-1}}, \quad |a| \to 1^{-},$$

if and only if

$$\int_0^r \frac{\widehat{\nu}(t)}{\widehat{\omega}(t)^p (1-t)^{p(N+1)}} \, dt \lesssim \frac{\widehat{\nu}(r)}{\widehat{\omega}(r)^p (1-r)^{p(N+1)-1}}, \quad r \to 1^-.$$

Sketch of the proof for \lesssim of (ii). $v \in \mathcal{R}. \ p > 1$

$$\begin{split} \|B_{a}^{\omega}\|_{A_{v}^{\nu}}^{p} &\asymp \sum_{n=0}^{\infty} 2^{-n} \|\Delta_{n}^{v} B_{a}^{\omega}\|_{H^{p}}^{p} \\ &\asymp \sum_{n=0}^{\infty} 2^{-n} \left\|\sum_{k \in I_{v}(n)} \frac{(\bar{a}z)^{n}}{2\omega_{2n+1}}\right\|_{H^{p}}^{p} \quad \text{Decomposition norm} \\ &\asymp \sum_{n=0}^{\infty} \frac{2^{-n}}{\omega_{2E\left(\frac{1}{1-r_{n}}\right)+1}^{p}} \left\|\sum_{k \in I_{v}(n)} (\bar{a}z)^{n}\right\|_{H^{p}}^{p} \quad \text{Moments of } \omega \text{ are smooth} \\ &\leq \sum_{n=0}^{\infty} \frac{2^{-n}}{\omega_{2E\left(\frac{1}{1-r_{n+1}}\right)+1}^{p}} |a|^{E\left(\frac{1}{1-r_{n}}\right)} \left\|\sum_{k \in I_{v}(n)} z^{n}\right\|_{H^{p}}^{p} \\ &\asymp \sum_{n=0}^{\infty} \frac{2^{-n}}{\omega_{2E\left(\frac{1}{1-r_{n+1}}\right)+1}^{p}} |a|^{E\left(\frac{1}{1-r_{n}}\right)} E\left(\frac{1}{1-r_{n}}\right)^{p-1} \\ &\asymp \int_{0}^{|a|} \frac{\widehat{v}(t)}{\widehat{\omega}(t)^{p}(1-t)^{p}} dt \quad \omega \text{ and } v \text{ are doubling} \end{split}$$

Which are those weights (ω, v) satisfying the two weight inequality

$\|P_\omega(f)\|_{L^p_v}\lesssim \|f\|_{L^p_v},\quad f\in L^p_v?$

Theorem Bekollé-Bonami (1978)

Theorem Bekollé-Bonami (1978)

For a weight v, p > 1 and $\alpha > -1$, the following are equivalent:

• The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{ν}^{p} to A_{ν}^{p} .

Theorem Bekollé-Bonami (1978)

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- **2** The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

Theorem Bekollé-Bonami (1978)

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{ν}^{p} to A_{ν}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\overline{\zeta}|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_p(lpha)$$
. That is,

$$B_{p,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{r}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

For a weight v, p > 1 and $\alpha > -1$, the following are equivalent:

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_p(lpha)$$
. That is,

$$B_{p,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

• Pott-Reguera (2013), quantitative version.

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_{
ho}(lpha)$$
. That is,

$$B_{\rho,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p'}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

- Pott-Reguera (2013), quantitative version.
- The inducing reproducing kernels $\frac{1}{(1-z\overline{\zeta})^{2+\alpha}}$ are well understood;

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{ν}^{p} to A_{ν}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_{
ho}(lpha)$$
. That is,

$$B_{\rho,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

- Pott-Reguera (2013), quantitative version.
- The inducing reproducing kernels $\frac{1}{(1-z\bar{\zeta})^{2+\alpha}}$ are well understood; they do not have zeros,

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_{
ho}(lpha)$$
. That is,

$$B_{\rho,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

- Pott-Reguera (2013), quantitative version.
- The inducing reproducing kernels $\frac{1}{(1-z\overline{\zeta})^{2+\alpha}}$ are well understood; they do not have zeros, are almost constant on pseudohyperbolic disks,

