
Solution to a conjecture on the Hardy operator
minus the identity and a new class of minimal

rearrangement invariant spaces

Javier Soria

University of Barcelona

Javier Soria Hardy minus identity and minimal r.i. spaces



Abstract

We give a positive answer to a conjecture of N. Kruglyak and
E. Setterqvist about the norm of the Hardy operator minus the
identity on decreasing functions.

– Joint work with S. Boza [JFA, 2011]

This study leads us to consider a new class of minimal rear-
rangement invariant spaces, for which we also establish some
functional properties.

– [Studia Math., 2010]
– S. Rodrı́guez-López [Proc. Edinb. Math. Soc., to appear]
– P. Tradacete [in progress]
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– S. Rodrı́guez-López [Proc. Edinb. Math. Soc., to appear]
– P. Tradacete [in progress]

Javier Soria Hardy minus identity and minimal r.i. spaces



Hardy operator minus the identity

The study of the Hardy operator

Sf (t) =
1
t

∫ t

0
f (r) dr .

on monotone functions has its origins in the works of Ariño-
Muckenhoupt (TAMS, 1990) and Sawyer (Studia Math., 1990),
extending the classical Hardy’s inequalities:

If α > −1, p > α + 1, and p ≥ 1, then

∫ ∞
0

(
1
x

∫ x

0
f (t) dt

)p

xα dx ≤
(

p
p − α− 1

)p ∫ ∞
0

f (x)p xα dx
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Motivation:
Boundedness of the Hardy–Littlewood maximal operator

Mf (x) = sup
x∈Q

1
|Q|

∫
Q
|f (y)|dy ,

on weighted Lorentz spaces:

Λp(w) :=

{
f :

(∫ ∞
0

(f ∗(t))p w(t) dt
)1/p

<∞
}
.

Since (Mf )∗ ≈ S(f ∗) (F. Riesz, Wiener, Herz), then

M : Λp(w)→ Λp(w),

if and only if (weighted Hardy’s inequalities on monotone
functions),∫ ∞

0

(
1
x

∫ x

0
f (t) dt

)p

w(x) dx ≤ C
∫ ∞

0
f (x)p w(x) dx , f ↓
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For p > 0, we recall that a weight w is in the Bp-class if there
exists a positive constant C > 0 such that, for every r > 0,

rp
∫ ∞

r

w(x)

xp dx ≤ C
∫ r

0
w(x) dx .

If w ∈ Bp we denote by ‖w‖Bp the best constant in the above
inequality.

Theorem (Ariño-Muckenhoupt)

S : Lp
dec(w)→ Lp(w) if, and only if, w ∈ Bp.

Normability properties for Λp(w) are also equivalent to w ∈ Bp,
p > 1 (Sawyer), extending the well-known results of Lorentz
(Ann. of Math., 1950).
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In recent years many authors have considered the study of the
difference operator

f ∗∗ − f ∗ = S(f ∗)− Id (f ∗).

This is equivalent to considering the Hardy operator minus the
Identity acting on decreasing functions, and measures the oscil-
lation of the function f .

Finding good estimates for this operator has applications to, e.g.,
Sobolev-type embeddings and the Pólya–Szegö symmetrization
principle.

(Carro, Gogatishvili, Kolyada, Martı́n, Pick).
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Kruglyak and Setterqvist [PAMS, 2008] proved that the norm of
S − Id on Lp

dec, p ∈ {2,3, . . . } was equal to

‖S − Id ‖Lp
dec

=
1

(p − 1)1/p ,

and conjectured that the result would be true for any p ≥ 2.

Theorem (Boza – S. [JFA, 2011])
Let p ≥ 2 and w be a weight in the Bp-class satisfying that

rp−1
∫ ∞

r

w(x)

xp dx ,

is a decreasing function of r > 0. Then,

‖Sf − f‖Lp(w) ≤ ‖w‖
1/p
Bp
‖f‖Lp

dec(w),

and ‖w‖1/p
Bp

is the best constant.
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Remarks
w ∈ Bp is a necessary condition for the boundedness of
S − Id : Lp

dec(w)→ Lp
dec.

There are examples of weights w not satisfying that
rp−1 ∫∞

r
w(x)

xp dx is a decreasing function for which the re-
sult is false.

