Solution to a conjecture on the Hardy operator minus the identity and a new class of minimal rearrangement invariant spaces

Javier Soria
University of Barcelona

Abstract

We give a positive answer to a conjecture of N. Kruglyak and E. Setterqvist about the norm of the Hardy operator minus the identity on decreasing functions.

- Joint work with S. Boza [JFA, 2011]

This study leads us to consider a new class of minimal rearrangement invariant spaces, for which we also establish some functional properties.

- [Studia Math., 2010]
- S. Rodríguez-López [Proc. Edinb. Math. Soc., to appear]
- P. Tradacete [in progress]

Abstract

We give a positive answer to a conjecture of N. Kruglyak and E. Setterqvist about the norm of the Hardy operator minus the identity on decreasing functions.

- Joint work with S. Boza [JFA, 2011]

This study leads us to consider a new class of minimal rearrangement invariant spaces, for which we also establish some functional properties.

- [Studia Math., 2010]
- S. Rodríguez-López [Proc. Edinb. Math. Soc., to appear]
- P. Tradacete [in progress]

The study of the Hardy operator

$$
S f(t)=\frac{1}{t} \int_{0}^{t} f(r) d r
$$

on monotone functions has its origins in the works of AriñoMuckenhoupt (TAMS, 1990) and Sawyer (Studia Math., 1990), extending the classical Hardy's inequalities:

If $\alpha>-1, p>\alpha+1$, and $p \geq 1$, then

The study of the Hardy operator

$$
S f(t)=\frac{1}{t} \int_{0}^{t} f(r) d r
$$

on monotone functions has its origins in the works of AriñoMuckenhoupt (TAMS, 1990) and Sawyer (Studia Math., 1990), extending the classical Hardy's inequalities:

If $\alpha>-1, p>\alpha+1$, and $p \geq 1$, then

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} x^{\alpha} d x \leq\left(\frac{p}{p-\alpha-1}\right)^{p} \int_{0}^{\infty} f(x)^{p} x^{\alpha} d x
$$

Decreasing rearrangement of $f: f^{*}$

Decreasing rearrangement of $f: f^{*}$

Graph of f^{*}

Motivation:

Boundedness of the Hardy-Littlewood maximal operator

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

on weighted Lorentz spaces:

$$
\Lambda^{p}(w):=\left\{f:\left(\int_{0}^{\infty}\left(f^{*}(t)\right)^{p} w(t) d t\right)^{1 / p}<\infty\right\}
$$

Since $(M f)^{*} \approx S\left(f^{*}\right)$ (F. Riesz, Wiener, Herz), then

$$
M: \Lambda^{p}(w) \rightarrow \Lambda^{p}(w),
$$

if and only if (weighted Hardy's inequalities on monotone functions),

Motivation:

Boundedness of the Hardy-Littlewood maximal operator

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

on weighted Lorentz spaces:

$$
\Lambda^{p}(w):=\left\{f:\left(\int_{0}^{\infty}\left(f^{*}(t)\right)^{p} w(t) d t\right)^{1 / p}<\infty\right\}
$$

Since $(M f)^{*} \approx S\left(f^{*}\right)$ (F. Riesz, Wiener, Herz), then

$$
M: \Lambda^{p}(w) \rightarrow \Lambda^{p}(w)
$$

if and only if (weighted Hardy's inequalities on monotone functions),

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} w(x) d x \leq C \int_{0}^{\infty} f(x)^{p} w(x) d x, \quad f \downarrow
$$

For $p>0$, we recall that a weight w is in the B_{p}-class if there exists a positive constant $C>0$ such that, for every $r>0$,

$$
r^{p} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x \leq C \int_{0}^{r} w(x) d x .
$$

If $w \in B_{p}$ we denote by $\|w\|_{B_{\rho}}$ the best constant in the above inequality.

Theorem (Arino-Muckenhoupt)

$S: L_{\text {dec }}^{p}(w) \rightarrow L^{p}(w)$ if, and only if, $w \in B_{p}$.

Normability properties for $\Lambda^{p}(w)$ are also equivalent to $w \in B_{p}$, $p>1$ (Sawyer), extending the well-known results of Lorentz (Ann. of Math., 1950).

For $p>0$, we recall that a weight w is in the B_{p}-class if there exists a positive constant $C>0$ such that, for every $r>0$,

$$
r^{p} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x \leq C \int_{0}^{r} w(x) d x .
$$

If $w \in B_{p}$ we denote by $\|w\|_{B_{p}}$ the best constant in the above inequality.

For $p>0$, we recall that a weight w is in the B_{p}-class if there exists a positive constant $C>0$ such that, for every $r>0$,

$$
r^{p} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x \leq C \int_{0}^{r} w(x) d x .
$$

If $w \in B_{p}$ we denote by $\|w\|_{B_{p}}$ the best constant in the above inequality.

Theorem (Ariño-Muckenhoupt)

$S: L_{\text {dec }}^{p}(w) \rightarrow L^{p}(w)$ if, and only if, $w \in B_{p}$.
\square $p>1$ (Sawyer), extending the well-known results of Lorentz (Ann. of Math., 1950).

For $p>0$, we recall that a weight w is in the B_{p}-class if there exists a positive constant $C>0$ such that, for every $r>0$,

$$
r^{p} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x \leq C \int_{0}^{r} w(x) d x .
$$

If $w \in B_{p}$ we denote by $\|w\|_{B_{p}}$ the best constant in the above inequality.

Theorem (Ariño-Muckenhoupt)

$S: L_{\text {dec }}^{p}(w) \rightarrow L^{p}(w)$ if, and only if, $w \in B_{p}$.

Normability properties for $\Lambda^{p}(w)$ are also equivalent to $w \in B_{p}$, $p>1$ (Sawyer), extending the well-known results of Lorentz (Ann. of Math., 1950).

In recent years many authors have considered the study of the difference operator

$$
f^{* *}-f^{*}=S\left(f^{*}\right)-\operatorname{Id}\left(f^{*}\right) .
$$

This is equivalent to considering the Hardy operator minus the Identity acting on decreasing functions, and measures the oscillation of the function f.