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_{
ho}(lpha)$$
. That is,

$$B_{\rho,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

- Pott-Reguera (2013), quantitative version.
- The inducing reproducing kernels $\frac{1}{(1-z\bar{\zeta})^{2+\alpha}}$ are well understood; they do not have zeros, are almost constant on pseudohyperbolic disks, precise pointwise estimates,

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\zeta|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_{
ho}(lpha)$$
. That is,

$$B_{\rho,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

- Pott-Reguera (2013), quantitative version.
- The inducing reproducing kernels $\frac{1}{(1-z\overline{\zeta})^{2+\alpha}}$ are well understood; they do not have zeros, are almost constant on pseudohyperbolic disks, precise pointwise estimates, it is known a lot about the L^{p} -behavior...

- The Bergman projection $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\zeta)^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L_{v}^{p} to A_{v}^{p} .
- The sublinear operator $P^+_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{|f(\zeta)|}{|1-z\overline{\zeta}|^{2+\alpha}} dA_{\alpha}(\zeta)$ is bounded from L^p_{ν} to L^p_{ν} .

3
$$\frac{v(z)}{(1-|z|^2)^{lpha}} \in B_{
ho}(lpha)$$
. That is,

$$B_{\rho,\alpha}(v) = \sup_{I \subset \mathbb{T}} \frac{\left(\int_{\mathcal{S}(I)} v(z) \, dA_{\alpha}(z)\right) \left(\int_{\mathcal{S}(I)} v(z)^{\frac{-p'}{p}} \, dA_{\alpha}(z)\right)^{\frac{p}{p'}}}{|I|^{(2+\alpha)p}} < \infty.$$

- Pott-Reguera (2013), quantitative version.
- The inducing reproducing kernels $\frac{1}{(1-z\overline{\zeta})^{2+\alpha}}$ are well understood; they do not have zeros, are almost constant on pseudohyperbolic disks, precise pointwise estimates, it is known a lot about the L^p -behavior...
- This does not remain true for a general weight

Question

What is known about the two-weight inequality

$$\| \mathcal{P}_\omega(f) \|_{L^p_
u} \lesssim \| f \|_{L^p_
u}, \quad f \in L^p_
u$$

when ω is not an standard weight?

Theorem. (P-Rättyä (2014))

Theorem. (P-Rättyä (2014))

Let $1 and <math>\omega, \nu \in \mathcal{R}$. Then the following conditions are equivalent: (a) $P^+_{\omega} : L^p_{\nu} \to L^p_{\nu}$ is bounded;

Theorem. (P-Rättyä (2014))

- (a) $P^+_{\omega}: L^p_{\nu} \to L^p_{\nu}$ is bounded;
- (b) $P_{\omega}: L^{p}_{\nu} \rightarrow L^{p}_{\nu}$ is bounded;

Theorem. (P-Rättyä (2014))

(a)
$$P_{\omega}^{+}: L_{v}^{p} \to L_{v}^{p}$$
 is bounded;
(b) $P_{\omega}: L_{v}^{p} \to L_{v}^{p}$ is bounded;
(c) $\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty;$

Theorem. (P-Rättyä (2014))

$$\begin{array}{ll} \text{(a)} & P^+_{\omega} : L^p_{\nu} \to L^p_{\nu} \text{ is bounded;} \\ \text{(b)} & P_{\omega} : L^p_{\nu} \to L^p_{\nu} \text{ is bounded;} \\ \text{(c)} & \sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_r^1 \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty; \\ \text{(d)} & \sup_{0 < r < 1} \left(\int_0^r \frac{v(s)}{\widehat{\omega}(s)^p} ds\right) \left(\int_r^1 \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{p}{p'}} < \infty; \end{array}$$

Theorem. (P-Rättyä (2014))

$$\begin{array}{ll} \text{(a)} & P_{\omega}^{+}: L_{v}^{p} \to L_{v}^{p} \text{ is bounded}; \\ \text{(b)} & P_{\omega}: L_{v}^{p} \to L_{v}^{p} \text{ is bounded}; \\ \text{(c)} & \sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty; \\ \text{(d)} & \sup_{0 < r < 1} \left(\int_{0}^{r} \frac{v(s)}{\widehat{\omega}(s)^{p}} ds\right) \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{p}{p'}} < \infty; \\ \text{(e)} & \sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \int_{r}^{1} \frac{\omega(s)}{((1-s)v(s))^{1/p}} ds}{\widehat{\omega}(r)} < \infty \end{array}$$