If 1 < p < 2 there are also counterexamples.

However, assuming only that w ∈ B1,

‖S − Id‖L1
dec(w) = ‖w‖B1 .

Kruglyak and Setterqvist’s result corresponds to the un-
weighted case w = 1.
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Remark

It is yet an open problem to determine the norm of S on Lp
dec(w):

‖S‖Lp
dec(w) = sup

f↓

(∫ ∞
0

(
1
t

∫ t

0
f (x) dx

)p

w(t) dt
)1/p

(∫ ∞
0

f p(t)w(t) dt
)1/p .

It is known that, for p ≥ 1,

(1 + ‖w‖p)1/p ≤ ‖S‖Lp
dec(w)≤1 + ‖w‖p.
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Minimal r.i. spaces

Let X be a rearrangement invariant space (r.i.) in Rn; that is, a
Banch function space satisfying:

1 χE ∈ X , for every 0 < |E | <∞.
2 If 0 < |E | <∞ and f ∈ X , then

∣∣ ∫
E f (x) dx

∣∣ ≤ CE‖f‖X .
3 If 0 ≤ fn ↑ f , then ‖fn‖X ↑ ‖f‖X .
4 If f and g are equimeasurable, then ‖f‖X = ‖g‖X .

Equimeasurable means with the same distribution function:

λf (t) = |{|f | > t}| = |{|g| > t}| = λg(t).

Examples:

Lebesgue spaces Lp.
Weighted Lorentz spaces Λp(w).
Orlicz spaces.
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The fundamental function of X is defined as

ϕX (t) = ‖χE‖X , |E | = t .
This function plays an important role in the theory. For example
if we define the (minimal) Lorentz space:

Λ(X ) = ΛϕX =

{
f ; ‖f‖Λ(X) =

∫ ∞
0

f ∗(t) dϕX (t) <∞
}
,

and the (maximal) Marcinkiewicz space:

M(X ) = MϕX =

{
f ; ‖f‖M(X) = sup

t>0
S(f ∗)(t)ϕX (t) <∞

}
,

then
Λ(X ) ⊂ X ⊂ M(X ).

For example, if X = Lp, 1 < p <∞, then

Λ(X ) = Lp,1 and M(X ) = Lp,∞.
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We are now interested in studying the norm of S − Id on an r.i.
space X , for the n-dimensional Hardy operator, acting on radially
decreasing functions f :

Snf (x) =
1

|B(0, |x |)|

∫
B(0,|x |)

f (y) dy .

Using that

Snf (x)− f (x) =
1

vn|x |n

∫ ∞
f (x)

λf (t) dt ,

(where λf (t) = |{x : |f (x)| > t}|), then

‖Snf − f‖X ≤
∫ ∞

0
v−1

n λf (t)
∥∥∥∥ 1

v−1
n λf (t) + |·|n

∥∥∥∥
X

dt .
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Hence, it is natural to study the class of functions for which the
right-hand side is finite [Studia Math., 2010], that we call R(X ):

‖f‖R(X) =

∫ ∞
0

v−1
n λf (t)

∥∥∥∥ 1
v−1

n λf (t) + |·|n

∥∥∥∥
X

dt < +∞.

It can be proved that the norm on R(X ) is equal to:

‖f‖R(X) = ‖f‖ΛWX
=

∫ ∞
0

WX (λf (t)) dt < +∞,

where

WX (t) =

∥∥∥∥ 1
1 + ·

t

∥∥∥∥
X
,

and ΛWX is the Lorentz space with fundamental function WX .
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Examples

R(L1) = {0}
R(Lp) = Lp,1 = Λ(Lp), 1 < p <∞.
If Ψ(t) = t log(1 + 1/t), then

R(L1 + L∞) = ΛΨ  L1 + L∞ = Λ(L1 + L∞).

Theorem (Rodrı́guez – S. [PEdMS, 2012])
TFAE:

R(X ) 6= {0}.
g∗(s) = 1/(1 + s) ∈ X .
(L1,∞ ∩ L∞) ⊂ X .

R(X ) ⊂ Λ(X ).

