Loewner theory in annulus

Manuel D. Contreras

Departamento de Matemática Aplicada II Universidad de Sevilla

Based on joint papers with S. Díaz-Madrigal, and P. Gumenyuk. Complex and Harmonic Analysis 2011, Málaga

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Radial Loewner Theory: the beginning.

$\text{Class}\ \mathcal{S}$

By S we denote the class of all univalent (i.e. holomorphic and injective) functions $f : \mathbb{D} \to \mathbb{C}$ normalized by

$$f(z) = z + \sum_{n=2}^{+\infty} a_n z^n$$
 for all $z \in \mathbb{D}$.

Radial Loewner Theory: the beginning.

$\mathsf{Class}\ \mathcal{S}$

By S we denote the class of all univalent (i.e. holomorphic and injective) functions $f : \mathbb{D} \to \mathbb{C}$ normalized by

$$f(z) = z + \sum_{n=2}^{+\infty} a_n z^n$$
 for all $z \in \mathbb{D}$.

Bieberbach's Conject. (1916)

For any $f \in S$,

 $|a_n| \leq n$ for all n.

Radial Loewner Theory: the beginning.

$\text{Class}\ \mathcal{S}$

By S we denote the class of all univalent (i.e. holomorphic and injective) functions $f : \mathbb{D} \to \mathbb{C}$ normalized by

$$f(z) = z + \sum_{n=2}^{+\infty} a_n z^n$$
 for all $z \in \mathbb{D}$.

Bieberbach's Conject. (1916)

For any $f \in S$,

 $|a_n| \le n$ for all n.

In 1923, Loewner introduced a "parametric method" to tackle this problem.

Radial Loewner Theory: the beginning.

$\text{Class}\ \mathcal{S}$

By S we denote the class of all univalent (i.e. holomorphic and injective) functions $f : \mathbb{D} \to \mathbb{C}$ normalized by

$$f(z) = z + \sum_{n=2}^{+\infty} a_n z^n$$
 for all $z \in \mathbb{D}$.

Bieberbach's Conject. (1916) - de Branges' Theorem (1984)

For any $f \in S$,

 $|a_n| \leq n$ for all n.

In 1923, Loewner introduced a "parametric method" to tackle this problem.

Radial Loewner Theory: Kufarev and Pommerenke.

Important contributions by P.P. Kufarev and Ch. Pommerenke help Loewner's ideas to go beyond the initial goal.

The core of Loewner Theory resides in a 1-to-1 correspondence and interplay between the main notions:

- Loewner chains;
- Evolution families;
- Herglotz vector fields.

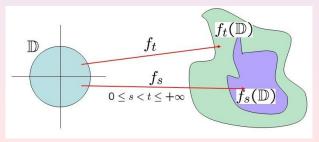
Radial Loewner Theory: Kufarev and Pommerenke.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is said to be a *radial Loewner chain*, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;

LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t)z^2 + ..., i.e., e^{-t}f_t \in S$.



A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Radial Loewner Theory: Kufarev and Pommerenke

Theorem (Pommerenke, 1965)

For any $f \in S$ there exists a radial Loewner chain (f_t) s.t. $f_0 = f$.

Radial Loewner Theory: Kufarev and Pommerenke

Theorem (Pommerenke, 1965)

For any $f \in S$ there exists a radial Loewner chain (f_t) s.t. $f_0 = f$.

Theorem (Pommerenke, 1965)

For any radial Loewner chain (f_t) there exists a unique normalized Herglotz function p(z, t) s.t. the Loewner PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} p(z, t),$$

holds.

Radial Loewner Theory: Kufarev and Pommerenke

Theorem (Pommerenke, 1965)

For any $f \in S$ there exists a radial Loewner chain (f_t) s.t. $f_0 = f$.

Theorem (Pommerenke, 1965)

For any radial Loewner chain (f_t) there exists a unique normalized Herglotz function p(z, t) s.t. the Loewner PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} \rho(z, t),$$

holds.

A normalized Herglotz function is $p : \mathbb{D} \times [0, +\infty)$ s. t.: HF1 $z \mapsto p(z, t)$ is holomorphic for all t; HF2 $t \mapsto p(z, t)$ is measurable for all z; HF3 Re $p(z, t) > 0, z \in \mathbb{D}, t \ge 0$, and p(0, t) = 1 for a.e. $t \ge 0$.

Radial Loewner Theory: Kufarev and Pommerenke.

