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are the conformal mappings of A onto itself. In case a € A, then u¢, Is a
constant function.
The Besov-1 space, B!, consists of all functions f analytic on A which
can be written as

=S Nba, s an €A, ST M| < +o0.

The
Ifl g1 = inf 32727 |An]

is a norm on B! under which we have ||¢, ||z = 1 for all a € A.

It is easily proved that, under this norm, B! is a Banach space invariant
under right-composition by Mobius functions and that it is the minimal
space with this property.
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Ll =< 1F(O)] + LF(0)] + A I (2)] dA(2).

One direction of this equivalence comes from the formulae

al?— = @]
b (2) =, (2) =2

and the resulting
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The other direction comes from an appropriate discretization of the
formula

f(2) = £(0) + f'(0)z — [[a 5 f"(a)da(2) dA(a).
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BP (1 < p < 400), the Besov-p space, consists of all f analytic in A with
the norm

1fllse = [fO)] + [fa 1f (2)P(1 = |2]°)P~2 dA(2)
=p [FO) + ' O) + [Ja lf"(2)P(L = |2])P~* dA(2).

B i1s the Bloch space, consisting of all b analytic on A with
sup,ea(l — [2[%)|6'(2)| < +oo0.
By is the little-Bloch space, consisting of all b analytic on A with
lim,en |21 (1 = [2*) |6 (2)] = 0.

It is true that
B'C B CB”CByCB
for 1 < p; < py < +oo0 and B! is the “limit” of B? as p — 1.

Other Mobius invariant spaces are H°, the disc algebra A, the BMOA
and VMOA, all containing B* .



Duality

For all f € B! and all b € B we define the sesquilinear product

(£,0) = F(0)b(0) + f/(0)/(0) + [fa 3 " (2)(1 = |2[*)¥/ (=) dA(2).
Through this product one may easily prove the dualities

B'"*~B,  By*x=B'.
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For analytic ¢ : A — A we define the composition operator
Cyf = f o
It is easy to prove that C,, : B! — B! is bounded if and only if

1Oyl = supgen |CyPallpr < +-o0.

We have the following sequence of equivalent condtitions:

/ > 2 /! >
sup,en (1 — |al?) N ‘26(112&()2))3 -+ (1_¢a¢((;))2 ‘ dA(z) < 400,

suPaea (1 — lal?) (ffA [1— mp(z)|3 )+ JJa |1|¢ e dA(Z)) < 100,

supy (7 S 1) [0/ (2P AAG) + iy Jfym15) 872 dAG)) < +oo,

where [ is the typical arc of the unit circle and S = S(/) is the Carleson
square with I as its base.
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It is also known that Cy, : B! — B! is compact if and only if

liH1CLEA,|0L|—>1 HclbgbaHBl = 0.

We also have the corresponding sequence of equivalent condtitions, with
the sup,c A replaced by lim,ca |4—1 @and with sup; replaced by lim ;.

It is somewhat strange that all these conditions are equivalent to

sup [1h(z)| < 1.
z€A
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for some constant ¢ > 0 independent of f € B'.

We shall prove that the condition
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where T'(.S) is the inner half of the Carleson square S, is necessary for Cy,
to have closed range.

The last condition is equivalent to

imintyy o (7 [fy 1) [0/ (P AAG) + i [f16) () dAG:) ) > 0.
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If a € T(S) and ¢(z) € S, then 1 — |a|* < |I| and |1 — @y (2)| =< |I].
Therefore, the first condition trivially implies the second.

Now, suppose that for some sequence of I's with |I| — 0 we have

w/ Py 2
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This implies
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|19 (2)[° dA(z) — 0

1 al
mff¢—1(5) ll—ﬁlzp(z) . azw

and, if moreover |a; — as| < |I|, then we get

|5| Jy=1(s) W' (2 )I*dA(z) — 0, ﬁ JJy-1(9) ¥ (2)| dA(z) — 0.
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Proof of the necessity of the second condition

Suppose that for some sequence of I's with || — 0 we have

51 1= 7k [y ) [V ()P AAG) + oy [y s) [0 ()] dA(GZ) = 0

For each I (in our sequence) we consider a much smaller (?) arc I’ so
that I and I’ have the same center. We consider the corresponding

S =S(I)and S" = S(I') and, also, two a1, as € T'(S") such that

la1 —as| < |[I'land 1 — |a1]? =1 — |as|? < |I'|.

Now we take
f — ¢a1 _ ¢a2 y
It is easy to see that
[fllz: =<1

and we shall prove that
ICyfllgr — 0.
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Composition operators: closed range

atl?— as|?— S —(a1+a2)z
fl(z) = A — el ol — (ja)2 - 1)(a1 - @) e 2

and, hence,
I/ 2
F(2)] = il

where a is any of a; or as .Similarly:

I/ 2
£(2)] =< i
We have

1Cy fllpr = [f((O))] + [f((0)][¢'(0)] + A + B,

where
A= [, | W)Y (2)2 + £ (0(2)0" (2)] dA(2),
B = [[ag1s) | @@ (2 + I (@)1 (2)] dA).
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Trivially:
[F (@ (0)] + L ((ONI[¥'(0)] < |I'| + |I']* — 0.

Also:
/ > 2 !/ >
ASIP [fymr(s) i 4@ + 1P [l s mimpiys 4AG)
I 1
S e Iy W P AAR) + 3 1 [y 19 (2)] dAG2)

P
~ ‘11‘2
and
Y'(z Y (z
B S [favg-1(9) |1| agb()l’)|4 dA(z) + \I'|2ffA\¢ 1(S) |1| aw((,z')w dA(z)

|17 % "(z
ST =) (Jfa s dAG) + ffa s dAG))
']

< 2

i
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[herefore,

117
A+ B < .
1]

~r

'l = /6|1l

Now let

and conclude that
A+ B < /o — 0.
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2. Jovovic, McCluer “Composition operators on Dirichlet spaces” (1997)

Weighted Dirichlet spaces D, defined by
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3. Akeroyd, Ghatage “Closed range composition operators on A%” (2008)
Different than Zorboska’s equivalent condition.

4. Akeroyd, Ghatage, Tjani “Closed range composition operators on A?
and the Bloch space” (2010)

Equivalent condition(s). For the Bloch space.
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