Theorem. (P-Rättyä (2014))

(a)
$$P_{\omega}^{+}: L_{\nu}^{p} \to L_{\nu}^{p}$$
 is bounded;
(b) $P_{\omega}: L_{\nu}^{p} \to L_{\nu}^{p}$ is bounded;
(c) $\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty;$
(d) $\sup_{0 < r < 1} \left(\int_{0}^{r} \frac{v(s)}{\widehat{\omega}(s)^{p}} ds\right) \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{p}{p'}} < \infty;$
(e) $\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \int_{r}^{1} \frac{\omega(s)}{((1-s)v(s))^{1/p}} ds}{\widehat{\omega}(r)} < \infty$
(f) $\sup_{0 < r < 1} \frac{\omega(r)(1-r)^{\frac{1}{p'}}}{v(r)^{1/p}} \int_{0}^{r} \frac{v(s)^{\frac{1}{p}}}{\omega(s)(1-s)^{1+\frac{1}{p'}}} ds < \infty.$

Comments

Comments

• If $\omega(z) = (1-|z|)^{lpha}$, then (condition (c)) above

$$\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)} \right)^{p'} v(s) ds \right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty$$

is the same as saying that the radial weight $\frac{v}{(1-|z|^2)^{\alpha}}$ satisfies the corresponding Bekollé-Bonami condition $B_p(\alpha)$.

Comments

• If $\omega(z) = (1 - |z|)^{lpha}$, then (condition (c)) above

$$\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty$$

is the same as saying that the radial weight $\frac{v}{(1-|z|^2)^{\alpha}}$ satisfies the corresponding Bekollé-Bonami condition $B_p(\alpha)$.

• The condition (d) above $\sup_{0 < r < 1} \left(\int_0^r \frac{v(s)}{\tilde{\omega}(s)^p} ds \right) \left(\int_r^1 \left(\frac{\omega(s)}{v(s)} \right)^{p'} v(s) ds \right)^{\frac{1}{p'}} < \infty$ describes the boundedness of the Hardy operator $\psi \mapsto \int_r^1 \psi(s) ds$ on certain weighted $L^p([0, 1))$ spaces.

Comments

• If $\omega(z) = (1 - |z|)^{lpha}$, then (condition (c)) above

$$\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty$$

is the same as saying that the radial weight $\frac{v}{(1-|z|^2)^{\alpha}}$ satisfies the corresponding Bekollé-Bonami condition $B_p(\alpha)$.

- The condition (d) above $\sup_{0 < r < 1} \left(\int_0^r \frac{v(s)}{\tilde{\omega}(s)^p} ds \right) \left(\int_r^1 \left(\frac{\omega(s)}{v(s)} \right)^{p'} v(s) ds \right)^{\frac{1}{p'}} < \infty$ describes the boundedness of the Hardy operator $\psi \mapsto \int_r^1 \psi(s) ds$ on certain weighted $L^p([0, 1))$ spaces.
- Any of both conditions above, as well as others, is self-improving in the sense that if it is satisfied for some p > 1, then it is also satisfied when p is replaced by $p \delta$, where $\delta > 0$ is sufficiently small.
Comments

• If $\omega(z) = (1 - |z|)^{lpha}$, then (condition (c)) above

$$\sup_{0 < r < 1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty$$

is the same as saying that the radial weight $\frac{v}{(1-|z|^2)^{\alpha}}$ satisfies the corresponding Bekollé-Bonami condition $B_p(\alpha)$.

• The condition (d) above $\sup_{0 < r < 1} \left(\int_0^r \frac{v(s)}{\tilde{\omega}(s)^p} ds \right) \left(\int_r^1 \left(\frac{\omega(s)}{v(s)} \right)^{p'} v(s) ds \right)^{\frac{1}{p'}} < \infty$ describes the boundedness of the Hardy operator $\psi \mapsto \int_r^1 \psi(s) ds$ on certain

weighted $L^{p}([0, 1))$ spaces.