The converse of the above theorem is true but, before stating it, we must recall:

Definition

The *radial evolution family* $(\varphi_{s,t})$ of a Loewner chain (f_t) is given by

$$\varphi_{\boldsymbol{s},t} = f_t^{-1} \circ f_{\boldsymbol{s}}, \qquad 0 \leq \boldsymbol{s} \leq t.$$

Proposition

A biparametric family of holomorphic functions $\varphi_{s,t} : \mathbb{D} \to \mathbb{D}$ is a evolution family if and only if

EF1
$$\varphi_{s,s} = \operatorname{id}_{\mathbb{D}}$$
 for all $s \ge 0$;

EF2 $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ whenever $0 \le s \le u \le t$;

EF3
$$\varphi_{s,t}(0) = 0$$
 and $\varphi'_{s,t}(0) = e^{s-t}$.

Radial Loewner Theory: Kufarev and Pommerenke

Theorem (Pommerenke)

For each normalized Herglotz function p(z, t) there exists a unique Loewner chain (f_t) solving the Loewner PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} \rho(z, t),$$

Radial Loewner Theory: Kufarev and Pommerenke

Theorem (Pommerenke)

For each normalized Herglotz function p(z, t) there exists a unique Loewner chain (f_t) solving the Loewner PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} \rho(z, t),$$

given by

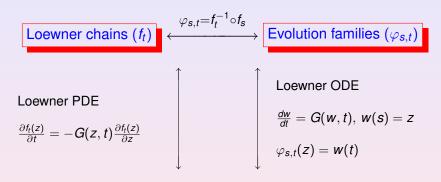
$$f_{s} = \lim_{t \to +\infty} e^{t} \varphi_{s,t}(z), \quad s \ge 0,$$

where, given $s \ge 0$ and $z \in \mathbb{D}$, $\varphi_{s,t}(z) := w(t)$, being w the unique solution to the Loewner ODE

$$\frac{dw}{dt} = -wp(w,t), \quad t \ge s,$$

$$w(s) = z.$$

Scheme



Herglotz vector fields G(w, t)

where G(w, t) = -wp(w, t).

This scheme is important in applications. For example: Bieberbach's conjecture.

Radial Loewner Theory: Kufarev and Pommerenke

In the sixties and seventies, using these results there was a number of applications (see the books by Pommerenke (1975) and Duren (1983)):

- univalence criteria,
- optimization problems (including partial results of the Bieberbach's conjecture),
- control theory,
- ...

Radial Loewner Theory: Kufarev and Pommerenke

In the sixties and seventies, using these results there was a number of applications (see the books by Pommerenke (1975) and Duren (1983)):

- univalence criteria,
- optimization problems (including partial results of the Bieberbach's conjecture),
- control theory,
- ...

But the key moment arrived in 1984 when de Brange finally proved the Bieberbach's conjecture.

Radial Loewner Theory: Kufarev and Pommerenke

In the sixties and seventies, using these results there was a number of applications (see the books by Pommerenke (1975) and Duren (1983)):

- univalence criteria,
- optimization problems (including partial results of the Bieberbach's conjecture),
- control theory,
- ...

But the key moment arrived in 1984 when de Brange finally proved the Bieberbach's conjecture.

Also, there are connections with Fluid Mechanics because they can be used to model Hele-Shaw flows (see the book by Gustafsson and Vasil'ev (2006)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへ⊙

Objective.

Problem:

To construct a Loewner theory in the doubly-connected setting.

We should introduce three notions:

Loewner chains, evolution families, and suitable vector fields

and analyze the relationships between them.

A geometric point of view: evolution of domains.

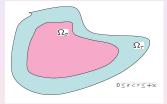
Any *continuously* increasing family of simply domains in the complex plane can be described by a Loewner chain.

That is: Let Ω_{σ} , $0 \leq \sigma < \infty$, be a family of simply connected domains s. t.

$$0 \in \Omega_{\sigma} \subsetneq \Omega_{\tau} \text{ para } 0 \leq \sigma < \tau;$$

2
$$\cup_{\tau < \sigma} \Omega_{ au} = \Omega_{\sigma}$$
 and $\cup_{ au} \Omega_{ au} = \mathbb{C}$.

Then there is a Loewner chain (f_t) and a continuous and bijective function $\lambda : [0, +\infty) \rightarrow [0, +\infty)$ s. t. $f_t(\mathbb{D}) = \Omega_{\lambda(t)}$.



A geometric point of view: evolution of domains.

Any *continuously* increasing family of simply domains in the complex plane can be described by a Loewner chain.

