Restriction estimates for some surfaces with vanishing curvatures

Sanghyuk Lee and Ana Vargas

Seoul National University and Universidad Autónoma de Madrid

Restriction of the Fourier Transform to Hypersurfaces

$K \subset \mathbb{R}^{n}$ compact set
Stein 70's : $\quad S=\{(\xi, \tau) \in K \times \mathbb{R}: \quad \tau=\phi(\xi)\} \subset \mathbb{R}^{n+1}$

$$
\left\|\widehat{g}_{\mid S}\right\|_{L p^{\prime}(S)} \leq C\|g\|_{L^{\prime}\left(\mathbb{R}^{n+1}\right)} \quad \text { for all } \quad g \in \mathcal{S} ?
$$

Restriction of the Fourier Transform to Hypersurfaces

$K \subset \mathbb{R}^{n}$ compact set
Stein 70's : $\quad S=\{(\xi, \tau) \in K \times \mathbb{R}: \quad \tau=\phi(\xi)\} \subset \mathbb{R}^{n+1}$
$\left\|\widehat{g}_{\mid S}\right\|_{L^{\prime}(S)} \leq C\|g\|_{L^{q^{\prime}}\left(\mathbb{R}^{n+1}\right)} \quad$ for all $\quad g \in \mathcal{S}$?
In S we take $d \sigma(\xi, \tau)=d \xi$ or the measure induced by Lebesgue measure

Restriction of the Fourier Transform to Hypersurfaces

$K \subset \mathbb{R}^{n}$ compact set
Stein 70's : $\quad S=\{(\xi, \tau) \in K \times \mathbb{R}: \quad \tau=\phi(\xi)\} \subset \mathbb{R}^{n+1}$

$$
\left\|\widehat{g}_{\mid S}\right\|_{L^{p^{\prime}}(S)} \leq C\|g\|_{L q^{\prime}\left(\mathbb{R}^{n+1}\right)} \quad \text { for all } \quad g \in \mathcal{S} ?
$$

In S we take $d \sigma(\xi, \tau)=d \xi$ or the measure induced by Lebesgue measure

Define

$$
\widehat{f d \sigma}(x, t)=\int_{K \subset \mathbb{R}^{n}} f(\xi) e^{-2 \pi i(x \cdot \xi+t \phi(\xi))} d \xi
$$

Restriction of the Fourier Transform to Hypersurfaces

$K \subset \mathbb{R}^{n}$ compact set
Stein 70's : $\quad S=\{(\xi, \tau) \in K \times \mathbb{R}: \quad \tau=\phi(\xi)\} \subset \mathbb{R}^{n+1}$

$$
\left\|\widehat{g}_{\mid S}\right\|_{L p^{\prime}(S)} \leq C\|g\|_{L^{\prime}\left(\mathbb{R}^{n+1}\right)} \quad \text { for all } \quad g \in \mathcal{S} ?
$$

In S we take $d \sigma(\xi, \tau)=d \xi$ or the measure induced by Lebesgue measure

Define

$$
\widehat{f d \sigma}(x, t)=\int_{K \subset \mathbb{R}^{n}} f(\xi) e^{-2 \pi i(x \cdot \xi+t \phi(\xi))} d \xi
$$

By duality, the restriction inequality is equivalent to

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{p}\left(K \subset \mathbb{R}^{n}\right)}
$$

- The curvature is important.
- The curvature is important.
- For $\phi(\xi)=|\xi|^{2}$, solution of the free Schrödinger equation with initial data $u_{0}(x)=\widehat{f}(x)$. For $\phi(\xi)=|\xi|$, wave equation appears.
- The curvature is important.
- For $\phi(\xi)=|\xi|^{2}$, solution of the free Schrödinger equation with initial data $u_{0}(x)=\widehat{f}(x)$. For $\phi(\xi)=|\xi|$, wave equation appears.
$p=2$: Tomas (1975), Strichartz (1977), Stein (1978), Greenleaf (1981) Let S be a smooth compact surface with boundary in \mathbb{R}^{n+1} with k nonvanishing principal curvatures. For $q \geq \frac{2 k+4}{k}$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)} .
$$

- The curvature is important.
- For $\phi(\xi)=|\xi|^{2}$, solution of the free Schrödinger equation with initial data $u_{0}(x)=\widehat{f}(x)$. For $\phi(\xi)=|\xi|$, wave equation appears.
$p=2$: Tomas (1975), Strichartz (1977), Stein (1978), Greenleaf (1981) Let S be a smooth compact surface with boundary in \mathbb{R}^{n+1} with k nonvanishing principal curvatures. For $q \geq \frac{2 k+4}{k}$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)} .
$$