- Any of both conditions above, as well as others, is self-improving in the sense that if it is satisfied for some p > 1, then it is also satisfied when p is replaced by $p \delta$, where $\delta > 0$ is sufficiently small.
- This is not true for the Bekollé-Bonami condition $B_p(\alpha)$!!

Sketch of the proof of $(b) \Rightarrow (c)$

Sketch of the proof of $(b) \Rightarrow (c)$

• The adjoint of P_{ω} , with respect to $\langle \cdot, \cdot \rangle_{L^2_{\nu}}$, is given by

$$P^{\star}_{\omega}(g)(\zeta) = rac{\omega(\zeta)}{v(\zeta)} \int_{\mathbb{D}} g(z) B^{\omega}(\zeta,z) v(z) \, dA(z), \quad g \in L^{p'}_{v}.$$

Sketch of the proof of $(b) \Rightarrow (c)$

• The adjoint of P_{ω} , with respect to $\langle \cdot, \cdot \rangle_{L^2_{\nu}}$, is given by

$$\mathcal{P}^{\star}_{\omega}(g)(\zeta) = rac{\omega(\zeta)}{v(\zeta)} \int_{\mathbb{D}} g(z) B^{\omega}(\zeta,z) v(z) \, d\mathcal{A}(z), \quad g \in L^{p'}_{v}.$$

• $P_{\omega}^{\star}: L_{\nu}^{p'} \to L_{\nu}^{p'}$ is bounded, and hence, by choosing $g_n(z) = z^n$, $n \in \mathbb{N}$, as test functions, we get

$$\sup_{0< r<1} \frac{\widehat{v}(r)^{\frac{1}{p}} \left(\int_{r}^{1} \left(\frac{\omega(s)}{v(s)}\right)^{p'} v(s) ds\right)^{\frac{1}{p'}}}{\widehat{\omega}(r)} < \infty.$$

Sketch of the proof of $(c) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (f)$

Sketch of the proof of $(c) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (f)$

For $\omega: [0,1)
ightarrow (0,\infty)$, set

$$\widetilde{\psi}_\omega(r)=rac{1}{\omega(r)}\int_0^r\omega(s)\,ds,\quad r\in[0,1).$$

Sketch of the proof of $(c) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (f)$

For $\omega: [0,1)
ightarrow (0,\infty)$, set

$$\widetilde{\psi}_\omega(r)=rac{1}{\omega(r)}\int_0^r\omega(s)\,ds,\quad r\in[0,1).$$

Replace ω by $\left(\frac{\omega}{v}\right)^{p'}$ v in the following result;

Sketch of the proof of $(c) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (f)$

For $\omega: [0,1)
ightarrow (0,\infty)$, set

$$\widetilde{\psi}_\omega(r)=rac{1}{\omega(r)}\int_0^r\omega(s)\,ds,\quad r\in[0,1).$$

Replace ω by $\left(\frac{\omega}{v}\right)^{p'}$ v in the following result;

Lemma. (P-Rättyä (2014))

Let ω be a radial weight and $1 . Denote <math>\omega_1(r) = \omega(r)^{1-p}(1-r)^{-p}$ and $\omega_2(r) = (\omega(r)(1-r))^{-\frac{1}{p}}\omega(r)$. Then the following assertions are equivalent: (i) $\omega \in \mathcal{R}$; (ii) ω satisfies the (LS)-property and

$$\sup_{0 < r < 1} \left(\frac{\widetilde{\psi}_{\omega_1}(r)}{1-r}\right) \left(\frac{\psi_{\omega}(r)}{1-r}\right)^{p-1} < \infty;$$

(iii)
$$\frac{\widetilde{\psi}_{\omega_1}(r)}{1-r} \approx 1, \quad r \to 1^-$$

(iv) $\omega_2 \in \mathcal{R}.$

• Let
$$h(z) = \widehat{v}^{1/p}$$
.