That is: Let Ω_{σ} , $0 \leq \sigma < \infty$, be a family of simply connected domains s. t.

$$\textbf{0} \ \textbf{0} \in \Omega_{\sigma} \subsetneq \Omega_{\tau} \text{ para } \textbf{0} \leq \sigma < \tau;$$

2)
$$\cup_{\tau < \sigma} \Omega_{\tau} = \Omega_{\sigma}$$
 and $\cup_{\tau} \Omega_{\tau} = \mathbb{C}$

Then there is a Loewner chain (f_t) and a continuous and bijective function $\lambda : [0, +\infty) \rightarrow [0, +\infty)$ s. t. $f_t(\mathbb{D}) = \Omega_{\lambda(t)}$.

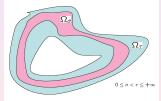
Is there any similar construction for multiply-connected domains?

A geometric point of view: evolution of domains.

Is there any similar construction for multiply-connected domains?

Let Ω_{σ} , $0 \leq \sigma < \infty$, be a family of doubly connected domains such that

Is there a "nice" family of univalent functions in an annulus $f_t : \mathbb{A} \to \mathbb{C}$ and a continuous and bijective function $\lambda : [0, +\infty) \to [0, +\infty)$ s. t. $f_t(\mathbb{A}) = \Omega_{\lambda(t)}$?



 $\mathbb{A} := \mathbb{A}(r, R) = \{ z \in \mathbb{C} : r < |z| < R \} \text{ where } 0 \le r < R \le +\infty.$

Towards the definition of Loewner chain.

Let Ω_{σ} , $0 \leq \sigma < \infty$, be doubly connected domains s.t.

 $\Omega_{\sigma} \subsetneq \Omega_{\tau} \text{ if } \mathbf{0} \leq \sigma < \tau \text{ and } \cup_{\tau < \sigma} \Omega_{\tau} = \Omega_{\sigma}.$

Assume there is a "nice" family of univalent functions in an annulus $f_t : \mathbb{A} \to \mathbb{C}$ and a continuous and bijective function $\lambda : [0, +\infty) \to [0, +\infty)$ such that $f_t(\mathbb{A}) = \Omega_{\lambda(t)}$.

Towards the definition of Loewner chain.

Let Ω_{σ} , $0 \leq \sigma < \infty$, be doubly connected domains s.t.

 $\Omega_{\sigma} \subsetneq \Omega_{\tau} \text{ if } \mathbf{0} \leq \sigma < \tau \text{ and } \cup_{\tau < \sigma} \Omega_{\tau} = \Omega_{\sigma}.$

Assume there is a "nice" family of univalent functions in an annulus $f_t : \mathbb{A} \to \mathbb{C}$ and a continuous and bijective function $\lambda : [0, +\infty) \to [0, +\infty)$ such that $f_t(\mathbb{A}) = \Omega_{\lambda(t)}$.

"nice" should imply that $f_t \rightarrow f_s$ as $t \rightarrow s$ uniformly on compact sets.

Then $\varphi_{s,t} := f_t^{-1} \circ f_s : \mathbb{A} \to \mathbb{A}$ goes to $\mathrm{id}_{\mathbb{A}}$ as *t* goes to *s*.

Towards the definition of Loewner chain.

Let Ω_{σ} , $0 \leq \sigma < \infty$, be doubly connected domains s.t.

 $\Omega_{\sigma} \subsetneq \Omega_{\tau} \text{ if } \mathbf{0} \leq \sigma < \tau \text{ and } \cup_{\tau < \sigma} \Omega_{\tau} = \Omega_{\sigma}.$

Assume there is a "nice" family of univalent functions in an annulus $f_t : \mathbb{A} \to \mathbb{C}$ and a continuous and bijective function $\lambda : [0, +\infty) \to [0, +\infty)$ such that $f_t(\mathbb{A}) = \Omega_{\lambda(t)}$.

"nice" should imply that $f_t \rightarrow f_s$ as $t \rightarrow s$ uniformly on compact sets.

Then $\varphi_{s,t} := f_t^{-1} \circ f_s : \mathbb{A} \to \mathbb{A}$ goes to $\mathrm{id}_{\mathbb{A}}$ as *t* goes to *s*.

Connected component of Hol(D, D) containing id_D for any *n*-connected domain D, n > 1, is either $\{id_D\}$ (when n > 2), or the family of all rotations (if n = 2).

Let Ω_{σ} , $0 \leq \sigma < \infty$, be doubly connected domains s.t.