Conjecture : for $p<\frac{2 k+2}{k}$ and $\frac{k+2}{q} \leq k\left(1-\frac{1}{p}\right)$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{p}(d \sigma)}
$$

- The curvature is important.
- For $\phi(\xi)=|\xi|^{2}$, solution of the free Schrödinger equation with initial data $u_{0}(x)=\widehat{f}(x)$. For $\phi(\xi)=|\xi|$, wave equation appears.
$p=2$: Tomas (1975), Strichartz (1977), Stein (1978), Greenleaf (1981) Let S be a smooth compact surface with boundary in \mathbb{R}^{n+1} with k nonvanishing principal curvatures. For $q \geq \frac{2 k+4}{k}$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)} .
$$

Conjecture : for $p<\frac{2 k+2}{k}$ and $\frac{k+2}{q} \leq k\left(1-\frac{1}{p}\right)$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{p}(d \sigma)}
$$

Results for $p \neq 2$ (for $k=n$ or $k=n-1$):
Bourgain (1991), Lee, Moyua, Tao, V, Vega, Wolff, Bourgain-Guth (2010)

- The curvature is important.
- For $\phi(\xi)=|\xi|^{2}$, solution of the free Schrödinger equation with initial data $u_{0}(x)=\widehat{f}(x)$. For $\phi(\xi)=|\xi|$, wave equation appears.
$p=2$: Tomas (1975), Strichartz (1977), Stein (1978), Greenleaf (1981) Let S be a smooth compact surface with boundary in \mathbb{R}^{n+1} with k nonvanishing principal curvatures. For $q \geq \frac{2 k+4}{k}$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)}
$$

Conjecture : for $p<\frac{2 k+2}{k}$ and $\frac{k+2}{q} \leq k\left(1-\frac{1}{p}\right)$

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{p}(d \sigma)}
$$

Results for $p \neq 2$ (for $k=n$ or $k=n-1$):
Bourgain (1991), Lee, Moyua, Tao, V, Vega, Wolff, Bourgain-Guth (2010) Ikromov-Kempe-Müller : Sharp result for finite type surfaces

The Knapp counterexample

The Knapp counterexample

The Knapp counterexample

Bilinear restriction theorems

Note that: $\|\widehat{f d \sigma}\|_{L^{\prime}} \leq C\|f\|_{L^{2}(d \sigma)} \quad$ for all f and all $q \geq \frac{2 k+4}{k} \quad$ iff
$\|\widehat{f d \sigma} \widehat{g d \sigma}\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)}\|g\|_{L^{2}(d \sigma)} \quad$ for all f, g and all $q \geq \frac{2 k+4}{k}$

Bilinear restriction theorems

Note that: $\quad\|\widehat{f d \sigma}\|_{L^{q}} \leq C\|f\|_{L^{2}(d \sigma)} \quad$ for all f and all $q \geq \frac{2 k+4}{k} \quad$ iff
$\|\widehat{f d \sigma} \widehat{g d \sigma}\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)}\|g\|_{L^{2}(d \sigma)} \quad$ for all f, g and all $q \geq \frac{2 k+4}{k}$

Let S_{1}, S_{2} be transversal subsets of S, with measures $d \sigma_{1}, d \sigma_{2}$. Are there values $q<\frac{2 k+4}{k}$ such that

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)} ?
$$

Bilinear restriction theorems

Note that: $\quad\|\widehat{f d \sigma}\|_{L^{q}} \leq C\|f\|_{L^{2}(d \sigma)} \quad$ for all f and all $q \geq \frac{2 k+4}{k} \quad$ iff
$\|\widehat{f d \sigma} \widehat{g d \sigma}\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)}\|g\|_{L^{2}(d \sigma)} \quad$ for all f, g and all $q \geq \frac{2 k+4}{k}$

Let S_{1}, S_{2} be transversal subsets of S, with measures $d \sigma_{1}, d \sigma_{2}$. Are there values $q<\frac{2 k+4}{k}$ such that

