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Motivation

In signal processing the rational orthogonal bases (Laguerre,
Kautz and Malmquist-Takenaka systems) are more efficient.

The successful application of rational orthogonal bases needs
a priori knowledge of the poles of the transfer function that
may cause a drawback of the method.

We give a set of poles and using them we will generate a
multiresolution in H2(T) and H2(D).

The construction is an analogy with the discrete affine
wavelets, and in fact is the discretization of the continuous
voice transform generated by a representation of the Blaschke
group over the space H2(T).
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Totik’s recovery theorem

Theorem

If (zn)n∈N is a sequence of complex numbers in the open unit disc
such that

∞∑
j=0

(1− |zj |) =∞,

then for all f ∈ Hp(D) there are polynomials pn,j such that

‖f −
n∑

j=0

f (zj)pn,j‖Hp → 0, if n→∞.
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Recovery

The coefficients of pn,j are given by integrals, which can not
be determined exactly from (f (zj))j∈n.

Question: How to give a recovery formula depending only on
(zj)j∈n and (f (zj))j∈n?

KEHE ZU, 1997 gave for H2(D) a possible algorithm of the
recovery in generel for the set of uniqueness.

In this talk I will present a special set of the points
(zj)j∈n ∈ D which will be the base of the recovery using
multiresolution in H2(D) and in H2(T).

For this purpose we will need tools from non-commutative
harmonic analysis over groups and the generalization of
Fourier transform: the voice transform.
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Unitary representation
Definition of the voice transform
Special voice transforms
The voice transform of the Blaschke group
Discretization
Multiresolution analysis of L2(R)
The projection operator to the n-th resolution level

The continuous voice transform

H. G. Feichtinger and K. H. Gröchenig unified the theory of
Gábor and wavelet transforms into a single theory. The
common generalization of these transforms is the so-called
voice transform.

In the construction of the voice-transform the starting point
will be a locally compact topological group (G , ·).

Let m be a left-invariant Haar measure of G :∫
G

f (x) dm(x) =

∫
G

f (a−1 · x) dm(x), (a ∈ G ).
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Unitary representation

Unitary representation of the group (G , ·): Let us consider
a Hilbert-space (H, 〈·, ·〉).
U denote the set of unitary bijections U : H → H. Namely,
the elements of U are bounded linear operators which satisfy
〈Uf ,Ug〉 = 〈f , g〉 (f , g ∈ H).

The set U with the composition operation
(U ◦ V )f := U(Vf ) (f ∈ H) is a group.
The homomorphism of the group (G , ·) on the group (U , ◦)
satisfying

i) Ux ·y = Ux ◦ Uy (x , y ∈ G ),

ii) G 3 x → Ux f ∈ H is continuous for all f ∈ H

is called the unitary representation of (G , ·) on H.
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Definition of the voice transform

Definition

The voice transform of f ∈ H generated by the representation U
and by the parameter ρ ∈ H is the (complex-valued) function on G
defined by

(Vρf )(x) := 〈f ,Uxρ〉 (x ∈ G , f , ρ ∈ H).

Taking as starting point (not necessarily commutative) locally
compact groups we can construct in this way important
transformations.
The affine wavelet transform is a voice transform of the affine
group.

The Gábor transform is a voice transform of the Heisenberg
group.

Margit Pap http://nuhag.eu
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Affine wavelet transform

Affine wavelet transform

The affine group:
G = {`(a,b)(x) = ax + b : R→ R : (a, b) ∈ R∗ × R}
`1◦`2(x) = a1a2x +a1b2+b1, (a1, b1)◦(a2, b2) = (a1a2, a1b2+b1)
The representation of G on L2(R)
U(a,b)f (x) = |a|−1/2f (a−1x − b)
The affine wavelet transform is:
Wψf (a, b) = |a|−1/2

∫
R f (t)ψ(a−1t − b)dt = 〈f ,U(a,b)ψ〉.

Discretization: Find a ψ such that

ψn,k = 2−n/2ψ(2−nx − k)

form a (orthonormal) basis in L2(R) which generate a
multiresolution Margit Pap http://nuhag.eu
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The Blaschke group

The Blaschke group Let us denote by

Ba(z) := ε
z − b

1− b̄z
(z ∈ C, a = (b, ε) ∈ B := D× T, bz 6= 1)

the so called Blaschke functions,

D := {z ∈ C : |z | < 1}, T := {z ∈ C : |z | = 1}.

If a ∈ B, then Ba is an 1-1 map on T, D respectively.

The restrictions of the Blaschke functions on the set D or on
T with the operation (Ba1 ◦ Ba2)(z) := Ba1(Ba2(z)) form a
group.

Margit Pap http://nuhag.eu
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The voice transform of the Blaschke group

In the set of the parameters B := D× T let us define the
operation induced by the function composition in the
following way Ba1 ◦ Ba2 = Ba1◦a2 .

(B, ◦) will be the Blaschke group which is isomorphic with the
group ({Ba, a ∈ B}, ◦).

