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is a norm on B1 under which we have ‖φa‖B1 = 1 for all a ∈ ∆.

It is easily proved that, under this norm, B1 is a Banach space invariant
under right-composition by Möbius functions and that it is the minimal
space with this property.
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′′(z) = 2a |a|2−1
(1−az)3

and the resulting
∫∫

∆ |φa
′′(z)| dA(z) . 1.

The other direction comes from an appropriate discretization of the
formula

f(z) = f(0) + f ′(0)z −
∫∫

∆
1
a
f ′′(a)φa(z) dA(a).
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B0 is the little-Bloch space, consisting of all b analytic on ∆ with

limz∈∆,|z|→1(1 − |z|2)|b′(z)| = 0.

It is true that
B1 ⊆ Bp1 ⊆ Bp2 ⊆ B0 ⊆ B

for 1 < p1 < p2 < +∞ and B1 is the “limit” of Bp as p→ 1.

Other Möbius invariant spaces are H∞, the disc algebra A, the BMOA

and VMOA, all containing B1 .



Duality

For all f ∈ B1 and all b ∈ B we define the sesquilinear product

〈f, b〉 = f(0)b(0) + f ′(0)b′(0) +
∫∫

∆
1
z
f ′′(z)(1 − |z|2)b′(z) dA(z).

Through this product one may easily prove the dualities

B1∗ ∼= B, B0
∗ ∼= B1 .
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where I is the typical arc of the unit circle and S = S(I) is the Carleson
square with I as its base.
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We also have the corresponding sequence of equivalent condtitions, with
the supa∈∆ replaced by lima∈∆,|a|→1 and with supI replaced by lim|I|→0 .

It is somewhat strange that all these conditions are equivalent to

sup
z∈∆

|ψ(z)| < 1.
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and, hence,
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.

We have

‖Cψf‖B1 ≍ |f(ψ(0))| + |f ′(ψ(0))||ψ′(0)| +A+B,

where
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′′(ψ(z))ψ′(z)2 + f ′(ψ(z))ψ′′(z)| dA(z).
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B . |I ′|2
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|ψ′(z)|2

|1−aψ(z)|4
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∆\ψ−1(S)
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.
|I′|
|I| (1 − |a|2)
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∆
|ψ′(z)|2

|1−aψ(z)|3
dA(z) +
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∆
|ψ′′(z)|
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.
|I ′|

|I|
.
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Therefore,
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|I|2

|I ′|2
δI +
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Therefore,

A+B .
|I|2

|I ′|2
δI +

|I ′|

|I|
.

Now let
|I ′| = 3

√

δI |I|

and conclude that
A+B . 3

√

δI → 0.



“Closed range” results for other spaces

1. Zorboska “Composition operators with closed range” (1994)

Equivalent conditions. Weighted Bergman spaces A2
α defined by
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Equivalent conditions. Weighted Bergman spaces A2
α defined by

∫∫

∆ |f(z)|2(1 − |z|2)α dA(z) < +∞ and for the H2 space
(
∫∫

∆ |f ′(z)|2(1 − |z|2)α dA(z) < +∞).

2. Jovovic, McCluer “Composition operators on Dirichlet spaces” (1997)

Weighted Dirichlet spaces Dα defined by
∫∫

∆ |f ′(z)|2(1 − |z|2)α dA(z) < +∞. (D0 = D,D1 = H2,D2 = A2).

For D. Sufficient (not necessary) condition: |ψ(∆) ∩ S| ≥ c|S|. Necessary
condition: 1

|S|

∫∫

S
nψ(w) dA(w) ≥ c. Proved not sufficient by Luecking.



“Closed range” results for other spaces

1. Zorboska “Composition operators with closed range” (1994)

Equivalent conditions. Weighted Bergman spaces A2
α defined by

∫∫

∆ |f(z)|2(1 − |z|2)α dA(z) < +∞ and for the H2 space
(
∫∫

∆ |f ′(z)|2(1 − |z|2)α dA(z) < +∞).

2. Jovovic, McCluer “Composition operators on Dirichlet spaces” (1997)

Weighted Dirichlet spaces Dα defined by
∫∫

∆ |f ′(z)|2(1 − |z|2)α dA(z) < +∞. (D0 = D,D1 = H2,D2 = A2).

For D. Sufficient (not necessary) condition: |ψ(∆) ∩ S| ≥ c|S|. Necessary
condition: 1

|S|

∫∫

S
nψ(w) dA(w) ≥ c. Proved not sufficient by Luecking.

3. Akeroyd, Ghatage “Closed range composition operators on A2” (2008)

Different than Zorboska’s equivalent condition.
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4. Akeroyd, Ghatage, Tjani “Closed range composition operators on A2

and the Bloch space” (2010)

Equivalent condition(s). For the Bloch space.
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