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)} ?
$$

Definition. Let $\pm \mathbf{N}(\xi) \in \mathbb{S}^{n}$ be the unit normal vector of S at ξ. We say that S_{1} and S_{2} are transversal if, for $\xi_{1} \in S_{1}$ and $\xi_{2} \in S_{2}$,

$$
\left|\mathbf{N}\left(\xi_{1}\right)-\mathbf{N}\left(\xi_{2}\right)\right| \sim 1
$$

Bilinear restriction theorems

Note that: $\quad\|\widehat{f d \sigma}\|_{L^{q}} \leq C\|f\|_{L^{2}(d \sigma)} \quad$ for all f and all $q \geq \frac{2 k+4}{k} \quad$ iff
$\|\widehat{f d \sigma} \widehat{g d \sigma}\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}(d \sigma)}\|g\|_{L^{2}(d \sigma)} \quad$ for all f, g and all $q \geq \frac{2 k+4}{k}$

Let S_{1}, S_{2} be transversal subsets of S, with measures $d \sigma_{1}, d \sigma_{2}$. Are there values $q<\frac{2 k+4}{k}$ such that

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{q / 2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)} ?
$$

Definition. Let $\pm \mathbf{N}(\xi) \in \mathbb{S}^{n}$ be the unit normal vector of S at ξ. We say that S_{1} and S_{2} are transversal if, for $\xi_{1} \in S_{1}$ and $\xi_{2} \in S_{2}$,

$$
\left|\mathbf{N}\left(\xi_{1}\right)-\mathbf{N}\left(\xi_{2}\right)\right| \sim 1
$$

Sharp result for n non-vanishing positive curvatures Tao (2003)

Bilinear restriction theorems

For cones, more transversality conditions are needed :

For cones, more transversality conditions are needed :

- The map $d \mathbf{N}: T_{\xi}(S) \rightarrow T_{N(\xi)}\left(\mathbb{S}^{n}\right)$ has k nonzero eigenvalues and $n-k \geq 1$ zero eigenvalues.

For cones, more transversality conditions are needed :

- The map $d \mathbf{N}: T_{\xi}(S) \rightarrow T_{N(\xi)}\left(\mathbb{S}^{n}\right)$ has k nonzero eigenvalues and $n-k \geq 1$ zero eigenvalues.
$\mathcal{N}_{\xi}(S)$ the span of the eigenvectors with null eigenvalue of $d \mathbf{N}$ at ξ.

For cones, more transversality conditions are needed :

- The map $d \mathbf{N}: T_{\xi}(S) \rightarrow T_{N(\xi)}\left(\mathbb{S}^{n}\right)$ has k nonzero eigenvalues and $n-k \geq 1$ zero eigenvalues.
$\mathcal{N}_{\xi}(S)$ the span of the eigenvectors with null eigenvalue of $d \mathbf{N}$ at ξ.
For $z_{1}, z_{2} \in \mathbb{R}^{n+1}$ define $\Pi_{z_{1}, z_{2}}=\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right)$.

For cones, more transversality conditions are needed :

- The map $d \mathbf{N}: T_{\xi}(S) \rightarrow T_{N(\xi)}\left(\mathbb{S}^{n}\right)$ has k nonzero eigenvalues and $n-k \geq 1$ zero eigenvalues.
$\mathcal{N}_{\xi}(S)$ the span of the eigenvectors with null eigenvalue of $d \mathbf{N}$ at ξ.
For $z_{1}, z_{2} \in \mathbb{R}^{n+1}$ define $\Pi_{z_{1}, z_{2}}=\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right)$.
Second transversality condition :

$$
\begin{aligned}
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{1}}\left(S_{1}\right)\right)=n \\
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{2}}\left(S_{2}\right)\right)=n
\end{aligned}
$$

For cones, more transversality conditions are needed :

- The map $d \mathbf{N}: T_{\xi}(S) \rightarrow T_{N(\xi)}\left(\mathbb{S}^{n}\right)$ has k nonzero eigenvalues and $n-k \geq 1$ zero eigenvalues.
$\mathcal{N}_{\xi}(S)$ the span of the eigenvectors with null eigenvalue of $d \mathbf{N}$ at ξ.
For $z_{1}, z_{2} \in \mathbb{R}^{n+1}$ define $\Pi_{z_{1}, z_{2}}=\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right)$.
Second transversality condition :

$$
\begin{aligned}
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{1}}\left(S_{1}\right)\right)=n \\
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{2}}\left(S_{2}\right)\right)=n
\end{aligned}
$$

Remarked by Tao-V (2000)

For cones, more transversality conditions are needed :