Finding good estimates for this operator has applications to, e.g., Sobolev-type embeddings and the Pólya-Szegö symmetrization principle.
(Carro, Gogatishvili, Kolyada, Martín, Pick).

In recent years many authors have considered the study of the difference operator

$$
f^{* *}-f^{*}=S\left(f^{*}\right)-\operatorname{Id}\left(f^{*}\right) .
$$

This is equivalent to considering the Hardy operator minus the Identity acting on decreasing functions, and measures the oscillation of the function f.

Finding good estimates for this operator has applications to, e.g., Sobolev-type embeddings and the Pólya-Szegö symmetrization principle.
(Carro, Gogatishvili, Kolyada, Martín, Pick).

In recent years many authors have considered the study of the difference operator

$$
f^{* *}-f^{*}=S\left(f^{*}\right)-\operatorname{Id}\left(f^{*}\right) .
$$

This is equivalent to considering the Hardy operator minus the Identity acting on decreasing functions, and measures the oscillation of the function f.

Finding good estimates for this operator has applications to, e.g., Sobolev-type embeddings and the Pólya-Szegö symmetrization principle.
(Carro, Gogatishvili, Kolyada, Martín, Pick).

Kruglyak and Setterqvist [PAMS, 2008] proved that the norm of $S-\operatorname{Id}$ on $L_{\mathrm{dec}}^{p}, p \in\{2,3, \ldots\}$ was equal to

$$
\|S-\operatorname{Id}\|_{L_{\mathrm{dec}}^{p}}=\frac{1}{(p-1)^{1 / p}},
$$

and conjectured that the result would be true for any $p \geq 2$.
Theorem (Boza - S. JFA, 2011)
Let $p \geq 2$ and w be a weight in the B_{p}-class satisfying that

is a decreasing function of $r>0$. Then,

$$
\|S f-f\|_{L^{p}(w)} \leq\|w\|_{B_{p}}^{1 / p}\|f\|_{L_{\mathrm{dec}}^{p}(w)},
$$

and $\|w\|_{B_{p}}^{1 / p}$ is the best constant.

Kruglyak and Setterqvist [PAMS, 2008] proved that the norm of S - Id on $L_{\mathrm{dec}}^{p}, p \in\{2,3, \ldots\}$ was equal to

$$
\|S-\operatorname{Id}\|_{L_{\mathrm{dec}}^{p}}=\frac{1}{(p-1)^{1 / p}},
$$

and conjectured that the result would be true for any $p \geq 2$.

Theorem (Boza - S. [JFA, 2011])

Let $p \geq 2$ and w be a weight in the B_{p}-class satisfying that

$$
r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x
$$

is a decreasing function of $r>0$.

Kruglyak and Setterqvist [PAMS, 2008] proved that the norm of S - Id on $L_{\mathrm{dec}}^{p}, p \in\{2,3, \ldots\}$ was equal to

$$
\|S-\operatorname{Id}\|_{L_{\mathrm{dcc}}^{p}}=\frac{1}{(p-1)^{1 / p}},
$$

and conjectured that the result would be true for any $p \geq 2$.

Theorem (Boza - S. [JFA, 2011])

Let $p \geq 2$ and w be a weight in the B_{p}-class satisfying that

$$
r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x
$$

is a decreasing function of $r>0$. Then,

$$
\|S f-f\|_{L^{p}(w)} \leq\|w\|_{B_{p}}^{1 / p}\|f\|_{L_{\mathrm{dec}}^{p}(w)}
$$

and $\|w\|_{B_{p}}^{1 / p}$ is the best constant.

Remarks

- $w \in B_{p}$ is a necessary condition for the boundedness of S - Id : $L_{\mathrm{dec}}^{p}(w) \rightarrow L_{\mathrm{dec}}^{p}$.
- There are examples of weights w not satisfying that $r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x$ is a decreasing function for which the result is false.
- If $1<p<2$ there are also counterexamples.
- However, assuming only that $w \in B_{1}$,

$$
\|S-\operatorname{Id}\|_{L_{\text {dec }}^{1}(w)}=\|w\|_{B_{1}}
$$

- Kruglyak and Setterqvist's result corresponds to the unweighted case $w=1$.

Remarks

- $w \in B_{p}$ is a necessary condition for the boundedness of S - Id : $L_{\mathrm{dec}}^{p}(w) \rightarrow L_{\mathrm{dec}}^{p}$.
- There are examples of weights w not satisfying that $r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x$ is a decreasing function for which the result is false.
- If $1<p<2$ there are also counterexamples.
- However, assuming only that $w \in B_{1}$,

$$
\|S-I\|_{L_{\mathrm{loc}}^{1}}(w)=\|w\|_{B_{1}}
$$

- Kruglyak and Setterqvist's result corresponds to the unweighted case $w=1$.

Remarks

- $w \in B_{p}$ is a necessary condition for the boundedness of S - Id : $L_{\mathrm{dec}}^{p}(w) \rightarrow L_{\mathrm{dec}}^{p}$.
- There are examples of weights w not satisfying that $r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x$ is a decreasing function for which the result is false.
- If $1<p<2$ there are also counterexamples.
- However, assuming only that $w \in B_{1}$,

- Kruglyak and Setterqvist's result corresponds to the unweighted case $w=1$.

Remarks

- $w \in B_{p}$ is a necessary condition for the boundedness of S - Id : $L_{\mathrm{dec}}^{p}(w) \rightarrow L_{\mathrm{dec}}^{p}$.
- There are examples of weights w not satisfying that $r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x$ is a decreasing function for which the result is false.
- If $1<p<2$ there are also counterexamples.
- However, assuming only that $w \in B_{1}$,

$$
\|S-\mathrm{Id}\|_{L_{\mathrm{dec}}^{1}(w)}=\|w\|_{B_{1}} .
$$

- Kruglyak and Setterqvist's result corresponds to the unweighted case $w=1$.

