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Hypercyclic

Definition
A (linear and continuous) operator T in a topological vector space X is
said to be hypercyclic if there exists a vector x ∈ X, also called
hypercyclic, whose orbit {T nx : n ∈ N} is dense in X.

Examples:

Ta Birkhoff (1929)

D MacLane (1952/53)
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Frequently hypercyclic

Definition (Bayart and Grivaux, 2006)
Let X be a topological vector space and T : X → X a operator. Then a
vector x ∈ X is called frequently hypercyclic for T if, for every
non-empty open subset U of X,

dens{n ∈ N : T nx ∈ U}> 0.

The operator T is called frequently hypercyclic if it possesses a
frequently hypercyclic vector.

The lower density of a subset A of N is defined by

dens(A) = liminfN→∞

#{n ∈ A : n ≤ N}
N

,

where # denotes the cardinality of a set.
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Remark

A vector x ∈ X is frequently hypercyclic for an operator T in X if and
only if for every non-empty open subset U of X , there is a strictly
increasing sequence (nk ) of positive integers and some C > 0 such
that

nk ≤ Ck and T nk x ∈ U para todo k ∈ N.

Theorem (Bayart and Grivaux, 2006)
D is frequently hypercyclic.
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Differences between hypercyclic and frequently
hypercyclic vectors

Let T : X → X be, X a Frechet space

HC(T ) = { set of hypercyclic vectors }

FHC(T ) = { set of frequently hypercyclic vectors }

Then
HC(T ) = ∩k≥1∪n≥0 {x ∈ X ;T nx ∈ Bk}

where {Bk}k≥1 is a numerable basis of open sets.

Hence if T is hypercyclic, HC(T ) is a dense Gδ -set in X , thus it is
residual.

In the known examples of FHC operators, in particular, D and Ta
FHC(T ) is a dense set of first category.
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Order of growth and D-frequently hypercyclic function

Given a entire function f is defined for 1≤ p < ∞,

Mp(f , r) =
( 1

2π

∫ 2π

0
|f (reit)|pdt

)1/p
, r > 0.

Theorem (K.-G. Grosse-Erdmann, 1990)
Let 1≤ p ≤ ∞.
(a) For any function ϕ : R+→ R+ with ϕ(r)→ ∞ as r → ∞ there is a
D-hypercyclic entire function f with

Mp(f , r)≤ ϕ(r)
er
√

r
for r > 0 sufficiently large.

(b) There is no D-hypercyclic entire function f that satisfies

Mp(f , r)≤ C
er
√

r
for r > 0,

where C > 0.
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[Bayart and Grivaux, 2006] D is frequently hypercyclic.

[ B. and Grosse-Erdmann, 2006] ∀ε > 0 there exist entire
functions D-frequently hypercyclic with

|f (z)| ≤ Ce(1+ε)r for |z|= r .
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Does there exist an entire function D-frequently hypercyclic f with

M∞(f , r)≤ er

ra for |z|= r sufficiently large?

a≥ 1
2

: No

a < 0: Yes

0≤ a <
1
2

: ?

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 8

/ 31



Does there exist an entire function D-frequently hypercyclic f with

M∞(f , r)≤ er

ra for |z|= r sufficiently large?

a≥ 1
2

: No

a < 0: Yes

0≤ a <
1
2

: ?

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 8

/ 31



Does there exist an entire function D-frequently hypercyclic f with

M∞(f , r)≤ er

ra for |z|= r sufficiently large?

a≥ 1
2

: No

a < 0: Yes

0≤ a <
1
2

: ?

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 8

/ 31



Does there exist an entire function D-frequently hypercyclic f with

M∞(f , r)≤ er

ra for |z|= r sufficiently large?

a≥ 1
2

: No

a < 0: Yes

0≤ a <
1
2

: ?

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 8

/ 31



Does there exist an entire function D-frequently hypercyclic f with

Mp(f , r)≤ er

ra for |z|= r sufficiently large?

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 9

/ 31



Does there exist an entire function D-frequently hypercyclic f with

Mp(f , r)≤ er

ra for |z|= r sufficiently large?