- Let $h(z) = \widehat{v}^{1/p}$.
- Apply an instance of Shur's test

$$\begin{split} \|P_{\omega}^{+}(f)\|_{L^{p}_{\nu}}^{p} &\leq \int_{\mathbb{D}} \left(\int_{\mathbb{D}} |f(\zeta)|^{p} h(\zeta)^{p} |B^{\omega}(z,\zeta)| \frac{\omega(\zeta)}{h(\zeta)} \, dA(\zeta) \right) \\ & \cdot \left(\int_{\mathbb{D}} |B^{\omega}(z,\zeta)| \frac{\omega(\zeta)}{h(\zeta)} \, dA(\zeta) \right)^{p/p'} v(z) \, dA(z). \end{split}$$

 $(e) \Rightarrow P_{\omega}$ is bounded on L_{ν}^{p} .

- Let $h(z) = \widehat{v}^{1/p}$.
- Apply an instance of Shur's test

$$\begin{split} \|P_{\omega}^{+}(f)\|_{L^{p}_{\nu}}^{p} &\leq \int_{\mathbb{D}} \left(\int_{\mathbb{D}} |f(\zeta)|^{p} h(\zeta)^{p} |B^{\omega}(z,\zeta)| \frac{\omega(\zeta)}{h(\zeta)} \, dA(\zeta) \right) \\ & \cdot \left(\int_{\mathbb{D}} |B^{\omega}(z,\zeta)| \frac{\omega(\zeta)}{h(\zeta)} \, dA(\zeta) \right)^{p/p'} v(z) \, dA(z). \end{split}$$

• $L^1_{V(w,v)}$ -kernels estimates of B^{ω}_a .

- Let $h(z) = \widehat{v}^{1/p}$.
- Apply an instance of Shur's test

$$\begin{split} \|P_{\omega}^{+}(f)\|_{L^{p}_{\nu}}^{p} &\leq \int_{\mathbb{D}} \left(\int_{\mathbb{D}} |f(\zeta)|^{p} h(\zeta)^{p} |B^{\omega}(z,\zeta)| \frac{\omega(\zeta)}{h(\zeta)} \, dA(\zeta) \right) \\ & \cdot \left(\int_{\mathbb{D}} |B^{\omega}(z,\zeta)| \frac{\omega(\zeta)}{h(\zeta)} \, dA(\zeta) \right)^{p/p'} v(z) \, dA(z). \end{split}$$

- $L^1_{V(w,v)}$ -kernels estimates of B^{ω}_a .
- Some calculations.

Case p = 1.

Theorem. (P-Rättyä (2014))

Theorem. (P-Rättyä (2014))

Let $\omega, \mathbf{v} \in \mathcal{R}$. Then the following conditions are equivalent:

(a) $P_{\omega}: L^1_{\nu} \to L^1_{\nu}$ is bounded;

Theorem. (P-Rättyä (2014))

- (a) $P_{\omega}: L^1_{\nu} \to L^1_{\nu}$ is bounded;
- (b) $P^+_{\omega}: L^1_{\nu} \to L^1_{\nu}$ is bounded;

Theorem. (P-Rättyä (2014))

(a)
$$P_{\omega}: L_{\nu}^{1} \to L_{\nu}^{1}$$
 is bounded;
(b) $P_{\omega}^{+}: L_{\nu}^{1} \to L_{\nu}^{1}$ is bounded;
(c) $\sup_{0 < r < 1} \frac{\omega(r)}{\nu(r)} \int_{0}^{r} \frac{\widehat{\nu}(s)}{\widehat{\omega}(s)(1-s)} ds < \infty;$

Theorem. (P-Rättyä (2014))

(a)
$$P_{\omega}: L_{\nu}^{1} \to L_{\nu}^{1}$$
 is bounded;
(b) $P_{\omega}^{+}: L_{\nu}^{1} \to L_{\nu}^{1}$ is bounded;
(c) $\sup_{0 < r < 1} \frac{\omega(r)}{v(r)} \int_{0}^{r} \frac{\widehat{v}(s)}{\widehat{\omega}(s)(1-s)} ds < \infty;$
(d) $\sup_{0 < r < 1} \frac{\widehat{v}(r)}{\widehat{\omega}(r)} \int_{r}^{1} \frac{\omega(s)}{v(s)(1-s)} ds < \infty.$

Theorem. P-Rättyä (2014)

Let 1 .