 $\Omega_{\sigma} \subsetneq \Omega_{\tau} \text{ if } \mathbf{0} \leq \sigma < \tau \text{ and } \cup_{\tau < \sigma} \Omega_{\tau} = \Omega_{\sigma}.$

Assume there is a "nice" family of univalent functions in an annulus $f_t : \mathbb{A} \to \mathbb{C}$ and a continuous and bijective function $\lambda : [0, +\infty) \to [0, +\infty)$ such that $f_t(\mathbb{A}) = \Omega_{\lambda(t)}$.

"nice" should imply that $f_t \rightarrow f_s$ as $t \rightarrow s$ uniformly on compact sets.

Then $\varphi_{s,t} := f_t^{-1} \circ f_s : \mathbb{A} \to \mathbb{A}$ goes to $id_{\mathbb{A}}$ as *t* goes to *s*.

Connected component of Hol(D, D) containing id_D for any *n*-connected domain D, n > 1, is either $\{id_D\}$ (when n > 2), or the family of all rotations (if n = 2).

Thus, $\varphi_{s,t}$ is either the identity or a rotation. In this case, $f_s(\mathbb{A}) = f_t \circ \varphi_{s,t}(\mathbb{A}) = f_t(\mathbb{A})$ and, in particular, $\Omega_{\sigma} = \Omega_{\tau}$.

Towards the definition of Loewner chain.

With this approach, there is no evolution!

An idea: To solve that problem, instead of a static reference domain, we can consider a family of reference domains (D_t) , with Loewner chains being

$$f_t: D_t \to \mathbb{C}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへ⊙

Towards the definition of Loewner chain.

For any
$$0 \le r < 1$$
, we define $A_r = \{z : r < |z| < 1\}$.

Definition

Let $r : [0, +\infty) \rightarrow [0, 1)$ be decreasing and locally absolutely continuous.

We say that $(\mathbb{A}_{r(t)})$ is a canonical domain system if

$$r' \in L^{\infty}_{\operatorname{loc}}([0,\infty),[0,\infty)).$$

For any
$$0 \le r < 1$$
, we define $A_r = \{z : r < |z| < 1\}$.

Definition

Let $r : [0, +\infty) \rightarrow [0, 1)$ be decreasing and locally absolutely continuous.

We say that $(\mathbb{A}_{r(t)})$ is a canonical domain system if

 $r' \in L^{\infty}_{\text{loc}}([0,\infty),[0,\infty)).$

If r(t) > 0 for all t, we say that $(\mathbb{A}_{r(t)})$ is *non-degenerate*. If r(t) = 0 for all t, we say that $(\mathbb{A}_{r(t)})$ is *degenerate*. Otherwise, we say that $(\mathbb{A}_{r(t)})$ is of *mixed type*.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a radial Loewner chain, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;
- LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t) z^2 + ...$

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. A family of holomorphic functions $f_t : \mathbb{A}_{r(t)} \to \mathbb{C}, t \ge 0$, is a *Loewner chain*, if

LC1 all f_t 's are univalent in $\mathbb{A}_{r(t)}$;

LC2
$$f_s(\mathbb{A}_{r(s)}) \subset f_t(\mathbb{A}_{r(t)})$$
 whenever $0 \le s \le t$;

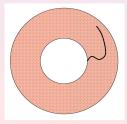
LC3 ???

In the fifties, there were several authors trying to tackle this problem:

Komatu, 1943, 1950; Goluzin, 1951; Li En Pir, 1953; Lebedev, 1955; Kuvaev, Kufarev, 1955.

They developed a Loewner theory in the very particular case of

 $f_t(\mathbb{A}_{r(t)}) =$ Annulus minus a slit



・ロット (雪) (日) (日)

Go back for a moment to the unit disk. A couple of years ago, we introduced a more general notion of Loewner chain to unify radial and chordal cases.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a radial Loewner chain, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;
- LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t) z^2 + ...$

Go back for a moment to the unit disk. A couple of years ago, we introduced a more general notion of Loewner chain to unify radial and chordal cases.

Definition

A family of hol. functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a *Loewner chain*, if LC1 all f_t 's are univalent in \mathbb{D} ;

LC2
$$f_s(\mathbb{D}) \subset f_t(\mathbb{D})$$
 whenever $0 \le s \le t$;

LC3 for any compact set $K \subset \mathbb{D}$ and all T > 0 there is C s. t.

$$|f_s(z) - f_t(z)| \leq C(t-s)$$

for all $z \in K$ and all $0 \le s \le t \le T$.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a radial Loewner chain, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;
- LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t) z^2 + ...$

Go back for a moment to the unit disk. A couple of years ago, we introduced a more general notion of Loewner chain to unify radial and chordal cases.

