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1. Introduction

The problem

A(D) = disk algebra.

If f ∈ A(D) then Sn(f, 0)→ f a.e. on T
(it follows by Carleson’s theorem).
Question: What is the limiting behavior of the partial sums
of f on ”small” subsets of the unit circle?

Definition 1.1. Let K ⊂ C \ D be a countable set. We say that
the partial sums of the Taylor development of a function f ∈ H(D)
with center 0 enjoy a pointwise universality property on K, if for every
function g : K → C there exists a subsequence (λn) of positive integers
such that

lim
n→+∞

Sλn(f, 0) = g pointwise on K.

We denote the class of such functions by Up(D,K, 0).

Definition 1.2. Let K ⊂ C \ D be a compact set. We say that
the partial sums of the Taylor development of a function f ∈ H(D)
with center 0 enjoy a uniform universality property on K, if for every
function g ∈ A(K) there exists a subsequence (λn) of positive integers
such that

lim
n→+∞

Sλn(f, 0) = g uniformly on K.

We denote the class of such functions by U(D,K, 0).

2. The results

Theorem 2.1. Let E ⊂ T be a countable set. Then quasi all f ∈
A(D) enjoy the property that for every function h : E → C there is a
subsequence of (Sn(f, 0)) converging pointwise to h on E; equivalently,
the set Up(D,E, 0) ∩ A(D) is Gδ and dense in A(D). In particular,
Up(D,E, 0) ∩ A(D) 6= ∅.
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Denoting by K(T) the complete metric space of all compact, non-
empty subsets of T equipped with the Hausdorff metric, we obtain

Theorem 2.2. Quasi all functions f ∈ A(D) enjoy the property that
(Sn(f, 0)) is uniformly universal on quasi all sets E ⊂ K(T). In par-
ticular, there exists a compact set K ⊂ T which is perfect and thus
uncountable such that U(D,K, 0) ∩ A(D) 6= ∅.

By Theorem 2.2 there are functions f in A(D) enjoying the property
that their partial sums (Sn(f, 0)) are uniformly universal on sets E ⊂
K(T), where E is infinite. On the other hand, as the next proposition
shows, there are certain sets C ⊂ T with |C| = |N| such that whenever
the partial sums of a function f ∈ H(D) are uniformly universal on
C then f /∈ A(D). These sets arise as an application of Rogosinski’s
formula. In particular, a sequence (eiθn), θn ∈ R, of the unit circle
is such a set provided that eiθn → 1 ”rather slowly”; for instance the
choice θn = π/n suffices.

Proposition 2.3. There are compact sets C ⊂ T such that
(i) C is countable,
(ii) Up(D,C, 0) ∩ A(D) 6= ∅,
(iii) U(D,C, 0) ∩ A(D) = ∅.

3. Sketch of Proofs

Lemma 3.1. Let Λ ⊂ N. Then the set of functions f ∈ A(D) such that
the sequence (Sn(f, 0)(1))n∈Λ is unbounded is Gδ and dense in A(D).

Proof. Consider the so called Fejer polynomials

Pn(z) =

(
1

n
+

z

n− 1
+ . . .+
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1

)
−
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1
+
zn+1
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z2n−1

n

)
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n = 1, 2, . . .. Fejer showed that there is a positive number M > 0 such
that ‖Pn‖ = supz∈T |Pn(z)| ≤ M for every n ∈ N, i.e. the polynomials
Pn are uniformly bounded on T; On the other hand we have

Sn(Pn, 0)(1) =
1

n
+

1

n− 1
+ . . .+ 2 > log n− 1

for every n ∈ N. The maps Ln : A(D) → C, Ln(f) = Sn(f, 0)(1),
n ∈ λ, f ∈ A(D), are continuous linear functionals on A(D). In
view of the above properties of Fejer polynomials, these functionals are
not uniformly bounded and consequently by the uniform boundedness
theorem we conclude the existence of a function g ∈ A(D) such that the
sequence (Sn(g, 0)(1))n∈Λ is unbounded. To show that such functions
form a Gδ and dense set in A(D) either one can apply the Banach-
Steihaus theorem or one may use a more straightforward argument
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based on the facts that the polynomials are dense in A(D) and that for
every polynomial the sequence (Sn(g + p, 0)(1))n∈Λ is unbounded. �

Lemma 3.2. Let f ∈ A(D), w ∈ T and define g(z) := (z − w)f(z),
z ∈ D. Then we have

Sn(g, 0)(w)→ 0 as n→ +∞.