- (i) If $\omega \in \mathcal{R}$, then $P_{\omega}^+ : L_{\omega}^p \to L_{\omega}^p$ is bounded. In particular, $P_{\omega} : L_{\omega}^p \to A_{\omega}^p$ is bounded.
- (ii) If $\omega \in \mathcal{R}$, then $P_{\omega} : L^{\infty}(\mathbb{D}) \to \mathcal{B}$ is bounded.

(iii) If $\omega \in \mathcal{I}$, then P^+_{ω} is not bounded from L^p_{ω} to L^p_{ω} .

Theorem. P-Rättyä (2014)

Let 1 .

- (i) If $\omega \in \mathcal{R}$, then $P_{\omega}^+ : L_{\omega}^p \to L_{\omega}^p$ is bounded. In particular, $P_{\omega} : L_{\omega}^p \to A_{\omega}^p$ is bounded.
- (ii) If $\omega \in \mathcal{R}$, then $P_{\omega} : L^{\infty}(\mathbb{D}) \to \mathcal{B}$ is bounded.

(iii) If $\omega \in \mathcal{I}$, then P^+_{ω} is not bounded from L^p_{ω} to L^p_{ω} .

• Part (i) follows from the two weight inequality.

Theorem. P-Rättyä (2014)

Let 1 .

- (i) If $\omega \in \mathcal{R}$, then $P_{\omega}^+ : L_{\omega}^p \to L_{\omega}^p$ is bounded. In particular, $P_{\omega} : L_{\omega}^p \to A_{\omega}^p$ is bounded.
- (ii) If $\omega \in \mathcal{R}$, then $P_{\omega} : L^{\infty}(\mathbb{D}) \to \mathcal{B}$ is bounded.

(iii) If $\omega \in \mathcal{I}$, then P^+_{ω} is not bounded from L^p_{ω} to L^p_{ω} .

- Part (i) follows from the two weight inequality.
- Part(ii) is an application of L_v^p -estimates for Bergman reproducing kernels.

Theorem. P-Rättyä (2014)

Let 1 .

- (i) If $\omega \in \mathcal{R}$, then $P_{\omega}^+ : L_{\omega}^p \to L_{\omega}^p$ is bounded. In particular, $P_{\omega} : L_{\omega}^p \to A_{\omega}^p$ is bounded.
- (ii) If $\omega \in \mathcal{R}$, then $P_{\omega} : L^{\infty}(\mathbb{D}) \to \mathcal{B}$ is bounded.

(iii) If $\omega \in \mathcal{I}$, then P^+_{ω} is not bounded from L^p_{ω} to L^p_{ω} .

- Part (i) follows from the two weight inequality.
- Part(ii) is an application of L_v^p -estimates for Bergman reproducing kernels.
- The proof of (iii) is a little bit more involved, relies on them and on a result of Muckenhoupt on Hardy operators.

Sketch of the proof of (iii).

• We assume that $P^+_{\omega}: L^p_{\omega} \to L^p_{\omega}$ is bounded and aim for a contradiction.

- We assume that $P^+_{\omega}: L^p_{\omega} \to L^p_{\omega}$ is bounded and aim for a contradiction.
- $K(r) = \int_0^r \frac{dt}{\widehat{\omega}(t)(1-t)}$ for short, and let ϕ be a radial function.

- We assume that $P^+_\omega: L^p_\omega \to L^p_\omega$ is bounded and aim for a contradiction.
- $K(r) = \int_0^r \frac{dt}{\widehat{\omega}(t)(1-t)}$ for short, and let ϕ be a radial function.