- The map $d \mathbf{N}: T_{\xi}(S) \rightarrow T_{N(\xi)}\left(\mathbb{S}^{n}\right)$ has k nonzero eigenvalues and $n-k \geq 1$ zero eigenvalues.
$\mathcal{N}_{\xi}(S)$ the span of the eigenvectors with null eigenvalue of $d \mathbf{N}$ at ξ.
For $z_{1}, z_{2} \in \mathbb{R}^{n+1}$ define $\Pi_{z_{1}, z_{2}}=\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right)$.
Second transversality condition :

$$
\begin{aligned}
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{1}}\left(S_{1}\right)\right)=n \\
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{2}}\left(S_{2}\right)\right)=n
\end{aligned}
$$

Remarked by Tao-V (2000)
Best result for cones ($n-1$ non-vanishing positive curvatures) Wolff (2001), Tao (2001)

Best result for $n-1$ non-vanishing curvatures, different signs Lee (2006)

For n non-vanishing curvatures, different signs, more transversality conditions are needed Lee, V.

For n non-vanishing curvatures, different signs, more transversality conditions are needed Lee, V.
The maps $\mathbf{N}^{i}: S_{i} \rightarrow \mathbb{S}^{n}$ have rank k.
From the previous condition one can see that for $j=1,2$, the map \mathbf{N}^{j} which is given by $\xi \in \Pi_{z_{1}, z_{2}}: \longrightarrow \mathbf{N}^{j}(\xi) \in \mathbb{S}^{n}$ is also of rank k.

For n non-vanishing curvatures, different signs, more transversality conditions are needed Lee, V.
The maps $\mathbf{N}^{i}: S_{i} \rightarrow \mathbb{S}^{n}$ have rank k.
From the previous condition one can see that for $j=1,2$, the map \mathbf{N}^{j} which is given by $\xi \in \Pi_{z_{1}, z_{2}}: \longrightarrow \mathbf{N}^{j}(\xi) \in \mathbb{S}^{n}$ is also of rank k.
Third transversality condition :

$$
\begin{aligned}
& \mathbf{N}^{2}\left(\xi_{2}\right) \notin\left(d \mathbf{N}^{1}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)\right)+\operatorname{span}\left\{\mathbf{N}^{1}\left(\xi_{1}\right)\right\},\right. \\
& \mathbf{N}^{1}\left(\xi_{1}\right) \notin\left(d \mathbf{N}^{2}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)\right)+\operatorname{span}\left\{\mathbf{N}^{2}\left(\xi_{2}\right)\right\}\right.
\end{aligned}
$$

For n non-vanishing curvatures, different signs, more transversality conditions are needed Lee, V.
The maps $\mathbf{N}^{i}: S_{i} \rightarrow \mathbb{S}^{n}$ have rank k.
From the previous condition one can see that for $j=1,2$, the map \mathbf{N}^{j} which is given by $\xi \in \Pi_{\mathbf{z}_{1}, z_{2}}: \longrightarrow \mathbf{N}^{j}(\xi) \in \mathbb{S}^{n}$ is also of rank k.
Third transversality condition :

$$
\begin{aligned}
& \mathbf{N}^{2}\left(\xi_{2}\right) \notin\left(d \mathbf{N}^{1}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)\right)+\operatorname{span}\left\{\mathbf{N}^{1}\left(\xi_{1}\right)\right\},\right. \\
& \mathbf{N}^{1}\left(\xi_{1}\right) \notin\left(d \mathbf{N}^{2}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)\right)+\operatorname{span}\left\{\mathbf{N}^{2}\left(\xi_{2}\right)\right\}\right.
\end{aligned}
$$

Third transversality condition, equivalent definition: Set

$$
\Gamma_{2}=\left\{t \mathbf{N}^{2}(\xi): \xi \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\}
$$

The third condition equivalently means that any normal vector \mathbf{N}^{1} of S_{1} is transversal to Γ_{2} plus a similar condition for \mathbf{N}^{2} and Γ_{1}.)

For the positively curved surfaces (e.g. the cone, sphere, or paraboloid) the third transversality can be obtained from the first separation condition. This is actually the separation condition which was used to obtain the best possible bilinear restriction estimates for the case of nonvanishing curvatures, different signs (Lee, V).