Remarks

- $w \in B_{p}$ is a necessary condition for the boundedness of S - Id : $L_{\mathrm{dec}}^{p}(w) \rightarrow L_{\mathrm{dec}}^{p}$.
- There are examples of weights w not satisfying that $r^{p-1} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x$ is a decreasing function for which the result is false.
- If $1<p<2$ there are also counterexamples.
- However, assuming only that $w \in B_{1}$,

$$
\|S-\operatorname{Id}\|_{L_{\mathrm{dec}}^{1}(w)}=\|w\|_{B_{1}} .
$$

- Kruglyak and Setterqvist's result corresponds to the unweighted case $w=1$.

Remark

It is yet an open problem to determine the norm of S on $L_{\text {dec }}^{p}(w)$:

$$
\|S\|_{L_{\mathrm{dec}}^{p}(w)}=\sup _{f \downarrow} \frac{\left(\int_{0}^{\infty}\left(\frac{1}{t} \int_{0}^{t} f(x) d x\right)^{p} w(t) d t\right)^{1 / p}}{\left(\int_{0}^{\infty} f^{p}(t) w(t) d t\right)^{1 / p}}
$$

It is known that, for $p \geq 1$,
$\left(1+\|W\|_{p}\right)^{1 / p} \leq\|S\|_{L_{\text {doc }}^{p}(w)} \leq 1+\|W\|_{p}$.

Remark

It is yet an open problem to determine the norm of S on $L_{\text {dec }}^{p}(w)$:

$$
\|S\|_{L_{\mathrm{dec}}^{p}(w)}=\sup _{f \downarrow} \frac{\left(\int_{0}^{\infty}\left(\frac{1}{t} \int_{0}^{t} f(x) d x\right)^{p} w(t) d t\right)^{1 / p}}{\left(\int_{0}^{\infty} f^{p}(t) w(t) d t\right)^{1 / p}}
$$

It is known that, for $p \geq 1$,

$$
\left(1+\|w\|_{p}\right)^{1 / p} \leq\|S\|_{L_{\mathrm{dec}}^{p}(w)} \leq 1+\|w\|_{p} .
$$

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(3) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}| | f| | x$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\| x=\|g\| x$.

Equimeasurable means with the same distribution function:

Examples:

- Lehesgue spaces L^{P}.
- Weighted Lorentz spaces $\wedge^{P}(w)$.
- Orlicz spaces.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{x} \uparrow\|f\|_{x}$.
(4) If f and g are equimeasurable, then $\|f\|_{X}=\|g\|_{X}$.

Equimeacurable means with the same distribution function:

Examples:

- I ebescuie spaces L^{P}.
- Weighted Lorentz spaces $\Lambda^{P}(w)$.
- Orlicz spaces.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\|_{x}=\|g\|_{x}$.

Equimeasurable means with the same distribution function:

Examples:

- Lebescrue spaces L^{P}.
- Weighted Lorentz spaces $\Lambda^{P}(w)$.
- Orlicz spaces.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\|_{X}=\|g\|_{X}$.

Equimeasurable means with the same distribution function:

Examples:

- Lebescrue spaces L^{P}.
- Weighted Lorentz spaces $\Lambda^{P}(w)$.
- Orlicz spaces.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\|_{X}=\|g\|_{X}$.

Equimeasurable means with the same distribution function:

$$
\lambda_{f}(t)=|\{|f|>t\}|=|\{|g|>t\}|=\lambda_{g}(t)
$$

Examples:

- Lebesgue spaces L^{p}.
- Weighted Lorentz space $\wedge^{P}(w)$.
- Orlicz spaces.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\|_{X}=\|g\|_{X}$.

Equimeasurable means with the same distribution function:

$$
\lambda_{f}(t)=|\{|f|>t\}|=|\{|g|>t\}|=\lambda_{g}(t)
$$

Examples:

- Lebesgue spaces L^{p}.
- Weighted Lorentz spaces $\Lambda^{P}(w)$. - Orlicz spaces.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\|_{X}=\|g\|_{X}$.

Equimeasurable means with the same distribution function:

$$
\lambda_{f}(t)=|\{|f|>t\}|=|\{|g|>t\}|=\lambda_{g}(t)
$$

Examples:

- Lebesgue spaces L^{p}.
- Weighted Lorentz spaces $\Lambda^{p}(w)$.

Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in \mathbb{R}^{n}; that is, a Banch function space satisfying:
(1) $\chi_{E} \in X$, for every $0<|E|<\infty$.
(2) If $0<|E|<\infty$ and $f \in X$, then $\left|\int_{E} f(x) d x\right| \leq C_{E}\|f\|_{X}$.
(3) If $0 \leq f_{n} \uparrow f$, then $\left\|f_{n}\right\|_{X} \uparrow\|f\|_{X}$.
(4) If f and g are equimeasurable, then $\|f\|_{X}=\|g\|_{X}$.

Equimeasurable means with the same distribution function:

$$
\lambda_{f}(t)=|\{|f|>t\}|=|\{|g|>t\}|=\lambda_{g}(t) .
$$

Examples:

- Lebesgue spaces L^{p}.
- Weighted Lorentz spaces $\Lambda^{p}(w)$.
- Orlicz spaces.

The fundamental function of X is defined as

$$
\varphi_{X}(t)=\left\|\chi_{E}\right\|_{x}, \quad|E|=t .
$$

This function plays an important role in the theory. For example if we define the (minimal) Lorentz space:

then

For example, if $X=L^{p}, 1<p<\infty$, then

The fundamental function of X is defined as

$$
\varphi_{X}(t)=\left\|\chi_{E}\right\|_{X}, \quad|E|=t .
$$

This function plays an important role in the theory. For example if we define the (minimal) Lorentz space:

$$
\Lambda(X)=\Lambda_{\varphi_{X}}=\left\{f ;\|f\|_{\Lambda(X)}=\int_{0}^{\infty} f^{*}(t) d \varphi_{X}(t)<\infty\right\},
$$

and the (maximal) Marcinkiewicz space:

then

For example, if $X=L^{p}, 1<p<\infty$, then

The fundamental function of X is defined as

$$
\varphi_{X}(t)=\left\|\chi_{E}\right\|_{X}, \quad|E|=t .
$$

This function plays an important role in the theory. For example if we define the (minimal) Lorentz space:

$$
\Lambda(X)=\Lambda_{\varphi_{X}}=\left\{f ;\|f\|_{\Lambda(X)}=\int_{0}^{\infty} f^{*}(t) d \varphi_{X}(t)<\infty\right\},
$$

and the (maximal) Marcinkiewicz space:

$$
M(X)=M_{\varphi_{X}}=\left\{f ;\|f\|_{M(X)}=\sup _{t>0} S\left(f^{*}\right)(t) \varphi_{X}(t)<\infty\right\},
$$

then

For example, if $X=L^{p}, 1<p<\infty$, then

The fundamental function of X is defined as

$$
\varphi_{X}(t)=\left\|\chi_{E}\right\|_{X}, \quad|E|=t .
$$

This function plays an important role in the theory. For example if we define the (minimal) Lorentz space:

$$
\Lambda(X)=\Lambda_{\varphi_{X}}=\left\{f ;\|f\|_{\Lambda(X)}=\int_{0}^{\infty} f^{*}(t) d \varphi_{X}(t)<\infty\right\},
$$

and the (maximal) Marcinkiewicz space:

$$
M(X)=M_{\varphi X}=\left\{f ;\|f\|_{M(X)}=\sup _{t>0} S\left(f^{*}\right)(t) \varphi_{X}(t)<\infty\right\},
$$

then

$$
\Lambda(X) \subset X \subset M(X) .
$$

For example, if $X=L^{p}, 1<p<\infty$, then

The fundamental function of X is defined as

$$
\varphi_{X}(t)=\left\|\chi_{E}\right\|_{X}, \quad|E|=t .
$$

This function plays an important role in the theory. For example if we define the (minimal) Lorentz space:

$$
\Lambda(X)=\Lambda_{\varphi_{X}}=\left\{f ;\|f\|_{\Lambda(X)}=\int_{0}^{\infty} f^{*}(t) d \varphi_{X}(t)<\infty\right\},
$$

and the (maximal) Marcinkiewicz space:

$$
M(X)=M_{\varphi_{X}}=\left\{f ;\|f\|_{M(X)}=\sup _{t>0} S\left(f^{*}\right)(t) \varphi_{X}(t)<\infty\right\},
$$

then

$$
\Lambda(X) \subset X \subset M(X) .
$$

For example, if $X=L^{p}, 1<p<\infty$, then

$$
\Lambda(X)=L^{p, 1} \quad \text { and } \quad M(X)=L^{p, \infty} .
$$

We are now interested in studying the norm of S - Id on an r.i. space X, for the n-dimensional Hardy operator, acting on radially decreasing functions f :

$$
S_{n} f(x)=\frac{1}{|B(0,|x|)|} \int_{B(0,|x|)} f(y) d y
$$

Using that

(where $\lambda_{f}(t)=|\{x:|f(x)|>t\}|$), then

We are now interested in studying the norm of S - Id on an r.i. space X, for the n-dimensional Hardy operator, acting on radially decreasing functions f :

$$
S_{n} f(x)=\frac{1}{|B(0,|x|)|} \int_{B(0,|x|)} f(y) d y
$$

Using that

$$
S_{n} f(x)-f(x)=\frac{1}{v_{n}|x|^{n}} \int_{f(x)}^{\infty} \lambda_{f}(t) d t
$$

(where $\left.\lambda_{f}(t)=|\{x:|f(x)|>t\}|\right)$, then

We are now interested in studying the norm of S - Id on an r.i. space X, for the n-dimensional Hardy operator, acting on radially decreasing functions f :

$$
S_{n} f(x)=\frac{1}{|B(0,|x|)|} \int_{B(0,|x|)} f(y) d y
$$

Using that

$$
S_{n} f(x)-f(x)=\frac{1}{v_{n}|x|^{n}} \int_{f(x)}^{\infty} \lambda_{f}(t) d t
$$

(where $\lambda_{f}(t)=|\{x:|f(x)|>t\}|$), then

$$
\left\|S_{n} f-f\right\|_{X} \leq \int_{0}^{\infty} v_{n}^{-1} \lambda_{f}(t)\left\|\frac{1}{v_{n}^{-1} \lambda_{f}(t)+|\cdot|^{n}}\right\|_{X} d t
$$

Hence, it is natural to study the class of functions for which the right-hand side is finite [Studia Math., 2010], that we call $R(X)$:

$$
\|f\|_{R(X)}=\int_{0}^{\infty} v_{n}^{-1} \lambda_{f}(t)\left\|\frac{1}{v_{n}^{-1} \lambda_{f}(t)+|\cdot|^{n}}\right\|_{X} d t<+\infty .
$$

It can be proved that the norm on $R(X)$ is equal to:

where

and $\Lambda_{W_{x}}$ is the Lorentz space with fundamental function W_{x}

Hence, it is natural to study the class of functions for which the right-hand side is finite [Studia Math., 2010], that we call $R(X)$:

$$
\|f\|_{R(X)}=\int_{0}^{\infty} v_{n}^{-1} \lambda_{f}(t)\left\|\frac{1}{v_{n}^{-1} \lambda_{f}(t)+|\cdot|^{n}}\right\|_{X} d t<+\infty .
$$

It can be proved that the norm on $R(X)$ is equal to:

$$
\|f\|_{R(X)}=\|f\|_{\Lambda_{w_{X}}}=\int_{0}^{\infty} W_{X}\left(\lambda_{f}(t)\right) d t<+\infty,
$$

where

Hence, it is natural to study the class of functions for which the right-hand side is finite [Studia Math., 2010], that we call $R(X)$:

$$
\|f\|_{R(X)}=\int_{0}^{\infty} v_{n}^{-1} \lambda_{f}(t)\left\|\frac{1}{v_{n}^{-1} \lambda_{f}(t)+|\cdot|^{n}}\right\|_{X} d t<+\infty
$$

It can be proved that the norm on $R(X)$ is equal to:

$$
\|f\|_{R(X)}=\|f\|_{\Lambda_{w_{X}}}=\int_{0}^{\infty} W_{X}\left(\lambda_{f}(t)\right) d t<+\infty
$$

where

$$
W_{X}(t)=\left\|\frac{1}{1+\dot{\bar{t}}}\right\|_{X},
$$

and $\Lambda_{W_{X}}$ is the Lorentz space with fundamental function W_{X}.