•
$$M_1(s,(B_z^\omega)) \asymp \int_0^{s|z|} \frac{dt}{\widehat{\omega}(t)(1-t)} = K(s|z|).$$

- We assume that $P^+_{\omega}: L^p_{\omega} \to L^p_{\omega}$ is bounded and aim for a contradiction.
- $K(r) = \int_0^r \frac{dt}{\widehat{\omega}(t)(1-t)}$ for short, and let ϕ be a radial function.
- $M_1(s,(B_z^{\omega})) \asymp \int_0^{s|z|} \frac{dt}{\widehat{\omega}(t)(1-t)} = K(s|z|).$
- This and the properties of $\widehat{\omega}, \ \omega \in \mathcal{I},$ give

$$egin{aligned} &P^+_\omega(\phi)(z) symp \int_0^1 \mathcal{K}(|z|s)\phi(s)\omega(s)\,ds \geq \mathcal{K}(|z|^2)\int_{|z|}^1 \phi(s)\omega(s)\,ds \ &pprox \mathcal{K}(|z|)\int_{|z|}^1 \phi(s)\omega(s)\,ds. \end{aligned}$$

- We assume that $P^+_{\omega}: L^p_{\omega} \to L^p_{\omega}$ is bounded and aim for a contradiction.
- $K(r) = \int_0^r \frac{dt}{\widehat{\omega}(t)(1-t)}$ for short, and let ϕ be a radial function.
- $M_1(s,(B_z^{\omega})) \asymp \int_0^{s|z|} \frac{dt}{\widehat{\omega}(t)(1-t)} = K(s|z|).$
- This and the properties of $\widehat{\omega},\,\omega\in\mathcal{I},$ give

$$egin{aligned} &\mathcal{P}^+_\omega(\phi)(z) symp \int_0^1 \mathcal{K}(|z|s)\phi(s)\omega(s)\,ds \geq \mathcal{K}(|z|^2)\int_{|z|}^1 \phi(s)\omega(s)\,ds \ &symp st \mathcal{K}(|z|)\int_{|z|}^1 \phi(s)\omega(s)\,ds. \end{aligned}$$

$$\|P^+_{\omega}(\phi)\|_{L^p_{\omega}}^p\gtrsim \int_0^1\left(K(r)\int_r^1\phi(s)\omega(s)\,ds\right)^p\omega(r)\,dr,$$

Sketch of the proof of (iii).

- We assume that $P^+_\omega: L^p_\omega \to L^p_\omega$ is bounded and aim for a contradiction.
- $K(r) = \int_0^r \frac{dt}{\widehat{\omega}(t)(1-t)}$ for short, and let ϕ be a radial function.
- $M_1(s,(B_z^{\omega})) \asymp \int_0^{s|z|} \frac{dt}{\widehat{\omega}(t)(1-t)} = K(s|z|).$

• This and the properties of $\widehat{\omega}, \ \omega \in \mathcal{I},$ give

$$egin{aligned} \mathcal{P}^+_\omega(\phi)(z) &\asymp \int_0^1 \mathcal{K}(|z|s)\phi(s)\omega(s)\,ds \geq \mathcal{K}(|z|^2)\int_{|z|}^1 \phi(s)\omega(s)\,ds \ &\asymp \mathcal{K}(|z|)\int_{|z|}^1 \phi(s)\omega(s)\,ds. \end{aligned}$$

$$\|\mathcal{P}^+_{\omega}(\phi)\|_{L^p_{\omega}}^p\gtrsim \int_0^1\left(\mathcal{K}(r)\int_r^1\phi(s)\omega(s)\,ds\right)^p\omega(r)\,dr,$$

$$\int_0^1 \left(\mathsf{K}(r) \int_r^1 \phi(s) \omega(s) \, ds \right)^p \omega(r) \, dr \lesssim \|\phi\|_{\mathcal{L}^p_\omega}^p, \quad \phi \in \mathcal{L}^p_\omega$$

Outline of the lecture L^P-behavior of Bergman reproducing kernels **Two weight problem**

$$\int_0^1 \left(U(r) \int_r^1 \psi(s) \, ds \right)^p \, dr \lesssim \int_0^1 \psi^p(r) V^p(r), \quad \psi \in L^p_{V^p}, \tag{1}$$

where

$$U(r)=\left\{egin{array}{cc} K(r)\omega(r)^{1/p}, & 0\leq r<1\ 0, & r\geq 1 \end{array}
ight.,$$

and

$$V(r) = \left\{egin{array}{cc} \omega(r)^{-rac{1}{p'}}, & 0\leq r<1\ 0, & r\geq 1 \end{array}
ight.$$