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 9

/ 31



Theorem (Blasco-B-Grosse-Erdmann, PEMS 2009)
Let ψ : R+→ R+ be a function with ψ(r)→ 0 as r → ∞.
a)If 1≤ p ≤ 2, there is no D-frequently hypercyclic entire function f that
satisfies

Mp(f , r)≤ ψ(r)
er

r1/2p for r > 0 sufficiently large.

b)If 2 < p ≤∞, there is no D-frequently hypercyclic entire function f that
satisfies

Mp(f , r)≤ ψ(r)
er

r1/4 for r > 0 sufficiently large.
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Lemma
Let ψ : R+→ R+ be a function with ψ(r)→ 0 as r → ∞, 1 < p ≤ 2 and f
is an entire function that satisfies

Mp(f , r)≤ ψ(r)
er

r1/2p for r > 0 sufficiently large.

Then
1
m

m

∑
n=0
|f (n)(0)|q → 0.

where q is the conjugate exponent of p.
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Proof of theorem

For p=1, is consequence of Grosse-Erdmann’s theorem. (There is no
D-hypercyclic entire function f that satisfies

Mp(f , r)≤ C
er
√

r
for r > 0,

where C > 0.)

For 1 < p ≤ 2 is consequence of Lemma. Because given the open set

U = {g ∈ H(C) : |g(0)|> 1}

dens{n ∈ N : f (n) ∈ U}= liminfm→∞

1
m

#{n ≤m : |f (n)(0)|> 1}

≤ liminfm→∞

1
m

m

∑
n=0
|f (n)(0)|q = 0,

which shows that f is not frequently hypercyclic for the differentiation
operator.
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Proof of the lemma

a)Let p=2 be. Assume that ψ is decreasing.

Then

M2(f , r) =
( ∞

∑
n=0
|an|2r2n

)1/2
≤ ψ(r)

er

r1/4 for r > 0 sufficiently large.

Hence, for big values of r ,

∞

∑
n=0
|f (n)(0)|2 r2n+1/2e−2r

ψ(r)2(n!)2 ≤ C
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Fix m ≥ 1. Using Stirling formula, we see that the function

r 7→ r2n+1/2e−2r

(n!)2

has its maximum at n +1/4 of order 1/
√

n and an inflection point at

n +1/4±
√

n
2 + 1

8 . Hence, if m ≤ n < 2m then

∫ 3m

m

r2n+1/2e−2r

ψ(r)2(n!)2 ≥ C
1

ψ(m)2
1√
n

√
n
2

+
1
8
≥ C

1
ψ(m)2 .
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Integrating
∞

∑
n=0
|f (n)(0)|2 r2n+1/2e−2r

ψ(r)2(n!)2 ≤ C

on [m,3m] we obtain for m sufficiently large that

1
m

2m

∑
n=m
|f (n)(0)|2 ≤ Cψ(m)2,

hence
1
m

2m

∑
n=m
|f (n)(0)|2→ 0.

This implies
1
m

m

∑
n=0
|f (n)(0)|2→ 0.
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If 1≤ p < 2, using Hausdorff-Young inequality( ∞

∑
n=0
|an|qrqn

) 1
q ≤Mp

( ∞

∑
n=0

anzn, r
)

and the same ideas for p = 2.
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Theorem (Bonet-B., CAOT 2011)
For any function ϕ : R+→ R+ with ϕ(r)→ ∞ as r → ∞. If 1≤ p ≤ ∞,
there is an entire function D-frequently hypercyclic f with

Mp(f , r)≤ ϕ(r)
er

r1/2p for |z|= r sufficiently large.
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For 1≤ p ≤ ∞ and a weight function v ,

Bp,∞ = Bp,∞(C,v) := {f ∈ H(C) : sup
r>0

v(r)Mp(f , r) < ∞}

and

Bp,0 = Bp,0(C,v) := {f ∈ H(C) : limr→∞v(r)Mp(f , r) = 0}.