If we use the notations aj := (bj , εj), j ∈ {1, 2} and
a := (b, ε) =: a1 ◦ a2 then

b =
b1ε2 + b2

1 + b1b2ε2
, ε = ε1

ε2 + b1b2

1 + ε2b1b2

.

The neutral element of the group (B, ◦) is e := (0, 1) ∈ B and
the inverse element of a = (b, ε) ∈ B is a−1 = (−bε, ε).
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The voice transform of the Blaschke group

The integral of the function f : B→ C, with respect to this
left invariant Haar measure m of the group (B, ◦), is given by∫

B
f (a) dm(a) =

1

2π

∫
I

∫
D

f (b, e it)

(1− |b|2)2
db1db2dt,

where a = (b, e it) = (b1 + ib2, e
it) ∈ D× T.

Denote by εn(t) = e int (t ∈ I = [0, 2π], n ∈ N), let consider
the Hilbert space H = H2(T), the closure in L2(T)-norm of
the set

span{εn, n ∈ N}.
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The representation of the Blaschke group on H2(T)

The inner product is given by

〈f , g〉 :=
1

2π

∫
I

f (e it)g(e it) dt (f , g ∈ H).

The representation of the Blaschke group on H2(T): for(
z = e it ∈ T, a = (b, e iθ) ∈ B

)
, f ∈ H2(T):

(Ua−1f )(z) :=

√
e iθ(1− |b|2)

(1− bz)
f
(e iθ(z − b)

1− bz

)
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The voice transform of the Blaschke group

The voice transform generated by Ua (a ∈ B) is given by the
following formula

(Vρf )(a−1) := 〈f ,Ua−1ρ〉 (f , ρ ∈ H2(T)).

Pap M., Schipp F., The voice transform on the Blaschke
group I., PU.M.A., Vol 17, (2006), No 3-4, pp. 387-395.

Pap M., Schipp F., The voice transform on the Blaschke
group II., Annales Univ. Sci. (Budapest), Sect. Comput., 29
(2008) 157-173.
The matrix elements of the representation can be given by the
Zernike functions which play an important role in expressing
the wavefront data in optical tests.
An important consequence of this connection is the addition
formula for Zernike functions.
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Discretization

Pap M.: Hyperbolic Wavelets and Multiresolution in H2(T),
Accepted for publication: Journal of Fourier Analysis and
Applications DOI: 10.1007/s00041-011-9169-2

Continuous voice transform:

(Vρf )(a−1) := 〈f ,Ua−1ρ〉 (f , ρ ∈ H2(T)), a = (re iφ, e iψ) ∈ B.

Question: How to choose a discrete subset ak` = (zk`, 1) ∈ B
and ρ ∈ H2(T) such that the functions Ua−1

k`
ρ generate a

multiresolution decomposition in H2(T)) and in H2(D)) ?

Let denote by B1 =
{

(rk , 1) : rk = 2k−2−k

2k+2−k , k ∈ Z
}
.

It can be proved that (B1, ◦) is a subgroup of (B, ◦), and
(rk , 1) ◦ (rn, 1) = (rk+n, 1).
The pseudo hyperbolic distance of the points rk , rn has the
following property: ρ(rk , rn) = |rk−n|.
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Discretization
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The projection operator to the n-th resolution level

Multiresolution analysis of L2(R)

Let Vj , j ∈ Z be a sequence of subspaces of L2(R). The
collections of spaces {Vj , j ∈ Z} is called a multiresolution
analysis with scaling function φ if the following conditions hold:
1. (nested) Vj ⊂ Vj+1

2. (density) ∪Vj = L2(R)
3. (separation) ∩Vj = {0}
4. (basis) The function φ belongs to V0 and the set
{2n/2φ(2nx − k), k ∈ Z} is a (orthonormal) bases in Vn.
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Multiresolution analysis of H2(T)

We want to give the analogue of the affine wavelet multiresolution
analysis in H2(T) .

Definition

Let Vj , j ∈ N be a sequence of subspaces of H2(T ). The
collections of spaces {Vj , j ∈ N} is called a multiresolution if the
following conditions hold:
1. (nested) Vj ⊂ Vj+1,
2. (density) ∪Vj = H2(T )
3. (dilatation) U(r1,1)−1(Vj) ⊂ Vj+1

4. (basis) There exist ψj` (orthonormal) bases in Vj .
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Multiresolution analysis of H2(T)

Let us consider the set of points in the unit disc

A = {zk` = rke
i 2π`
22k , ` = 0, 1, ..., 22k − 1, k = 0, 1, 2, ...∞},

Ak = {zk` = rke
i 2π`
22k , ` ∈ {0, 1, ..., 22k − 1}}.

A is not a Blaschke sequence:
∑

k,`(1− |zk`|) =∞.
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Multiresolution analysis of H2(T)

Let us consider the function p0 = ϕ00 = 1, V0 = {c , c ∈ C}
and let

p1(z) = Ur−1
1

p0 =

√
1− r21

(1− r1z)
, pn(z) = (Ur−1

1
pn−1)(z) =

√
1− r2n

(1− rnz)
,

ϕn,`(z) = (U(rn−1◦r1)−1p0)(e i(t−
2π`
22n

)).