Examples

- $R\left(L^{1}\right)=\{0\}$
- $R\left(L^{p}\right)=L^{p, 1}=\Lambda\left(L^{p}\right), 1<p<\infty$.
- If $\Psi(t)=t \log (1+1 / t)$, then

$$
R\left(I^{1}+l^{\infty}\right)=\Lambda \ldots \subset I^{1}+L^{\infty}=\Lambda\left(L^{1}+L^{\infty}\right)
$$

Theorem (Rodríguez - S. [PEdMS, 2012])

- TFAE:

```
- \(R(X) \neq\{0\}\).
- \(g^{*}(s)=1 /(1+s) \in \bar{X}\).
- \(\left(L^{1, \infty} \cap L^{\infty}\right) \subset X\).
```

- $R(X) \subset \Lambda(X)$.
- If $\bar{\varphi}_{X}(s)=\sup _{t>0} \frac{\varphi_{X}(s t)}{\varphi_{X}(t)}$ and $\bar{\beta}_{X}=\inf _{s>1} \frac{\log \bar{\varphi}_{X}(s)}{\log s}$ is the upper fundamental index of X :

$$
\wedge(X)=R(X) \Longleftrightarrow \bar{\beta}_{X}<1,
$$

Examples

- $R\left(L^{1}\right)=\{0\}$
- $R\left(L^{p}\right)=L^{p, 1}=\Lambda\left(L^{p}\right), 1<p<\infty$.
- If $\Psi(t)=t \log (1+1 / t)$, then

$$
R\left(L^{1}+L^{\infty}\right)=\Lambda_{\psi} \varsubsetneqq L^{1}+L^{\infty}=\Lambda\left(L^{1}+L^{\infty}\right) .
$$

Theorem (Rodríguez - S. [PEdMS, 2012])

- TFAE:

- $R(X) \subset \wedge(X)$.
- If $\bar{\varphi}_{x}(s)=\operatorname{sun}_{t>0} \frac{\varphi_{x}(s t)}{\varphi_{x}(t)}$ and $\bar{\beta}_{X}=\inf _{s>1} \frac{\log \varphi_{X}(s)}{\log s}$ is the upper fundamental index of X :

$$
\Lambda(X)=R(X) \Longleftrightarrow \bar{\beta}_{X}<1
$$

Examples

- $R\left(L^{1}\right)=\{0\}$
- $R\left(L^{p}\right)=L^{p, 1}=\Lambda\left(L^{p}\right), 1<p<\infty$.
- If $\Psi(t)=t \log (1+1 / t)$, then

$$
R\left(L^{1}+L^{\infty}\right)=\Lambda_{\psi} \varsubsetneqq L^{1}+L^{\infty}=\Lambda\left(L^{1}+L^{\infty}\right) .
$$

Theorem (Rodríguez - S. [PEdMS, 2012]

- TFAE:

- $R(X) \subset \wedge(X)$.
- If $\bar{\varphi}_{X}(s)=\sup _{t>0} \frac{\varphi_{X}(s t)}{\varphi_{X}(t)}$ and $\bar{\beta}_{X}=\inf _{s>1} \frac{\log \varphi_{X}(s)}{\log s}$ is the upper fundamental index of X :

Examples

- $R\left(L^{1}\right)=\{0\}$
- $R\left(L^{p}\right)=L^{p, 1}=\Lambda\left(L^{p}\right), 1<p<\infty$.
- If $\Psi(t)=t \log (1+1 / t)$, then

$$
R\left(L^{1}+L^{\infty}\right)=\Lambda_{\psi} \varsubsetneqq L^{1}+L^{\infty}=\Lambda\left(L^{1}+L^{\infty}\right) .
$$

Theorem (Rodríguez - S. [PEdMS, 2012])

- TFAE:

- $R(X) \neq\{0\}$.
- $g^{*}(s)=1 /(1+s) \in \bar{X}$.
- $\left(L^{1, \infty} \cap L^{\infty}\right) \subset X$.

- If $\bar{\varphi}_{X}(s)=\sup _{t>0} \frac{\varphi_{X}(s t)}{\varphi_{X}(t)}$ and $\bar{\beta}_{X}=\inf _{S>1} \frac{\log \bar{\varphi}_{X}(s)}{\log s}$ is the upper fundamental index of X :

Examples

- $R\left(L^{1}\right)=\{0\}$
- $R\left(L^{p}\right)=L^{p, 1}=\Lambda\left(L^{p}\right), 1<p<\infty$.
- If $\Psi(t)=t \log (1+1 / t)$, then

$$
R\left(L^{1}+L^{\infty}\right)=\Lambda_{\psi} \varsubsetneqq L^{1}+L^{\infty}=\Lambda\left(L^{1}+L^{\infty}\right) .
$$

Theorem (Rodríguez - S. [PEdMS, 2012])

- TFAE:
- $R(X) \neq\{0\}$.
- $g^{*}(s)=1 /(1+s) \in \bar{X}$.
- $\left(L^{1, \infty} \cap L^{\infty}\right) \subset X$.
- $R(X) \subset \Lambda(X)$.
- If $\bar{\varphi}_{X}(s)=\sup _{t>0} \frac{\varphi_{X}(s t)}{\varphi_{X}(t)}$ and $\bar{\beta}_{X}=\inf _{s>1} \frac{\log \bar{\varphi}_{X}(s)}{\log s}$ is the upper fundamental index of X :

Examples

- $R\left(L^{1}\right)=\{0\}$
- $R\left(L^{p}\right)=L^{p, 1}=\Lambda\left(L^{p}\right), 1<p<\infty$.
- If $\Psi(t)=t \log (1+1 / t)$, then

$$
R\left(L^{1}+L^{\infty}\right)=\Lambda_{\psi} \nsubseteq L^{1}+L^{\infty}=\Lambda\left(L^{1}+L^{\infty}\right) .
$$

Theorem (Rodríguez - S. [PEdMS, 2012])