Outline of the lecture L^p-behavior of Bergman reproducing kernels **Two weight problem**

$$\int_0^1 \left(U(r) \int_r^1 \psi(s) \, ds \right)^p \, dr \lesssim \int_0^1 \psi^p(r) V^p(r), \quad \psi \in L^p_{V^p}, \tag{1}$$

where

$$U(r) = \left\{ egin{array}{cc} \mathcal{K}(r) \omega(r)^{1/p}, & 0 \leq r < 1 \ 0, & r \geq 1 \end{array}
ight.,$$

and

$$V(r) = \left\{egin{array}{cc} \omega(r)^{-rac{1}{
ho'}}, & 0\leq r<1\ 0, & r\geq 1 \end{array}
ight.$$

• But (1) is equivalent to

$$\sup_{0 < r < 1} \left(\int_0^r K^p(s) \omega(s) \, ds \right) \widehat{\omega}(r)^{\frac{p}{p'}} < \infty \tag{2}$$

.

by a result on Hardy operators due to Muckenhoupt (Studia Math. 1972).

Outline of the lecture L^p-behavior of Bergman reproducing kernels Two weight problem

$$\int_0^1 \left(U(r) \int_r^1 \psi(s) \, ds \right)^p \, dr \lesssim \int_0^1 \psi^p(r) V^p(r), \quad \psi \in L^p_{V^p}, \tag{1}$$

where

$$U(r) = \left\{ egin{array}{cc} \mathcal{K}(r) \omega(r)^{1/p}, & 0 \leq r < 1 \ 0, & r \geq 1 \end{array}
ight.,$$

and

$$\mathcal{W}(r) = \left\{ egin{array}{cc} \omega(r)^{-rac{1}{
ho'}}, & 0 \leq r < 1 \ 0, & r \geq 1 \end{array}
ight.$$

• But (1) is equivalent to

$$\sup_{0 < r < 1} \left(\int_0^r K^p(s) \omega(s) \, ds \right) \widehat{\omega}(r)^{\frac{p}{p'}} < \infty \tag{2}$$

.

by a result on Hardy operators due to Muckenhoupt (Studia Math. 1972).

• Two applications of the Bernoulli-I'Hôpital theorem now give

$$\liminf_{r\to 1^-}\frac{\int_0^r K^p(s)\omega(s)\,ds}{\widehat{\omega}(r)^{-\frac{p}{p'}}}\geq \frac{1}{p-1}\liminf_{r\to 1^-}\left(\frac{\psi_\omega(r)}{1-r}\right)^p=\infty.$$

Outline of the lecture L^p-behavior of Bergman reproducing kernels Two weight problem

$$\int_0^1 \left(U(r) \int_r^1 \psi(s) \, ds \right)^p \, dr \lesssim \int_0^1 \psi^p(r) V^p(r), \quad \psi \in L^p_{V^p}, \tag{1}$$

where

$$U(r) = \left\{ egin{array}{cc} \mathcal{K}(r) \omega(r)^{1/p}, & 0 \leq r < 1 \ 0, & r \geq 1 \end{array}
ight.,$$

and

$$V(r) = \left\{ egin{array}{cc} \omega(r)^{-rac{1}{p'}}, & 0 \leq r < 1 \ 0, & r \geq 1 \end{array}
ight.$$

• But (1) is equivalent to

$$\sup_{0 < r < 1} \left(\int_0^r K^p(s) \omega(s) \, ds \right) \widehat{\omega}(r)^{\frac{p}{p'}} < \infty \tag{2}$$

.

by a result on Hardy operators due to Muckenhoupt (Studia Math. 1972).

• Two applications of the Bernoulli-I'Hôpital theorem now give

$$\liminf_{r\to 1^-}\frac{\int_0^r K^p(s)\omega(s)\,ds}{\widehat{\omega}(r)^{-\frac{p}{p'}}}\geq \frac{1}{p-1}\liminf_{r\to 1^-}\left(\frac{\psi_\omega(r)}{1-r}\right)^p=\infty.$$

• Therefore (2) is false and consequently, $P^+_{\omega}: L^p_{\omega} \to L^p_{\omega}$ is not bounded.