Proof. Suppose f(z) =
∑∞

n=0 anz
n, z ∈ D. Straightforward calcula-

tions show that for every non-negative integer n,

Sn(g, 0)(z) = (z − w)Sn(f, 0)(z)− anzn+1 for every z ∈ C.
Applying the above formula for z = w we get

Sn(g, 0)(w) = −anwn+1, n = 0, 1, 2, . . .

and since an → 0 (recall that the Taylor coefficients of a function
belonging to the disk algebra, tend to zero) we reach our conclusion. �

Lemma 3.3. Let E be a finite subset of T. Then Up(D,E, 0) ∩ A(D)
is Gδ and dense in A(D).

Proof. Step 1. Let Λ be an infinite set of positive integers. We shall
prove that the set

{f ∈ A(D) : the set {Sn(f, 0)(1) : n ∈ Λ} is dense in C}
is Gδ and dense in A(D).

In order to prove the last assertion we first show that given any
g ∈ A(D), c ∈ C, ε > 0 there exist f ∈ A(D) and n ∈ Λ such that

‖f − g‖ < ε and Sn(f, 0)(1) = c.

Mergelyan’s theorem implies the existence of a polynomial p with ‖g−
p‖ < ε/2. By Lemma 3.1 the set of f ∈ A(D) such that the sequence
(Sn(f, 0)(1))n∈Λ is unbounded is Gδ and dense in A(D). Hence, there
exist h ∈ A(D) and n ∈ Λ with n ≥ deg(p) such that

‖h‖ < ε

2
and |Sn(h, 0)(1)| > |c− p(1)|.

Then the function

Φ :=
c− p(1)

Sn(h, 0)(1)
h

belongs to A(D) and satisfies

Sn(Φ, 0)(1) = c− p(1) and ‖Φ‖ ≤ ‖h‖ < ε

2
.

Thus for f := Φ + p ∈ A(D) and since n ≥ deg(p) we obtain

‖f − g‖ < ε and Sn(f, 0)(1) = Sn(Φ, 0)(1) + p(1) = c.
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According to the Universality Criterion applied to the sequence Tn :
A(D)→ C, n ∈ Λ with Tnf = Sn(f, 0)(1) for f ∈ A(D), n ∈ Λ the set

{f ∈ A(D) : the set {Sn(f, 0)(1) : n ∈ Λ} is dense in C}
is Gδ and dense in A(D).

Step 2. We prove the assertion by induction on N = |E|. For
N = 1 the result follows from Step 1, where without loss of generality
we may suppose that E = {1}. Let now E ⊂ T with |E| = N + 1 and
our inductive hypothesis is that for every subset of T with N points
the assertion holds true. Without loss of generality we may assume
that 1 ∈ E. Then we can write E = F ∪ {1} where |F | = N . The
universality criterion, applied to

Tn : A(D)→ CE, Tnf := Sn(f, 0)|E, n ∈ N, f ∈ A(D),

shows that it suffices to guarantee that for every g ∈ A(D), every ε > 0
and every function h : E → C there exist f ∈ A(D) and a positive
integer n such that

‖f − g‖ < ε and ‖Sn(f, 0)− h‖E < ε.

By Mergelyan’s theorem we may assume that g is a polynomial. Fix
an entire function φ having the following interpolation properties:

φ|F = 1 and φ(1) = 0

and set M := sup|z|≤1 |φ(z)|. By induction hypothesis there exist u ∈
A(D) and Λ ⊂ N with |Λ| =∞ such that

‖u‖ < ε

2M
and |Sn(u, 0)(z)− (h(z)− g(z))| < ε

3
for every z ∈ F and every n ∈ Λ. By the Step 1 there exist v ∈ A(D)
and Λ′ ⊂ Λ, |Λ′| =∞ such that

‖v‖ < ε

2(M + 1)
and |Sn(v, 0)(1)− (h(1)− g(1))| < ε

3

for every n ∈ Λ′. Let now w ∈ F . Since φ(w) = 1 there exists
an entire function ψ such that φ(z) = 1 + (z − w)ψ(z), z ∈ C. Set
Ψ(z) := (z − w)ψ(z)u(z) for z ∈ D. Then ψu ∈ A(D) and by Lemma
3.2 we conclude that

|Sn(u, 0)(w)− Sn(uφ, 0)(w)| = |Sn(Ψ, 0)(w)| → 0 as n→ +∞.
Since F is a finite set it follows that

‖Sn(u, 0)− Sn(uφ, 0)‖F → 0 as n→ +∞.
We follow a similar argument to control the quantity |Sn(uφ, 0)(1)|
for large n. Indeed, the function φ vanishes at 1, so there exists an
entire function α such that φ(z) = (z − 1)α(z), z ∈ C. Set A(z) :=
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(z − 1)u(z)α(z), z ∈ D and observe that uα ∈ A(D). Lemma 3.2
implies that

|Sn(uφ, 0)(1)| = |Sn(A, 0)(1)| → 0 as n→ +∞.