- TFAE:
- $R(X) \neq\{0\}$.
- $g^{*}(s)=1 /(1+s) \in \bar{X}$.
- $\left(L^{1, \infty} \cap L^{\infty}\right) \subset X$.
- $R(X) \subset \wedge(X)$.
- If $\bar{\varphi}_{X}(s)=\sup _{t>0} \frac{\varphi_{X}(s t)}{\varphi_{X}(t)}$ and $\bar{\beta}_{X}=\inf _{s>1} \frac{\log \bar{\varphi}_{X}(s)}{\log s}$ is the upper fundamental index of X :

$$
\wedge(X)=R(X) \Longleftrightarrow \bar{\beta}_{X}<1,
$$

Remarks

- It is well-known that $\Lambda^{2}=\Lambda \circ \Lambda=\Lambda$ and hence $\Lambda \circ R=R$. However there are examples showing that $R^{2}=R \circ R \neq R$: If $\Phi(t)=t / \log (1+t)$, then

$$
R\left(M_{\Phi}\right)=L^{1} \cap L^{\infty} \quad \text { but } \quad R^{2}\left(M_{\Phi}\right)=0
$$

where

$$
\|f\|_{M_{\Phi}}=\sup _{t>0} f^{* *}(t) \Phi(t) .
$$

In fact, all the examples we know satisfy one of the following 3 possibilities:
(1) $R(X)=\{0\}$.
(2) $R(X) \neq\{0\}$ and $R^{2}(X)=\{0\}$.
(3) $R^{j}(X) \neq\{0\}$, for every $j=1,2,3$.

Remarks

- It is well-known that $\Lambda^{2}=\Lambda \circ \Lambda=\Lambda$ and hence $\Lambda \circ R=R$. However there are examples showing that $R^{2}=R \circ R \neq R$:

If $\Phi(t)=t / \log (1+t)$, then

$$
R\left(M_{\Phi}\right)=L^{1} \cap L^{\infty} \quad \text { but } \quad R^{2}\left(M_{\Phi}\right)=0,
$$

where

$$
\|f\|_{M_{\Phi}}=\sup _{t>0} f^{* *}(t) \Phi(t) .
$$

In fact, all the examples we know satisfy one of the following 3 possibilities:

(2) $R(X) \neq\{0\}$ and $R^{2}(X)=\{0\}$
(3) $R^{i}(X) \neq\{0\}$, for every $j=1,2,3$.

Remarks

- It is well-known that $\Lambda^{2}=\Lambda \circ \Lambda=\Lambda$ and hence $\Lambda \circ R=R$. However there are examples showing that $R^{2}=R \circ R \neq R$:

If $\Phi(t)=t / \log (1+t)$, then

$$
R\left(M_{\Phi}\right)=L^{1} \cap L^{\infty} \quad \text { but } \quad R^{2}\left(M_{\Phi}\right)=0
$$

where

$$
\|f\|_{M_{\Phi}}=\sup _{t>0} f^{* *}(t) \Phi(t)
$$

In fact, all the examples we know satisfy one of the following 3 possibilities:
\square
(2) $R(X) \neq\{0\}$ and $R^{2}(X)=\{0\}$
(3) $R^{j}(X) \neq\{0\}$, for every $j=1,2,3$,

Remarks

- It is well-known that $\Lambda^{2}=\Lambda \circ \Lambda=\Lambda$ and hence $\Lambda \circ R=R$. However there are examples showing that $R^{2}=R \circ R \neq R$:
If $\Phi(t)=t / \log (1+t)$, then

$$
R\left(M_{\Phi}\right)=L^{1} \cap L^{\infty} \quad \text { but } \quad R^{2}\left(M_{\Phi}\right)=0
$$

where

$$
\|f\|_{M_{\Phi}}=\sup _{t>0} f^{* *}(t) \Phi(t)
$$

In fact, all the examples we know satisfy one of the following 3 possibilities:
(1) $R(X)=\{0\}$.
(2) $R(X) \neq\{0\}$ and $R^{2}(X)=\{0\}$
(3) $R^{j}(X) \neq\{0\}$, for every $j=1,2,3$,

Remarks

- It is well-known that $\Lambda^{2}=\Lambda \circ \Lambda=\Lambda$ and hence $\Lambda \circ R=R$. However there are examples showing that $R^{2}=R \circ R \neq R$:
If $\Phi(t)=t / \log (1+t)$, then

$$
R\left(M_{\Phi}\right)=L^{1} \cap L^{\infty} \quad \text { but } \quad R^{2}\left(M_{\Phi}\right)=0
$$

where

$$
\|f\|_{M_{\Phi}}=\sup _{t>0} f^{* *}(t) \Phi(t)
$$

In fact, all the examples we know satisfy one of the following 3 possibilities:
(1) $R(X)=\{0\}$.
(2) $R(X) \neq\{0\}$ and $R^{2}(X)=\{0\}$.

Remarks

- It is well-known that $\Lambda^{2}=\Lambda \circ \Lambda=\Lambda$ and hence $\Lambda \circ R=R$. However there are examples showing that $R^{2}=R \circ R \neq R$:
If $\Phi(t)=t / \log (1+t)$, then

$$
R\left(M_{\Phi}\right)=L^{1} \cap L^{\infty} \quad \text { but } \quad R^{2}\left(M_{\Phi}\right)=0
$$

where

$$
\|f\|_{M_{\Phi}}=\sup _{t>0} f^{* *}(t) \Phi(t)
$$

In fact, all the examples we know satisfy one of the following 3 possibilities:
(1) $R(X)=\{0\}$.
(2) $R(X) \neq\{0\}$ and $R^{2}(X)=\{0\}$.
(3) $R^{j}(X) \neq\{0\}$, for every $j=1,2,3, \ldots$.

Remarks

- We know that if $\bar{\beta}_{X}<1$, then $R(X)=\Lambda(X)$ and hence $\bar{\beta}_{X}=\bar{\beta}_{R(X)}<1$, but we do not know whether the converse is true:

If $\bar{\beta}_{R(X)}<1$,

$$
\bar{\beta}_{X}=\bar{\beta}_{R(X)} ?
$$

Or, does there exist X with $\bar{\beta}_{X}=1$ but $\bar{\beta}_{R(X)}<1$?

