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2nd CHARM

Málaga, July 2011

1



Blaschke products

D = {z ∈ C : |z| < 1}: unit disk.

{an}: a sequence of points in D.

Blaschke condition:
∑∞

n=1(1− |an|) < ∞.

The corresponding Blaschke product B is
defined as

B(z) =
∞∏

n=1

|an|
an

an − z

1− anz
.

B is analytic in D, bounded by one, and has
radial limits of modulus one almost every-
where on the unit circle.

Blaschke products are fundamental in the
theory of Hardy spaces (being isometric
zero-divisors).

Question. Study the behavior of B′, e.g.,
its membership in different function spaces.
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Some contributors

Rudin, Piranian: initial examples (50’s, 60’s).

Ahern, Clark, Cohn, Protas, Kim (70’s,
80’s): systematic study of the member-
ship of B′ in Hardy and Bergman spaces
of the disk. Conditions on zeros.

Kutbi, Fricain, Mashreghi (2000-2010): re-
cent contributions to the study of integral
means of the derivative (on circles cen-
tered at the origin).

Girela, Peláez, V. (2005-10): further sys-
tematic study: zeros in a Stolz angle and
nontangential approach regions, best ex-
ponents of integrability for interpolating
Blaschke products.

Aleman, V. (2010): membership of B′ in
Bergman spaces with normal weights, rela-
tion with interpolation and duality results.
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Bergman spaces

z = reiθ ∈ D, dA(z) = 1
πr dr dθ.

For 0 < p < ∞, we say that f ∈ L
p
a (the

Bergman space) if∫
D
|f(z)|pdA(z) < ∞ .

p > q implies L
p
a ⊂ L

q
a.

Schwarz-Pick Lemma:

|B′(z)| ≤
1− |B(z)|2

1− |z|2

easily implies that B′ ∈ ∩0<p<1L
p
a.

Rudin (1955): there exists B whose deriva-
tive is not in L1

a.

Piranian (1968): an explicit example.
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Normal weights

Weight: a positive measurable function
w : D → [0,+∞), usually integrable.

A weight is called radial if w(z) = w(|z|)
for all z in D.

A radial weight is normal (Shields, Williams)
if there exist a, b ∈ R and r0 ∈ (0,1) such
that

w(r)

(1− r)a
↗ ∞ when r > ra ,

w(r)

(1− r)b
↘ 0 when r > rb .

Let aw = inf a and bw = sup b. Then aw ≥
bw.

Example. Let −1 < α, β < ∞, and con-
sider

w(r) = (1− r)α logβ
1

1− r
.

Then aw = bw = α.
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Weighted Bergman spaces

We consider only integrable normal weight
w. For example, this is guaranteed if we
assume that bw > −1.

Define the weighted Bergman space L
p
a(w),

p > 0, to consists of all analytic functions
f in D such that

∥f∥pp,w =
∫
D
|f |pwdA < ∞ .

From now on, assume: the weight w is
both normal and integrable in [0,1).

Such spaces generalize the standard Bergman
spaces with

w(z) = (α+1)(1− r2)α , −1 < α < ∞ .

For any normal and integrable weight it
can be shown that f ∈ L

p
a(w) implies

|f(z)| ≤ C(w(|z|)−1/p(1− |z|2)−2/p∥f∥p,w ,

for some constant C > 0 and all z ∈ D.
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When bw > −1, this implies

sup
∥f∥p,w≤1

|f(z)| ≍ (w(|z|))−1/p(1− |z|2)−2/p ,

as |z| → 1−.

Interpolating sequences

A sequence (zn)∞n=1 in D is called an in-
terpolating sequence for L

p
a(w) if for every

(an) ∈ ℓp there exists f ∈ L
p
a(w) such that

f(zn)w(|zn|)1/p(1− |zn|2)2/p = an ,

for all n.

If p = 2, it is well known that interpolating
sequences for Hardy spaces are interpolat-
ing for L2

a,w as well. This follows from
a well-known result that the only point-
wise multipliers from L2

a,w into itself are
the H∞ functions and from certain inter-
polation results.