Definition

A family of hol. functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a *Loewner chain*, if LC1 all f_t 's are univalent in \mathbb{D} ;

LC2
$$f_s(\mathbb{D}) \subset f_t(\mathbb{D})$$
 whenever $0 \le s \le t$;

LC3 for any compact set $K \subset \mathbb{D}$ and all T > 0 there is *C* s. t.

$$|f_s(z) - f_t(z)| \le C(t-s)$$

for all $z \in K$ and all $0 \le s \le t \le T$.

- F. Bracci, M.D. C., and S. Díaz-Madrigal, *Evolution Families and the Loewner Equation I: the unit disk*, to appear in J. Reine Angew. Math. Available on ArXiv 0807.1594

- M.D. C., S. Díaz-Madrigal, and P. Gumenyuk, *Loewner chains in the unit disk*. Revista Matemática Iberoamericana **26** (2010), 975–1012.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a radial Loewner chain, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;
- LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t)z^2 + ...$

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. A family of holomorphic functions $f_t : \mathbb{A}_{r(t)} \to \mathbb{C}, t \ge 0$, is a *Loewner chain*, if

- LC1 all f_t 's are univalent in $\mathbb{A}_{r(t)}$;
- LC2 $f_s(\mathbb{A}_{r(s)}) \subset f_t(\mathbb{A}_{r(t)})$ whenever $0 \le s \le t$;
- LC3 for any compact interval $I = [S, T] \subset [0, +\infty)$ and any compact set $K \subset \mathbb{A}_{r(S)}$ there is a constant *C* such that

 $|f_s(z) - f_t(z)| \leq C(t-s)$

for all $z \in K$ and all (s, t) such that $S \leq s \leq t \leq T$.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a radial Loewner chain, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;
- LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t)z^2 + ...$

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. A family of holomorphic functions $f_t : \mathbb{A}_{r(t)} \to \mathbb{C}, t \ge 0$, is a *Loewner chain*, if

- LC1 all f_t 's are univalent in $\mathbb{A}_{r(t)}$;
- LC2 $f_s(\mathbb{A}_{r(s)}) \subset f_t(\mathbb{A}_{r(t)})$ whenever $0 \le s \le t$;
- LC3 for any compact interval $I = [S, T] \subset [0, +\infty)$ and any compact set $K \subset \mathbb{A}_{r(S)}$ there is a constant *C* such that

 $|f_s(z) - f_t(z)| \le \int_s^t k_{K,l}(\xi) d\xi$ where $k_{K,l} \in L^d(I, [0, \infty))$ for all $z \in K$ and all (s, t) such that $S \le s \le t \le T$.

Definition

A family of holomorphic functions in \mathbb{D} , $(f_t)_{t\geq 0}$, is a radial Loewner chain, if

- LC1 all f_t 's are univalent in \mathbb{D} ;
- LC2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$;
- LC3 for any $t \ge 0$, $f_t(z) = e^t z + a_2(t)z^2 + ...$

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. A family of holomorphic functions $f_t : \mathbb{A}_{r(t)} \to \mathbb{C}, t \ge 0$, is a *Loewner chain*, if

- LC1 all f_t 's are univalent in $\mathbb{A}_{r(t)}$;
- LC2 $f_s(\mathbb{A}_{r(s)}) \subset f_t(\mathbb{A}_{r(t)})$ whenever $0 \le s \le t$;
- LC3 for any compact interval $I = [S, T] \subset [0, +\infty)$ and any compact set $K \subset \mathbb{A}_{r(S)}$ there is a constant *C* such that

 $|f_s(z) - f_t(z)| \leq C(t-s)$

for all $z \in K$ and all (s, t) such that $S \leq s \leq t \leq T$.

(日) (日) (日) (日) (日) (日) (日)

Evolution family: definition.

Now it is not so difficult to guess the notion of EF:

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. A family of holomorphic functions $\varphi_{s,t} : \mathbb{A}_{r(s)} \to \mathbb{A}_{r(t)}, 0 \le s \le t$, is an *evolution family*, if

EF1
$$\varphi_{s,s} = \operatorname{id}_{\mathbb{A}_{r(s)}}$$
;
EF2 $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ whenever $0 \le s \le u \le t$;
EF3 for any compact interval $I = [S, T] \subset [0, +\infty)$ and any $z \in \mathbb{A}_{r(S)}$ there is a constant *C* such that

$$|\varphi_{s,u}(z)-\varphi_{s,t}(z)|\leq C(t-u)$$

for all $S \leq s \leq u \leq t \leq T$.