Theorem

Let $1 \leq k \leq n-1$. Suppose that S is a smooth compact surface in \mathbb{R}^{n+1} with k-nonvanishing curvatures. If the surfaces $S_{1}, S_{2} \subset S$ satisfy the three transversality conditions, then for $p>\frac{k+4}{k+2}$

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

Theorem

Let $1 \leq k \leq n-1$. Suppose that S is a smooth compact surface in \mathbb{R}^{n+1} with k-nonvanishing curvatures. If the surfaces $S_{1}, S_{2} \subset S$ satisfy the three transversality conditions, then for $p>\frac{k+4}{k+2}$

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

The exponent is sharp

Theorem

Let $1 \leq k \leq n-1$. Suppose that S is a smooth compact surface in \mathbb{R}^{n+1} with k-nonvanishing curvatures. If the surfaces $S_{1}, S_{2} \subset S$ satisfy the three transversality conditions, then for $p>\frac{k+4}{k+2}$

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

The exponent is sharp
Note that for $k=n$, bilinear theorems hold for $p>\frac{n+3}{n+1}$

Theorem

Let $1 \leq k \leq n-1$. Suppose that S is a smooth compact surface in \mathbb{R}^{n+1} with k-nonvanishing curvatures. If the surfaces $S_{1}, S_{2} \subset S$ satisfy the three transversality conditions, then for $p>\frac{k+4}{k+2}$

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

The exponent is sharp
Note that for $k=n$, bilinear theorems hold for $p>\frac{n+3}{n+1}$
If we assume only the first and third orthogonality conditions, we prove the estimate for $p>\frac{k+3}{k+1}$. This exponent is sharp.

The model examples

Let us set

$$
Q=\{(\xi, \eta, \rho, \delta):|\xi| \leq 1,|\eta| \leq 1, \rho \in[1,2], \delta \in[1,2]\} \subset \mathbb{R}^{4}
$$

The model examples

Let us set

$$
Q=\{(\xi, \eta, \rho, \delta):|\xi| \leq 1,|\eta| \leq 1, \rho \in[1,2], \delta \in[1,2]\} \subset \mathbb{R}^{4}
$$

$$
S=\{(\xi, \eta, \rho, \delta, \phi(\xi, \eta, \rho, \delta)):(\xi, \eta, \rho, \delta) \in Q\}
$$

$$
\phi(\xi, \eta, \rho, \delta)=\frac{|\xi|^{2}}{\rho}-\frac{|\eta|^{2}}{\delta}
$$

The model examples

Let us set

$$
Q=\{(\xi, \eta, \rho, \delta):|\xi| \leq 1,|\eta| \leq 1, \rho \in[1,2], \delta \in[1,2]\} \subset \mathbb{R}^{4}
$$

$$
\begin{aligned}
& S=\{(\xi, \eta, \rho, \delta, \phi(\xi, \eta, \rho, \delta)):(\xi, \eta, \rho, \delta) \in Q\} \\
& \quad \phi(\xi, \eta, \rho, \delta)=\frac{|\xi|^{2}}{\rho}-\frac{|\eta|^{2}}{\delta} .
\end{aligned}
$$

S has 2 vanishing and 2 nonvanishing curvatures.

The model examples

Let us set

$$
Q=\{(\xi, \eta, \rho, \delta):|\xi| \leq 1,|\eta| \leq 1, \rho \in[1,2], \delta \in[1,2]\} \subset \mathbb{R}^{4} .
$$

$S=\{(\xi, \eta, \rho, \delta, \phi(\xi, \eta, \rho, \delta)):(\xi, \eta, \rho, \delta) \in Q\}$

$$
\phi(\xi, \eta, \rho, \delta)=\frac{|\xi|^{2}}{\rho}-\frac{|\eta|^{2}}{\delta} .
$$

S has 2 vanishing and 2 nonvanishing curvatures.
One can generalize to a surface S with k nonvanishing curvatures in \mathbb{R}^{n+1}.

The model examples

Let us set

$$
Q=\{(\xi, \eta, \rho, \delta):|\xi| \leq 1,|\eta| \leq 1, \rho \in[1,2], \delta \in[1,2]\} \subset \mathbb{R}^{4} .
$$

$S=\{(\xi, \eta, \rho, \delta, \phi(\xi, \eta, \rho, \delta)):(\xi, \eta, \rho, \delta) \in Q\}$

$$
\phi(\xi, \eta, \rho, \delta)=\frac{|\xi|^{2}}{\rho}-\frac{|\eta|^{2}}{\delta} .
$$

S has 2 vanishing and 2 nonvanishing curvatures.
One can generalize to a surface S with k nonvanishing curvatures in \mathbb{R}^{n+1}.
Note that

$$
\phi(\xi, \rho)=\frac{|\xi|^{2}}{\rho}
$$

defines the usual cone.