This can be extended for the other values
of p > 1 but requires different techniques.
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Theorem. If bw > −1, then every interpo-
lating sequence for H∞ is interpolating for
L
p
a(w), p > 1.

Proof. If 1
p + 1

q = 1, let γ > aw
p − 1

q .

Can show that(∫ 1

r
w(t)dt

)(∫ 1

r
(1− t)γqw−q/p(t)dt

)p/q

≤ C(1− r)pγ+p .

This implies that w(|z|)(1− |z|)−γ belongs
to the Békollé class Bp(γ).

Equivalently, v(z) = w−q/p(z)(1−|z|)(q−1)γ

belongs to Bq(γ).

By a result of Békollé (1982) it follows
that the sublinear operator Pγ defined by

Pγf(z) =
∫
D

(1− |ζ|)γ

|1− ζz|γ+2
|f(ζ)|dA(ζ)

is bounded from Lq((1−|z|)qγw−q/pdA) into
itself.
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Luecking’s duality theorem (1985) iden-
tifies the dual of L

p
a(w) with L

q
a(v) via a

standard weighted Bergman pairing. More
precisely, it says that the norm of a func-
tion f ∈ L

p
a(w) is equivalent to

sup
{∣∣∣∣∫D f(z)g(z)(1− |z|2)γdA

∣∣∣∣ :
g ∈ Lq

a(w) , ∥g∥q,v ≤ 1} .

Let (zn)∞n=1 be an interpolating sequence
for H∞, let B be the Blaschke product with
zeros z1, z2, . . . and let a = (an) ∈ ℓp.

We now exhibit an explicit solution fa of
the interpolation problem defined above:

fa(z) =
∑
n

an(w(|zn|))−1/p(1− |zn|2)−2/p ×

×
(1− |zn|2)γ+1B(z)

(1− znz)γ+1(z − zn)B′(zn)
.

In order to see this, it suffices to show that

∥fa∥p,w ≤ C∥a∥ℓp ,
for some constant C and all sequences a
in ℓp with finitely many nonzero terms.
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Denote by Bn the Blaschke product with
zeros (zk)k ̸=n, taking multiplicities into ac-
count. Recall that the values |Bn(zn)| are
bounded away from zero by the separation
assumption. By the duality relation,

∥fa∥p,w ≤

sup
∥g∥q,v≤1

∑
n

|an|
|Bn(zn)|

w
−1

p(|zn|)(1− |zn|)
γ+2

q ×

×
∫
D

|g(z)||Bn(z)|(1− |z|)γ

|1− znz|γ+2
dA(z)

≤ C sup
∥g∥q,v≤1

∑
n

|an|w
−1

p(|zn|)(1− |zn|)
γ+2

q ×

× Pγg(zn)
≤ C∥a∥ℓp sup

∥g∥q,v≤1(∑
n

w
−q

p(|zn|)(1− |zn|)qγ+2P q
γg(zn)

)1
q

.
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Since (zn)∞n=1 is uniformly separated, there
is a fixed R ∈ (0,1) such that the disks

∆n = {ζ ∈ D : |ζ − zn| < R (1− |zn|)} ,
are pairwise disjoint.

One can also see that Pγg is “almost con-
stant” on these disks, i.e., there exists c0 >
0 independent of g such that

c−1
0 Pγg(z) ≤ Pγg(ζ) ≤ c0Pγg(z) , z, ζ ∈ ∆n .

Normal weights also behave nicely on such
disks, so all together this yields

sup∥g∥q,v≤1

∑
n

w−q/p(|zn|)(1− |zn|)qγ+2 ×

×P q
γg(zn)

≤ C sup
∥g∥q,v≤1

∑
n

w−q/p(|zn|)×

×(1− |zn|)qγ
∫
∆n

P q
γg(z)dA(z)

≤ C sup
∥g∥q,v≤1

∑
n

∫
∆n

P q
γg(z)w

−q
p(z)×

×(1− |z|)qγdA(z)
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≤ sup
∥g∥q,v≤1

∫
∪n∆n

P q
γg(z)w

−q
p(z)(1−|z|)qγdA(z) .

and the result follows.