Evolution family: definition.

Now it is not so difficult to guess the notion of EF:

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. A family of holomorphic functions $\varphi_{s,t} : \mathbb{A}_{r(s)} \to \mathbb{A}_{r(t)}, 0 \le s \le t$, is an *evolution family*, if

EF1
$$\varphi_{s,s} = \mathrm{id}_{\mathbb{A}_{r(s)}};$$

EF2 $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ whenever $0 \le s \le u \le t;$
EF3 for any compact interval $I = [S, T] \subset [0, +\infty)$ and any $z \in \mathbb{A}_{r(S)}$ there is a constant *C* such that

$$|\varphi_{s,u}(z) - \varphi_{s,t}(z)| \leq C(t-u)$$

for all $S \leq s \leq u \leq t \leq T$.

Theorem

 $\varphi_{s,t}$ is univalent in $\mathbb{A}_{r(s)}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Loewner chains and evolution families

Theorem

Let (f_t) be a Loewner chain over $(\mathbb{A}_{r(t)})$. If we define

$$\varphi_{s,t} := f_t^{-1} \circ f_s, \qquad 0 \le s \le t < \infty, \tag{2.1}$$

then $(\varphi_{s,t})$ is an evolution family over $(\mathbb{A}_{r(t)})$.

Loewner chains and evolution families

Theorem

Let $(\varphi_{s,t})$ be an evolution fam. over $(\mathbb{A}_{r(t)})$. Let $r_{\infty} := \lim_{t \to +\infty} r(t)$. Then there exists a Loewner chain (f_t) over $(\mathbb{A}_{r(t)})$ such that

 I(f_t ∘ γ) = I(γ) for any closed curve γ ⊂ A_{r(t)} and any t ≥ 0, where I(γ) denote the index of the origin w.r.t. a closed curve in C*;

- 3 If $0 < r_{\infty} < 1$, then $\cup_{t \in [0,+\infty)} f_t(A_{r(t)}) = \mathbb{A}_{r_{\infty}}$;
- ④ If $r_{\infty} = 0$, then $\cup_{t \in [0, +\infty)} f_t(\mathbb{A}_{r(t)})$ is either \mathbb{D}^* , $\mathbb{C} \setminus \overline{\mathbb{D}}$, or \mathbb{C}^* .

Loewner chains and evolution families

Theorem

Let $(\varphi_{s,t})$ be an evolution fam. over $(\mathbb{A}_{r(t)})$. Let $r_{\infty} := \lim_{t \to +\infty} r(t)$. Then there exists a Loewner chain (f_t) over $(\mathbb{A}_{r(t)})$ such that

 I(f_t ∘ γ) = I(γ) for any closed curve γ ⊂ A_{r(t)} and any t ≥ 0, where I(γ) denote the index of the origin w.r.t. a closed curve in C*;

3 If
$$0 < r_{\infty} < 1$$
, then $\cup_{t \in [0,+\infty)} f_t(A_{r(t)}) = \mathbb{A}_{r_{\infty}}$;

• If $r_{\infty} = 0$, then $\cup_{t \in [0, +\infty)} f_t(\mathbb{A}_{r(t)})$ is either \mathbb{D}^* , $\mathbb{C} \setminus \overline{\mathbb{D}}$, or \mathbb{C}^* .

If (g_t) is another Loewner chain over $(\mathbb{A}_{r(t)})$ such that $g_s = g_t \circ \varphi_{s,t}$, for all $0 \le s \le t$, then there is a biholomorphism

$$F: \cup_{t\in[0,+\infty)} f_t(\mathbb{A}_{r(t)}) \to \cup_{t\in[0,+\infty)} g_t(\mathbb{A}_{r(t)})$$

such that

$$g_t = F \circ f_t$$
, for all $t \ge 0$.

Definition

Let $(\mathbb{A}_{r(t)})$ be a canonical domain system. If r(t) > 0 for all t, we say that $(\mathbb{A}_{r(t)})$ is non-degenerate. If r(t) = 0 for all t, we say that $(\mathbb{A}_{r(t)})$ is degenerate. Otherwise, we say that $(\mathbb{A}_{r(t)})$ is of mixed type.

Degenerate case: $\mathbb{A}_{r(t)} = \mathbb{D} \setminus \{0\}$ for all *t*.