Remarks

- By definition, if f is decreasing,

$$
\|S f-f\|_{X} \leq\|f\|_{R(X)}
$$

and the inequality is sharp.
In particular, if $1<p<\infty, 1 \leq q \leq p$, then

and the inequality is sharp. Hence, for every $p>1$:

Remarks

- By definition, if f is decreasing,

$$
\|S f-f\|_{X} \leq\|f\|_{R(X)}
$$

and the inequality is sharp.
In particular, if $1<p<\infty, 1 \leq q \leq p$, then

$$
\left\|S_{n} f-f\right\|_{L^{p, q}} \leq p^{-1 / q^{\prime}}\left(\frac{\Gamma\left(\frac{(p-1) q}{p}\right) \Gamma\left(\frac{p+q}{p}\right)}{\Gamma(q+1)}\right)^{1 / q}\|f\|_{L^{p, 1}}
$$

and the inequality is sharp. Hence, for every $p>1$:

Remarks

- By definition, if f is decreasing,

$$
\|S f-f\|_{X} \leq\|f\|_{R(X)}
$$

and the inequality is sharp.
In particular, if $1<p<\infty, 1 \leq q \leq p$, then

$$
\left\|S_{n} f-f\right\|_{L^{p, q}} \leq p^{-1 / q^{\prime}}\left(\frac{\Gamma\left(\frac{(p-1) q}{p}\right) \Gamma\left(\frac{p+q}{p}\right)}{\Gamma(q+1)}\right)^{1 / q}\|f\|_{L^{p, 1}}
$$

and the inequality is sharp. Hence, for every $p>1$:

$$
\left\|S_{f}-f\right\|_{p} \leq \frac{1}{p(p-1)^{1 / p}}\|f\|_{p, 1}
$$

Remarks

- By definition, if f is decreasing,

$$
\|S f-f\|_{X} \leq\|f\|_{R(X)}
$$

and the inequality is sharp.
In particular, if $1<p<\infty, 1 \leq q \leq p$, then

$$
\left\|S_{n} f-f\right\|_{L^{p, q}} \leq p^{-1 / q^{\prime}}\left(\frac{\Gamma\left(\frac{(p-1) q}{p}\right) \Gamma\left(\frac{p+q}{p}\right)}{\Gamma(q+1)}\right)^{1 / q}\|f\|_{L^{p, 1}}
$$

and the inequality is sharp. Hence, for every $p>1$:

$$
\left\|S_{f}-f\right\|_{p} \leq \frac{1}{p(p-1)^{1 / p}}\|f\|_{p, 1}
$$

and

$$
\left\|S_{n} f-f\right\|_{p, 1} \leq \frac{\pi}{p \sin \left(\frac{\pi}{p}\right)}\|f\|_{p, 1}
$$

Range of R

Since R is a monotone functor, then for every X r.i.,

$$
R(X)=\Lambda_{W_{X}} \subset \Lambda_{\Psi}=R\left(L^{1}+L^{\infty}\right)
$$

and hence, $W_{X}(t) \geq C \Psi(t)=t \log (1+1 / t)$.
We are now interested in studying when a given Lorentz space Λ_{φ} belongs to the range of R; i.e., there exists an X such that

A necessary condition for this to happen is that $\varphi(t) \geq C t \log (1+1 / t)$.

As we have already shown, if $\bar{\beta}_{\varphi}<1$ then $R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi}$, and hence it suffices to consider the case $\bar{\beta}_{\varphi}=1$.

Range of R

Since R is a monotone functor, then for every X r.i.,

$$
R(X)=\Lambda_{W_{X}} \subset \Lambda_{\Psi}=R\left(L^{1}+L^{\infty}\right)
$$

and hence, $W_{X}(t) \geq C \Psi(t)=t \log (1+1 / t)$.
We are now interested in studying when a given Lorentz space Λ_{φ} belongs to the range of R; i.e., there exists an X such that

$$
R(X)=\Lambda_{\varphi}
$$

A necessary condition for this to happen is that

As we have already shown, if $\bar{\beta}_{\varphi}<1$ then $R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi}$, and hence it suffices to consider the case $\bar{\beta}_{\varphi}=1$.

Range of R

Since R is a monotone functor, then for every X r.i.,

$$
R(X)=\Lambda_{W_{X}} \subset \Lambda_{\Psi}=R\left(L^{1}+L^{\infty}\right)
$$

and hence, $W_{X}(t) \geq C \Psi(t)=t \log (1+1 / t)$.
We are now interested in studying when a given Lorentz space Λ_{φ} belongs to the range of R; i.e., there exists an X such that

$$
R(X)=\Lambda_{\varphi}
$$

A necessary condition for this to happen is that

$$
\varphi(t) \geq C t \log (1+1 / t)
$$

As we have already shown, if $\bar{\beta}_{\varphi}<1$ then $R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi}$, and hence it suffices to consider the case $\bar{\beta}_{\varphi}=1$

Range of R

Since R is a monotone functor, then for every X r.i.,

$$
R(X)=\Lambda_{W_{X}} \subset \Lambda_{\Psi}=R\left(L^{1}+L^{\infty}\right)
$$

and hence, $W_{X}(t) \geq C \Psi(t)=t \log (1+1 / t)$.
We are now interested in studying when a given Lorentz space Λ_{φ} belongs to the range of R; i.e., there exists an X such that

$$
R(X)=\Lambda_{\varphi}
$$

A necessary condition for this to happen is that

$$
\varphi(t) \geq C t \log (1+1 / t)
$$

As we have already shown, if $\bar{\beta}_{\varphi}<1$ then $R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi}$, and hence it suffices to consider the case $\bar{\beta}_{\varphi}=1$.