If ϕX (s) = supt>0
ϕX (st)
ϕX (t) and βX = infs>1

logϕX (s)
log s is the

upper fundamental index of X :

Λ(X ) = R(X ) ⇐⇒ βX < 1,
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Remarks

It is well-known that Λ2 = Λ ◦ Λ = Λ and hence Λ ◦ R = R.
However there are examples showing that R2 = R ◦R 6= R:

If Φ(t) = t/log(1 + t), then

R(MΦ) = L1 ∩ L∞ but R2(MΦ) = 0,

where
‖f‖MΦ

= sup
t>0

f ∗∗(t)Φ(t).

In fact, all the examples we know satisfy one of the
following 3 possibilities:

1 R(X ) = {0}.
2 R(X ) 6= {0} and R2(X ) = {0}.
3 R j (X ) 6= {0}, for every j = 1,2,3, . . .
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Remarks

We know that if βX < 1, then R(X ) = Λ(X ) and hence
βX = βR(X) < 1, but we do not know whether the converse
is true:

If βR(X) < 1,

βX = βR(X)?

Or, does there exist X with βX = 1 but βR(X) < 1?
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βϕ = 1

βϕ < 1

(L1,∞ ∩ L∞) ⊂ X

{0}:

/

R = Λ

z ???

u

u u

u

(L1,∞ ∩ L∞) * X

R

R

R

~
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Remarks
By definition, if f is decreasing,

‖Sf − f‖X ≤ ‖f‖R(X),

and the inequality is sharp.
In particular, if 1 < p <∞, 1 ≤ q ≤ p, then

‖Snf − f‖Lp,q ≤ p−1/q′

(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ(q + 1)

)1/q

‖f‖Lp,1 ,

and the inequality is sharp. Hence, for every p > 1:

‖Sf − f‖p ≤
1

p(p − 1)1/p ‖f‖p,1

and
‖Snf − f‖p,1 ≤

π

p sin
(π

p

)‖f‖p,1.
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Range of R

Since R is a monotone functor, then for every X r.i.,

R(X ) = ΛWX ⊂ ΛΨ = R(L1 + L∞),

and hence, WX (t) ≥ CΨ(t) = t log(1 + 1/t).

We are now interested in studying when a given Lorentz space
Λϕ belongs to the range of R; i.e., there exists an X such that

R(X ) = Λϕ.

A necessary condition for this to happen is that

ϕ(t) ≥ Ct log(1 + 1/t).

As we have already shown, if βϕ < 1 then R(Λϕ) = Λϕ, and
hence it suffices to consider the case βϕ = 1.
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Theorem (S – Tradacete, in progress)

Let ϕ be a quasiconcave function with ϕ(t) ≥ Ct log(1 + 1/t),
and let

ϕ̃(t) = inf
r>0

tϕ(r)

r log(1 + t
r )
.

Then, Λϕ ⊂ R(Mϕ̃),

where Mϕ̃ is the Marcinkiewicz space

‖f‖Mϕ̃
= sup

t>0
f ∗∗(t)ϕ̃(t),

and this embedding is best possible: If there exists Φ such that

Λϕ = R(MΦ),

necessarily
Λϕ = R(Mϕ̃).
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Remarks
Our “conjecture” is that the equality Λϕ = R(Mϕ̃) is going to
be always true.
It can be proved that βϕ < 1 ⇐⇒ ϕ ≈ ϕ̃. Hence, if βϕ < 1
then

R(Mϕ̃) = R(Mϕ) = R(Λϕ) = Λϕ.
√

Examples for the case βϕ = 1:

If ϕ(t) = t log(1 + 1/t), then ϕ̃(t) ≈ min(1, t) and

R(Mϕ̃) = R(L1 + L∞) = Λϕ.
√

If Ψ(t) = t/ log(1 + t), then Ψ̃(t) ≈ t/ log2(1 +
√

t) and

R(MΨ̃) = ΛΨ.
√

If ϕ(t) = max(1, t), then ϕ̃(t) ≈ Ψ(t) and

R(Mϕ̃) = L1 ∩ L∞ = Λϕ.
√
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Our “conjecture” is that the equality Λϕ = R(Mϕ̃) is going to
be always true.
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Σας ευχαριστώ για την προσοχή σας!!

Thanks for your attention!

¡Gracias por vuestra atención!
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