Theorem

Let S_{1}, S_{2} subsets of S satisfying

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1 .
$$

Then, for $p>\frac{3}{2}$,

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{5}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

Theorem

Let S_{1}, S_{2} subsets of S satisfying

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

Then, for $p>\frac{3}{2}$,

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{5}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

Tao-V-Vega observed (1988) that bilinear restriction theorems imply linear restriction theorems for paraboloids.

Theorem

Let S_{1}, S_{2} subsets of S satisfying

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

Then, for $p>\frac{3}{2}$,

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{5}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

Tao-V-Vega observed (1988) that bilinear restriction theorems imply linear restriction theorems for paraboloids.

Theorem

If $\frac{2}{q} \leq 1-\frac{1}{p}$ and $q>3$, then, there is a constant C such that

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{5}\right)} \leq C\|f\|_{L^{p}}
$$

Theorem

Let S_{1}, S_{2} subsets of S satisfying

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

Then, for $p>\frac{3}{2}$,

$$
\left\|\widehat{f d \sigma_{1}} \widehat{g d \sigma_{2}}\right\|_{L^{p}\left(\mathbb{R}^{5}\right)} \leq C\|f\|_{L^{2}\left(d \sigma_{1}\right)}\|g\|_{L^{2}\left(d \sigma_{2}\right)}
$$

Tao-V-Vega observed (1988) that bilinear restriction theorems imply linear restriction theorems for paraboloids.

Theorem

If $\frac{2}{q} \leq 1-\frac{1}{p}$ and $q>3$, then, there is a constant C such that

$$
\|\widehat{f d \sigma}\|_{L^{q}\left(\mathbb{R}^{5}\right)} \leq C\|f\|_{L^{p}}
$$

For fixed q, the result is sharp.

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2], j=1,2$.

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2], j=1,2$.

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$$
\mathbf{N}(\xi, \eta, \rho, \delta) \sim\left(2 \frac{\xi}{\rho},-2 \frac{\eta}{\delta},-\frac{\xi^{2}}{\rho^{2}}, \frac{\eta^{2}}{\delta^{2}},-1\right)=\left(2 \theta,-2 \lambda,-\theta^{2}, \lambda^{2},-1\right)
$$

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2], j=1,2$.

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathbf{N}(\xi, \eta, \rho, \delta) \sim\left(2 \frac{\xi}{\rho},-2 \frac{\eta}{\delta},-\frac{\xi^{2}}{\rho^{2}}, \frac{\eta^{2}}{\delta^{2}},-1\right)=\left(2 \theta,-2 \lambda,-\theta^{2}, \lambda^{2},-1\right)$
Orthogonality condition 1 :
$\mathbf{N}\left(\xi_{1}, \eta_{1}, \rho_{1}, \delta_{1}\right)$ and $\mathbf{N}\left(\xi_{2}, \eta_{2}, \rho_{2}, \delta_{2}\right)$ are not paralell.

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1 .
$$

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathcal{N}_{p}(S)$ the span of the eigenvectors with zero eigenvalue of $d \mathbf{N}$ at p.

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathcal{N}_{p}(S)$ the span of the eigenvectors with zero eigenvalue of $d \mathbf{N}$ at p. The projection of $\mathcal{N}_{p}(S)$ into \mathbb{R}^{4} is the span of

$$
\mathcal{N}=\left(\frac{\xi}{\rho}, 0,1,0\right)=(\theta, 0,1,0), \quad \mathcal{M}=\left(0, \frac{\eta}{\rho}, 0,1\right)=(0, \lambda, 0,1)
$$

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathcal{N}_{p}(S)$ the span of the eigenvectors with zero eigenvalue of $d \mathbf{N}$ at p. The projection of $\mathcal{N}_{p}(S)$ into \mathbb{R}^{4} is the span of

$$
\begin{aligned}
\mathcal{N} & =\left(\frac{\xi}{\rho}, 0,1,0\right)=(\theta, 0,1,0), \quad \mathcal{M}=\left(0, \frac{\eta}{\rho}, 0,1\right)=(0, \lambda, 0,1) \\
\Pi_{z_{1}, z_{2}} & =\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right)
\end{aligned}
$$