In this case,
$$\varphi_{s,t} : \mathbb{D} \setminus \{0\} \to \mathbb{D} \setminus \{0\}$$
.

Defining $\varphi_{s,t}(0) = 0$, we get analytic functions in the unit disk and we are in the simply connected case.

In the rest of this talk, we will concentrate in the non-degenerate case.

To imagine the kind of vector field we are looking for, go back to \mathbb{D} :

Theorem (Pommerenke, 1965)

For any radial Loewner chain (f_t) in the unit disk there exists a unique normalized Herglotz function p(z, t) s.t. the Loewner PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} \rho(z, t),$$

holds, where

HF1
$$z \mapsto p(z, t)$$
 is holomorphic for all t;

HF2 $t \mapsto p(z, t)$ is measurable for all *z*;

HF3 Re p(z, t) > 0, $z \in \mathbb{D}$, and p(0, t) = 1 for a.e. $t \ge 0$.

Notice that for each *t* there is a positive Borel measure μ^t on the unit circle $\partial \mathbb{D}$ such that

$$p(z,t) = \int_{\partial \mathbb{D}} \frac{z+\xi}{z-\xi} \mu^t(\xi), \quad (z \in \mathbb{D}).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What about the vector field?

The analogue of the Schwartz kernel $\mathcal{K}_0(z) := (1+z)/(1-z)$ for $\mathbb{A}_r := \{z : r < |z| < 1\}, r \in (0, 1)$, is the *Villat kernel*:

$$\mathcal{K}_r(z) := \lim_{n \to +\infty} \sum_{\nu = -n}^n \frac{1 + r^{2\nu} z}{1 - r^{2\nu} z} = \frac{1 + z}{1 - z} + \sum_{\nu = 1}^{+\infty} \left(\frac{1 + r^{2\nu} z}{1 - r^{2\nu} z} + \frac{1 + z/r^{2\nu}}{1 - z/r^{2\nu}} \right).$$

The analogue of the Schwartz kernel $\mathcal{K}_0(z) := (1+z)/(1-z)$ for $\mathbb{A}_r := \{z : r < |z| < 1\}, r \in (0, 1)$, is the *Villat kernel*:

$$\mathcal{K}_r(z) := \lim_{n \to +\infty} \sum_{\nu = -n}^n \frac{1 + r^{2\nu} z}{1 - r^{2\nu} z} = \frac{1 + z}{1 - z} + \sum_{\nu = 1}^{+\infty} \left(\frac{1 + r^{2\nu} z}{1 - r^{2\nu} z} + \frac{1 + z/r^{2\nu}}{1 - z/r^{2\nu}} \right).$$

This kernel plays the same role for the Function Theory in the annulus than the Schwartz kernel in the unit disk. Let us mention that for any $f \in Hol(\mathbb{A}_r, \mathbb{C})$, continuous in $\overline{\mathbb{A}_r}$,

$$\begin{split} f(z) &= \int_{\partial \mathbb{D}} \mathcal{K}_r(z\xi^{-1}) \mathrm{Re}\, f(\xi) \, \frac{|d\xi|}{2\pi} + \int_{\partial \mathbb{D}} \left[\mathcal{K}_r(r\xi/z) - 1 \right] \mathrm{Re}\, f(r\xi) \, \frac{|d\xi|}{2\pi} \\ &+ i \int_{\partial \mathbb{D}} \mathrm{Im}\, f(\xi) \frac{|d\xi|}{2\pi} \end{split}$$

for all $z \in \mathbb{A}_r$.

The analogue of the Schwartz kernel $\mathcal{K}_0(z) := (1+z)/(1-z)$ for $\mathbb{A}_r := \{z : r < |z| < 1\}, r \in (0, 1)$, is the *Villat kernel*:

$$\mathcal{K}_r(z) := \lim_{n \to +\infty} \sum_{\nu = -n}^n \frac{1 + r^{2\nu} z}{1 - r^{2\nu} z} = \frac{1 + z}{1 - z} + \sum_{\nu = 1}^{+\infty} \left(\frac{1 + r^{2\nu} z}{1 - r^{2\nu} z} + \frac{1 + z/r^{2\nu}}{1 - z/r^{2\nu}} \right).$$

Definition

Let $r \in (0, 1)$. By the class \mathcal{V}_r we will mean the collection of all $\rho \in \operatorname{Hol}(\mathbb{A}_r, \mathbb{C})$ having the following representation

$$p(z) = \int_{\partial \mathbb{D}} \mathcal{K}_r(z/\xi) d\mu_1(\xi) + \int_{\partial \mathbb{D}} \left[1 - \mathcal{K}_r(r\xi/z) \right] d\mu_2(\xi), \quad z \in \mathbb{A}_r,$$

where μ_1 and μ_2 are positive Borel measures on the unit circle $\partial \mathbb{D}$ subject to the condition $\mu_1(\partial \mathbb{D}) + \mu_2(\partial \mathbb{D}) = 1$.