In a similar manner one shows that

|Sn(vφ, 0)(1)| → 0 as n→ +∞

and

|Sn(v, 0)− Sn(vφ, 0)‖F → 0 as n→ +∞.
From the above we get

‖Sn(uφ, 0)− Sn(u, 0)‖F <
ε

3
, |Sn(uφ, 0)(1)| < ε

3

and

|Sn(vφ, 0)(1)| < ε

3
, ‖Sn(v, 0)− Sn(vφ, 0)‖F <

ε

3
for n sufficiently large. Let us now define

f := uφ+ v(1− φ) + g.

Then

‖f − g‖

≤ ‖u‖‖φ‖+ ‖v‖‖1− φ‖ < ε

2M
M +

ε

2(M + 1)
(M + 1) = ε

and for n ∈ Λ′ with n ≥ degg we have (since Sn(g, 0) = g)

‖Sn(f, 0)− h‖F

≤ ‖Sn(vφ, 0)− Sn(v, 0)‖F + ‖Sn(uφ, 0) + g − h‖F

≤ ε

3
+ ‖Sn(uφ, 0)− Sn(u, 0)‖F + ‖Sn(u, 0)− (h− g)‖F < ε

and similarly

|Sn(f, 0)(1)− h(1)|

≤ |Sn(uφ, 0)(1)|+ |Sn(v(1− φ), 0)(1) + g(1)− h(1)| < ε.

�

The proof of Proposition 2.3 relies heavily on a classical formula
due to Rogosinski which connects the Cesaro summability of power
series on a point of the unit circle, say 1, to the behavior of the partial
sums near 1. Actually, we shall use the following variant of Rogosinki’s
formula which appears in a work of Melas and Nestoridis.
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Lemma 3.4. Let (cν)ν≥0 be a sequence of complex numbers and Sn(z) =∑n
ν=0 cνz

ν the associated Fourier series. Set Sn = Sn(1). Suppose that
the series

∑
ν≥0 cν is (C, 1) summable to σ ∈ C. Let D be an infinite

subset of N and for every n ∈ D let zn be a complex number such that
limn→+∞,n∈D n(1− zn) = u 6= 0. Then

lim
n→+∞,n∈D

z−nn (Sn(zn)− σ)− (Sn − σ) = 0.

Definition 3.5. A compact set K ⊂ C\D is said to be non-admissible
if

(i) 1 ∈ K,
(ii) there exists a sequence (zn) in K such that n(1−zn)→ u for some

non-zero complex number u and z−nn → b for some complex number b
with b 6= 1.

Proposition 3.6. Let K ⊂ C\D be a non-admissible compact set and
let f(z) =

∑∞
n=0 anz

n ∈ U(D,K, 0). Then the series
∑∞

n=0 an is not
(C, 1) summable. In particular f does not belong to the disk algebra,
i.e. f /∈ A(D).

Proof. We argue by contradiction, so assume that the series
∑∞

n=0 an is
(C, 1) summable to σ ∈ C. Take a complex number a such that a 6= σ.
By the universality property there exists a sequence of positive integers
(pm) such that

sup
z∈K
|Spm(f, 0)(z)− a| → 0 as m→ +∞.

Since K is non-admissible, see Definition 3.5, there exists a sequence
(zn) of complex numbers such that zn ∈ K, z−nn → b with b 6= 1 and
n(1 − zn) → u for some non-zero complex number u. By Lemma 3.4
we have

lim
m→+∞

(
z−pmpm (Spm(f, 0)(zpm)− σ)− (Spm(f, 0)(1)− σ)

)
= 0

and by uniform convergence of Spm(f, 0)(z) on K, Spm(f, 0)(zpm) con-
verges to a. It now follows that

b(a− σ)− (a− σ) = 0

and since b 6= 1 we conclude that a = σ, which is a contradiction. �
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