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathcal{N}_{p}(S)$ the span of the eigenvectors with zero eigenvalue of $d \mathbf{N}$ at p. The projection of $\mathcal{N}_{p}(S)$ into \mathbb{R}^{4} is the span of

$$
\begin{aligned}
\mathcal{N} & =\left(\frac{\xi}{\rho}, 0,1,0\right)=(\theta, 0,1,0), \quad \mathcal{M}=\left(0, \frac{\eta}{\rho}, 0,1\right)=(0, \lambda, 0,1) \\
\Pi_{z_{1}, z_{2}} & =\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right) \quad(u, \phi(u))+z_{1}=(v, \phi(v))+z_{2}
\end{aligned}
$$

Hipothesis : $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathcal{N}_{p}(S)$ the span of the eigenvectors with zero eigenvalue of $d \mathbf{N}$ at p. The projection of $\mathcal{N}_{p}(S)$ into \mathbb{R}^{4} is the span of

$$
\begin{aligned}
\mathcal{N} & =\left(\frac{\xi}{\rho}, 0,1,0\right)=(\theta, 0,1,0), \quad \mathcal{M}=\left(0, \frac{\eta}{\rho}, 0,1\right)=(0, \lambda, 0,1) \\
\Pi_{z_{1}, z_{2}} & =\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right) \quad(u, \phi(u))+z_{1}=(v, \phi(v))+z_{2}
\end{aligned}
$$

Projection into \mathbb{R}^{n}

$$
\pi_{z_{1}, z_{2}}: \quad \phi(u)-\phi(w+u)=t, \quad \text { for }(w,-t)=z_{1}-z_{2} .
$$

Hipothesis: $\left|\xi_{j}\right| \leq 1,\left|\eta_{j}\right| \leq 1, \rho_{j} \in[1,2], \delta_{j} \in[1,2]$

$$
\left|\left(\frac{\xi_{1}}{\rho_{1}}, \frac{\eta_{1}}{\delta_{1}}\right)-\left(\frac{\xi_{2}}{\rho_{2}}, \frac{\eta_{2}}{\delta_{2}}\right)\right| \sim 1
$$

$\mathcal{N}_{p}(S)$ the span of the eigenvectors with zero eigenvalue of $d \mathbf{N}$ at p. The projection of $\mathcal{N}_{p}(S)$ into \mathbb{R}^{4} is the span of

$$
\begin{aligned}
\mathcal{N} & =\left(\frac{\xi}{\rho}, 0,1,0\right)=(\theta, 0,1,0), \quad \mathcal{M}=\left(0, \frac{\eta}{\rho}, 0,1\right)=(0, \lambda, 0,1) \\
\Pi_{z_{1}, z_{2}} & =\left(S_{1}+z_{1}\right) \cap\left(S_{2}+z_{2}\right) \quad(u, \phi(u))+z_{1}=(v, \phi(v))+z_{2}
\end{aligned}
$$

Projection into \mathbb{R}^{n}

$$
\pi_{z_{1}, z_{2}}: \quad \phi(u)-\phi(w+u)=t, \quad \text { for }(w,-t)=z_{1}-z_{2} .
$$

Second transversality condition :

$$
\begin{aligned}
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{1}}\left(S_{1}\right)\right)=4 \\
& \operatorname{dim}\left(T_{\xi}\left(\Pi_{z_{1}, z_{2}}\right)+\mathcal{N}_{\xi_{2}}\left(S_{2}\right)\right)=4
\end{aligned}
$$

This reduces to

$$
\begin{gathered}
\operatorname{dim}\left(T_{\xi}\left(\pi_{z_{1}, z_{2}}\right)+\operatorname{span}\left\{\mathcal{N}_{1}, \mathcal{M}_{1}\right\}\right)=4, \\
\operatorname{dim}\left(T_{\xi}\left(\pi_{z_{1}, z_{2}}\right)+\operatorname{span}\left\{\mathcal{N}_{2}, \mathcal{M}_{2}\right\}=4\right.
\end{gathered}
$$

This reduces to

$$
\begin{gathered}
\operatorname{dim}\left(T_{\xi}\left(\pi_{z_{1}, z_{2}}\right)+\operatorname{span}\left\{\mathcal{N}_{1}, \mathcal{M}_{1}\right\}\right)=4, \\
\operatorname{dim}\left(T_{\xi}\left(\pi_{z_{1}, z_{2}}\right)+\operatorname{span}\left\{\mathcal{N}_{2}, \mathcal{M}_{2}\right\}=4\right.
\end{gathered}
$$