Vector fields and evolution families

Theorem

For any evolution family $(\varphi_{s,t})$ over $(\mathbb{A}_{r(t)})$ there exist an essentially unique semicomplete weak holomorphic vector field

$$G(w,t) = w \big[iC(t) + r'(t)p(w,t)/r(t) \big]$$

for a.e. $t \ge 0$ and all $w \in \mathbb{A}_{r(t)}$, where

•
$$t \mapsto p(w, t)$$
 is measurable in (t_0, ∞) , where $t_0 := \inf\{t : w \in \mathbb{A}_{r(t)}\};$

2 for each $t \ge 0$ the function $p(\cdot, t)$ belongs $\mathcal{V}_{r(t)}$;

$$\ \, \mathbf{O} \in L^\infty_{\mathrm{loc}}\big([\mathbf{0},+\infty),\mathbb{R}\big).$$

and a null-set $N \subset [0, +\infty)$ such that, for all $s \ge 0$, the mapping $[s, +\infty) \ni t \mapsto \varphi_{s,t} \in \operatorname{Hol}(\mathbb{A}_{r(s)}, \mathbb{C})$ is differentiable for all $t \in [s, +\infty) \setminus N$ and

$$\frac{d\varphi_{s,t}}{dt} = G(\cdot,t) \circ \varphi_{s,t} \quad \text{for all } t \in [s,+\infty) \setminus N.$$

Vector fields and evolution families

Conversely,

Theorem

Given any function

$$G(w,t) = w[iC(t) + r'(t)p(w,t)/r(t)]$$

for a.e. $t \ge 0$ and all $w \in \mathbb{A}_{r(t)}$, where

• $t \mapsto p(w, t)$ is measur. in (t_0, ∞) , where $t_0 := \inf\{t : w \in \mathbb{A}_{r(t)}\};$

2 for each $t \ge 0$ the function $p(\cdot, t)$ belongs $\mathcal{V}_{r(t)}$;

any $s \ge 0$ and any $w \in \mathbb{A}_{r(s)}$, the IVP

$$\dot{w} = G(w, t), \quad w(s) = z,$$

has a unique solution defined in $[s, +\infty)$ such that the formula $\varphi_{s,t}(z) := w(t)$ is an evolution family over $(\mathbb{A}_{r(t)})$.

PDE and Lowner chains

Corollary

Let (f_t) be a Loewner chain over $(\mathbb{A}_{r(t)})$. Then:

(i) There exists a null-set $N \subset [0, +\infty)$ (not depending on *z*) such that for every $s \in [0, +\infty) \setminus N$ the function

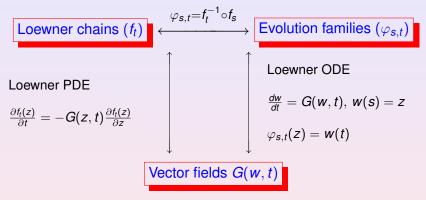
$$z \in \mathbb{A}_{r(s)} \mapsto \frac{\partial f_{s}(z)}{\partial s} := \lim_{h \to 0} \frac{f_{s+h}(z) - f_{s}(z)}{h} \in \mathbb{C}$$

is a well-defined holomorphic function on $\mathbb{A}_{r(s)}$.

(ii) There exists an essentially unique weak holomorphic vector field G(w, t) = w[iC(t) + r'(t)p(w, t)/r(t)] over $(\mathbb{A}_{r(t)})$ such that for a.e. $s \in [0, +\infty)$,

$$rac{\partial f_{s}(z)}{\partial s} = -G(z,s)f_{s}'(z) \quad \text{ for all } z \in \mathbb{A}_{r(s)}.$$

Scheme



where G(w, t) = w[iC(t) + r'(t)p(w, t)/r(t)].

- M. D. C., S. Díaz-Madrigal, and P. Gumenyuk, *Loewner Theory in annulus I: evolution families and differential equations.* Preprint 2010. Available on arXiv:1011.4253

- M. D. C., S. Díaz-Madrigal, and P. Gumenyuk, *Loewner Theory in annulus II: Loewner chains.* Preprint 2011. Available on arXiv:1105.3187