Integrability of B′

For a nonconstant analytic function f in
D, a point ζ in D, and u : D → [0,+∞), use
the abbreviated notation∑

f(z)=ζ

u(z)

to denote the summation over the set f−1({ζ}),
taking multiplicities into account.

Well-known:

∥B′∥1 ≤ c
∑

B(z)=0

(1− |z|) log
1

1− |z|
,

We complement this (and other results).

12



Theorem (H.O. Kim). Suppose that a
Blaschke product B satisfies

∞∑
B(z)=0

(1− |z|)2−p < ∞ , 1 < p < 2 .

Then B′ ∈ Ap.

Theorem (Girela-Peláez-V.) If B is an in-
terpolating Blaschke product then∫

D
|B′(z)|pdA(z) ≥ C

∑
B(z)=0

(1− |z|)2−p .

In particular, if the series on the right di-
verges, then B′ ̸∈ Ap.

A sequence {an}n is said to be separated
(with constant of separation δ) if

inf
k ̸=n

∣∣∣∣∣ ak − an

1− akan

∣∣∣∣∣ = δ > 0 .
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Theorem. Let aw < 2p − 2, bw > −1, if
1/2 < p ≤ 1, and aw < p− 1, bw > p− 2, if
p > 1.

Then there exists a positive constant cp,w
such that for every Blaschke product B we
have

∥B′∥pp,w ≤ cp,w
∑

B(z)=0

(1− |z|)2−pw(|z|) .

If 1/2 < p ≤ 1 and aw = 2p − 2, bw > −1,
or if p > 1, aw = p − 1, bw > p − 2, and w
also satisfies the condition
(*) there exists α such that 0 < α < 1 and
the function

w(r)

(1− r)aw
logα

1

1− r

is increasing for r > r0,
then there exists cp,w > 0 such that

∥B′∥pp,w ≤ cp,w ×

×
∑

B(z)=0

(1− |z|)2−pw(|z|) log
1

1− |z|

for every Blaschke product B.
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Proof. Assume first that 1/2 < p ≤ 1. It is
easy to see (after a logarithmic differenti-
ation of the Blaschke product) that

|B′(ζ)| ≤
∑

B(z)=0

1− |z|2

|1− zζ|2
.

For p ≤ 1 this implies∫
D
|B′|pw dA ≤

∑
B(z)=0

(1− |z|2)p ×

×
∫
D

w(ζ)

|1− zζ|2p
dA(z) .

Let w be a normal weight and let m ∈ R.
For λ ∈ D,m > −1, aw < m, and bw > −1,
it can be checked that∫

D

w(|z|)
|1− λz|m+2

dA(z) ≍ w(|λ|)(1− |λ|)−m .

Take m = 2p − 2 and the first part of the
statement follows.

The other inequality is similar, using an
analogous property of an integral involving
the logarithm as well.
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Theorem. Suppose that the zero set of
the Blaschke product B is separated with
separation constant δ > 0. Suppose that
either:
(a) aw < 2p− 2, bw > −1, if 1/2 < p ≤ 1,
or
(b) aw < p− 2, bw > −1, when p > 1.
Then, in both cases, there exists a positive
constant cp,w,δ such that

∞∑
B(z)=0

(1− |z|)2−pw(|z|) ≤ cp,w,δ∥B′∥pp,w .

If either 1/2 < p ≤ 1 and aw = 2p − 2,
bw > −1, or p > 1, aw = p − 1, bw > p − 2,
and w also satisfies the condition (*) men-
tioned earlier, then there exists a positive
constant cp,w,δ such that

∞∑
B(z)=0

(1− |z|)2−pw(|z|) ≤ cp,w,δ ×

×
∫
D
|B′(z)|pw(|z|) log

1

1− |z|
dA(z) .
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