This reduces to :
either $\left|<\nabla \phi(u)-\nabla \phi(u+w), \mathcal{N}_{1}>\right| \sim 1$
either $\left|<\nabla \phi(u)-\nabla \phi(u+w), \mathcal{M}_{1}>\right| \sim 1$

This reduces to

$$
\begin{gathered}
\operatorname{dim}\left(T_{\xi}\left(\pi_{z_{1}, z_{2}}\right)+\operatorname{span}\left\{\mathcal{N}_{1}, \mathcal{M}_{1}\right\}\right)=4, \\
\operatorname{dim}\left(T_{\xi}\left(\pi_{z_{1}, z_{2}}\right)+\operatorname{span}\left\{\mathcal{N}_{2}, \mathcal{M}_{2}\right\}=4\right.
\end{gathered}
$$

This reduces to:
either $\left|<\nabla \phi(u)-\nabla \phi(u+w), \mathcal{N}_{1}>\right| \sim 1$
either $\left|<\nabla \phi(u)-\nabla \phi(u+w), \mathcal{M}_{1}>\right| \sim 1$

Finally,

$$
<\nabla \phi(u)-\nabla \phi(u+w), \mathcal{N}_{1}>=\left|\frac{\xi_{1}}{\rho_{1}}-\frac{\xi_{2}}{\rho_{2}}\right|^{2} .
$$

Third transversality condition :
Set

$$
\Gamma_{2}=\left\{t \mathbf{N}^{2}(\xi): \xi \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\}
$$

Any normal vector \mathbf{N}^{1} is transversal to Γ_{2}.

Third transversality condition :
Set

$$
\Gamma_{2}=\left\{t \mathbf{N}^{2}(\xi): \xi \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\}
$$

Any normal vector \mathbf{N}^{1} is transversal to Γ_{2}.

$$
\begin{gathered}
\Gamma_{2}=\left\{t\left(\nabla \phi\left(u_{2}\right),-1\right): u_{2} \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\} \subset \\
\left\{t\left(2 \theta_{2},-2 \lambda_{2},-\left|\theta_{2}\right|^{2},\left|\lambda_{2}\right|^{2},-1\right)\right\} .
\end{gathered}
$$

Third transversality condition :
Set

$$
\Gamma_{2}=\left\{t \mathbf{N}^{2}(\xi): \xi \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\}
$$

Any normal vector \mathbf{N}^{1} is transversal to Γ_{2}.

$$
\begin{gathered}
\Gamma_{2}=\left\{t\left(\nabla \phi\left(u_{2}\right),-1\right): u_{2} \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\} \subset \\
\left\{t\left(2 \theta_{2},-2 \lambda_{2},-\left|\theta_{2}\right|^{2},\left|\lambda_{2}\right|^{2},-1\right)\right\}
\end{gathered}
$$

Its tangent plane is spanned by

$$
\left(2,0,-2 \theta_{2}, 0,0\right),\left(0,2,0,-2 \lambda_{2}, 0\right),\left(2 \theta_{2},-2 \lambda_{2},-\left|\theta_{2}\right|^{2},\left|\lambda_{2}\right|^{2},-1\right)
$$

Third transversality condition :
Set

$$
\Gamma_{2}=\left\{t \mathbf{N}^{2}(\xi): \xi \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\}
$$

Any normal vector \mathbf{N}^{1} is transversal to Γ_{2}.

$$
\begin{gathered}
\Gamma_{2}=\left\{t\left(\nabla \phi\left(u_{2}\right),-1\right): u_{2} \in \Pi_{z_{1}, z_{2}}, 1 \leq|t| \leq 2\right\} \subset \\
\left\{t\left(2 \theta_{2},-2 \lambda_{2},-\left|\theta_{2}\right|^{2},\left|\lambda_{2}\right|^{2},-1\right)\right\} .
\end{gathered}
$$

Its tangent plane is spanned by
$\left(2,0,-2 \theta_{2}, 0,0\right),\left(0,2,0,-2 \lambda_{2}, 0\right),\left(2 \theta_{2},-2 \lambda_{2},-\left|\theta_{2}\right|^{2},\left|\lambda_{2}\right|^{2},-1\right)$
$\mathbf{N}^{1} \sim\left(2 \theta_{1}, 2 \lambda_{1},-\left|\theta_{1}\right|^{2},-\left|\lambda_{1}\right|^{2},-1\right)$