Theorem (S - Tradacete, in progress)

Let φ be a quasiconcave function with $\varphi(t) \geq C t \log (1+1 / t)$, and let

$$
\widetilde{\varphi}(t)=\inf _{r>0} \frac{t \varphi(r)}{r \log \left(1+\frac{t}{r}\right)} .
$$

Then, $\Lambda_{\varphi} \subset R\left(M_{\tilde{\varphi}}\right)$,
where M_{-}is the Marcinkiewicz snace

and this embedding is best possible: If there exists Φ such that $\Lambda_{\varphi}=R\left(M_{\Phi}\right)$,

Theorem (S - Tradacete, in progress)

Let φ be a quasiconcave function with $\varphi(t) \geq C t \log (1+1 / t)$, and let

$$
\widetilde{\varphi}(t)=\inf _{r>0} \frac{t \varphi(r)}{r \log \left(1+\frac{t}{r}\right)} .
$$

Then,

$$
\Lambda_{\varphi} \subset R\left(M_{\tilde{\varphi}}\right)
$$

where $M_{\widetilde{\varphi}}$ is the Marcinkiewicz space

$$
\|f\|_{M_{\widetilde{\varphi}}}=\sup _{t>0} f^{* *}(t) \widetilde{\varphi}(t)
$$

and this embedding is best possible: If there exists Φ such that $=R\left(M_{\Phi}\right)$,

Theorem (S - Tradacete, in progress)

Let φ be a quasiconcave function with $\varphi(t) \geq C t \log (1+1 / t)$, and let

$$
\widetilde{\varphi}(t)=\inf _{r>0} \frac{t \varphi(r)}{r \log \left(1+\frac{t}{r}\right)} .
$$

Then,

$$
\Lambda_{\varphi} \subset R\left(M_{\tilde{\varphi}}\right),
$$

where $M_{\tilde{\varphi}}$ is the Marcinkiewicz space

$$
\|f\|_{M_{\tilde{\varphi}}}=\sup _{t>0}{ }^{* * *}(t) \widetilde{\varphi}(t),
$$

and this embedding is best possible: If there exists Φ such that

$$
\Lambda_{\varphi}=R\left(M_{\phi}\right),
$$

necessarily

$$
\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right) .
$$

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\widetilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\tilde{\varphi}(t) \approx \min (1, t)$ and

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and $R\left(M_{\Psi}\right)=\Lambda_{W}$
- If $\varphi(t)=\max (1, t)$, then $\widetilde{\varphi}(t) \approx \psi(t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=L^{1} \cap L^{\infty}=\Lambda_{\varphi} .
$$

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and
- If $\psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and
$R\left(M_{\widetilde{\psi}}\right)=\Lambda_{\psi}$.
- If $\varphi(t)=\max (1, t)$, then $\tilde{\varphi}(t) \approx w(t)$ and

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and
- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and
$R\left(M_{\widetilde{\psi}}\right)=\Lambda_{\psi}$.
- If $\varphi(t)=\max (1, t)$, then $\tilde{\varphi}(t) \approx w(t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=L^{1} \cap L^{\infty}=\Lambda_{\varphi} .
$$

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(L^{1}+L^{\infty}\right)=\Lambda_{\varphi}
$$

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and $R\left(M_{\widetilde{\Psi}}\right)=\Lambda_{\psi}$.
- If $\varphi(t)=\max (1, t)$, then $\widetilde{\tilde{r}}(t) \approx \boldsymbol{w}(t)$ and

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(L^{1}+L^{\infty}\right)=\Lambda_{\varphi} .
$$

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and $R\left(M_{\widetilde{\Psi}}\right)=\Lambda_{\psi}$.
- If $\varphi(t)=\max (1, t)$, then $\widetilde{\tilde{r}}(t) \approx \boldsymbol{w}(t)$ and

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(L^{1}+L^{\infty}\right)=\Lambda_{\varphi}
$$

$\sqrt{ }$

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and

$$
R\left(M_{\widetilde{\psi}}\right)=\Lambda_{\psi}
$$

- If $\varphi(t)=\max (1, t)$, then $\widetilde{\varphi}(t) \approx \psi(t)$ and

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(L^{1}+L^{\infty}\right)=\Lambda_{\varphi}
$$

$\sqrt{ }$

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and

$$
R\left(M_{\widetilde{\psi}}\right)=\Lambda_{\psi} .
$$

- If $\varphi(t)=\max (1, t)$, then $\widetilde{\varphi}(t) \approx \psi(t)$ and

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(L^{1}+L^{\infty}\right)=\Lambda_{\varphi}
$$

$\sqrt{ }$

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and

$$
R\left(M_{\widetilde{\psi}}\right)=\Lambda_{\psi}
$$

- If $\varphi(t)=\max (1, t)$, then $\widetilde{\varphi}(t) \approx \Psi(t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=L^{1} \cap L^{\infty}=\Lambda_{\varphi} .
$$

Remarks

- Our "conjecture" is that the equality $\Lambda_{\varphi}=R\left(M_{\tilde{\varphi}}\right)$ is going to be always true.
- It can be proved that $\bar{\beta}_{\varphi}<1 \Longleftrightarrow \varphi \approx \widetilde{\varphi}$. Hence, if $\bar{\beta}_{\varphi}<1$ then

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(M_{\varphi}\right)=R\left(\Lambda_{\varphi}\right)=\Lambda_{\varphi} .
$$

- Examples for the case $\bar{\beta}_{\varphi}=1$:
- If $\varphi(t)=t \log (1+1 / t)$, then $\widetilde{\varphi}(t) \approx \min (1, t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=R\left(L^{1}+L^{\infty}\right)=\Lambda_{\varphi}
$$

$\sqrt{ }$

- If $\Psi(t)=t / \log (1+t)$, then $\widetilde{\Psi}(t) \approx t / \log ^{2}(1+\sqrt{t})$ and

$$
R\left(M_{\widetilde{\Psi}}\right)=\Lambda_{\psi} .
$$

- If $\varphi(t)=\max (1, t)$, then $\widetilde{\varphi}(t) \approx \Psi(t)$ and

$$
R\left(M_{\tilde{\varphi}}\right)=L^{1} \cap L^{\infty}=\Lambda_{\varphi} .
$$

इas вuхарıоты́ үıа тпv пробохク́ баৎ!

Thanks for your attention!

¡Gracias por vuestra atención!