Let us define the n-th resolution level by

Vn = {f : D → C , f (z) =
n∑

k=0

22k−1∑
`=0

ck,`ϕk,`, ck,` ∈ C }.

If a function f ∈ Vn, then U(r1,1)−1f ∈ Vn+1.
Margit Pap http://nuhag.eu
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Multiresolution analysis of H2(T)

The closed subset Vn is spanned by the nonorthogonal basis:

{ϕk,`, ` = 0, 1, ..., 22k − 1, k = 1, ..., n},
V0 ⊂ V1 ⊂ V2 ⊂ .....Vn ⊂ ....H2(T ).

Applying the Gram-Schmidt orthogonalization for this set of
analytic linearly independent functions we obtain the
Malmquist -Takenaka system corresponding to the set
∪nk=0Ak :

ψm,`(z) =

√
1− r2m

1− zm`z

m−1∏
k=0

22k−1∏
j=0

z − zkj
1− zkjz

`−1∏
j ′=0

z − zmj ′

1− zmj ′z
.
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Multiresolution analysis of H2(T)

Vn = span{ψk,`, ` = 0, 1, ..., 22k − 1, k = 0, n}.

The Malmquist -Takenaka system corresponding to the set A
is a complete orthonormal system of holomorphic functions in
H2(T ), consequently the density condition is satisfied:⋃

n∈N
Vn = H2(T ).

The wavelet space Wn is the orthogonal complement of Vn in
Vn+1:

Wn = span{ψn+1,`, ` = 0, 1, ..., 22n+2 − 1},
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The projection operator to the n-th resolution level

Vn+1 = Vn

⊕
Wn.

For f ∈ H2(T ) let consider:

Pnf (z) =
n∑

k=0

22k−1∑
`=0

〈f , ψk,`〉ψk,`(z)

,

ψm,`(z) =

√
1− r2m

1− zm`z

m−1∏
k=0

22k−1∏
j=0

z − zkj
1− zkjz
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Theorem

For f ∈ H2(T ) the projection operator Pnf is an interpolation
operator in the points

zmj = rme i
2πj

22m , (j = 0, ...., 22m − 1, m = 0, ..., n) for the analytic
continuation of f in the unit disc,

‖f − Pnf ‖ → 0, n→∞,

uniform convergence for the analytic continuation of f inside the
unit disc on every compact subset. For every f ∈ H2(D)

‖Pnf (z)− f ‖= inf
fn∈Vn

‖fn − f ‖,
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Reconstruction algorithm

In what follows we propose a computational scheme in the
wavelet base {ψk,`, ` = 0, 1, ..., 22k − 1, k = 0, ..., n}.
The projection of f ∈ H2(T ) onto Vn+1 can be written in the
following way:

Qnf (z) :=
22(n+1)−1∑
`=0

〈f , ψn+1,`〉ψn+1,`(z),

Pn+1f = Pnf + Qnf , Qnf (zk`) = 0, k = 1, n, ` = 0, 22n − 1.

This means that Qn contains information only from level
An+1. Consequently Pn contains information on low
resolution, i.e., until the level An, and Qn is the high
resolution part. After n steps

Pn+1f = P1f +
n∑

k=1

Qnf , Vn+1 = V0

⊕
W0

⊕
W1

⊕
...
⊕

Wn.
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Reconstruction algorithm

The set of coefficients of the best approximant Pnf :
({bk` = 〈f , ψk,`〉, ` = 0.1, ...22k − 1 k = 0, 1, ..., n}) is the
(discrete) hyperbolic wavelet transform of the function f .
The coefficients of the projection operator Pnf can be
computed if we know the values of the functions on
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Reconstruction algorithm

For f ∈ H2(T )

Pnf (z) =
n∑

k=0

22k−1∑
`=0

〈f , ψk,`〉ψk,`(z),

〈f , ψk,`〉 =
k−1∑
k ′=0

22k
′−1∑

`′=0

ck ′,`′f (zk ′,`′) +
∑̀
j=0

ck,j f (zk,j),

ψm,`(z) =

√
1− r2m

1− zm`z

m−1∏
k=0

22k−1∏
j=0

z − zkj
1− zkjz

`−1∏
j ′=0

z − zmj ′

1− zmj ′z
.
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Summary

Measuring the values of the function f in the points of the set
A =

⋃n
k=0 Ak ⊂ D we can write the the projection operator at the

n-th resolution level which is convergent in H2(T ) norm on the
unit circle to f , is the best approximant interpolation operator on
the set the

⋃n
k=0 Ak inside the unit circle for the analytic

continuation of f and Pnf (z)→ f (z) uniformly on every compact
subset of the unit disc. Complex coloring visualization of hyperbolic
wavelets see homepage of Levente Lócsi: http://locsi.web.elte.hu/.
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