These spaces are Banach spaces with the norm

‖f‖p,v := sup
r>0

v(r)Mp(f , r).
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Remarks

1.The polynomials are contained and dense in Bp,0 for all 1≤ p ≤ ∞.

2.Bp,0 is separable.

3.The inclusion Bp,∞ ⊂ H(C) is continuous.
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Lemma

Let v be a weight function such that sup
r>0

v(r)
v(r +1)

< ∞. Then the

differentiation operators D : Bp,∞→ Bp,∞ and D : Bp,0→ Bp,0 are
continuous.

Example: v(r) = e−ar , r > 0,a > 0 .
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Theorem (Grivaux, 2011)
Let T be a bounded operator on a complex separable Banach space
X. Suppose that, for any countable set A⊂ T,
span{Ker(T −λ I) : λ ∈ T\A} is dense in X. Then T is frequently
hypercyclic.
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Lemma
The following conditions are equivalent for a weight v and 1≤ p < ∞:

(i) {eθz : |θ |= 1} ⊂ Bp,0.

(ii) There is θ ∈ C, |θ |= 1, such that eθz ∈ Bp,0.

(iii) limr→∞v(r)
er

r
1

2p
= 0
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Proof of the Lemma

Consider f (z) = ez ,z ∈ C, and write z = r(cost + isint). Now, we can
apply the Laplace methods for integrals, for r > 0,

2πMp(ez , r)p =
∫ 2π

0
erp cos tdt =

(
π

2rp

)1/2
erp +erpO

( 1
rp

)
.

This yields, for a certain constant cp > 0 depending only on p,

Mp(f , r) = cp
er

r
1

2p
+er O

( 1

r
1
p

)
.

This implies that for each 1≤ p < ∞ there are dp,Dp > 0 and r0 > 0
such that for each |θ |= 1 and each r > r0
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Theorem

Let v be a weight function such that limr→∞v(r)
er

r
1

2p
= 0 for some

1≤ p ≤ ∞. If the differentiation operator D : Bp,0→ Bp,0 is continuous,
then D is frequently hypercyclic.
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Idea of the proof

We must to prove for any countable set A⊂ T,
ET\A = span({eθz : |θ |= 1,θ ∈ T\A}) is contained and dense in Bp,0.

To prove the density, we define the following vector valued functions on
the closed unit disc D:

H : D→ Bp,0, H(ζ )(z) := eζz , ζ ∈ D.

The function H is well defined, H is holomorphic on D and H : D→ Bp,0
is continuous.
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We proceed with the proof that ET\A is dense in Bp,0 and apply the
Hahn-Banach theorem.

Assume that u ∈ (Bp,0)
′ vanishes on ET\A. We must show u = 0.

Since the function u ◦H is holomorphic in D, continuous at the
boundary and vanishes at the points ζ ∈ T\A, it is zero in D. In
particular (u ◦H)(n)(0) = u(H(n)(0)) = u(zn) = 0, hence u vanishes on
the polynomials. As the polynomials are dense in Bp,0, we conclude
u = 0.
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Corollary
Let ϕ(r) be a positive function with limr→∞ϕ(r) = ∞. For each 1≤ p ≤ ∞

there is an entire function f such that

Mp(f , r)≤ ϕ(r)
er

r
1

2p

that is frequently hypercyclic for the differentiation operator D on H(C).
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Proof

It is possible to find a positive increasing continuous function

ψ(r)≤ ϕ(r) with limr→∞ψ(r) = ∞ and sup
r>0

ψ(r +1)

ψ(r)
< ∞.

Define v(r) =
r

1
2p

ψ(r)er for r ≥ r0, with r0 large enough to ensure that

v(r) is non increasing on [r0,∞[, and v(r) = v(r0) on [0, r0]. One can
take r0 = 1

2p .

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 29

/ 31



Proof

It is possible to find a positive increasing continuous function

ψ(r)≤ ϕ(r) with limr→∞ψ(r) = ∞ and sup
r>0

ψ(r +1)

ψ(r)
< ∞.

Define v(r) =
r

1
2p

ψ(r)er for r ≥ r0, with r0 large enough to ensure that

v(r) is non increasing on [r0,∞[, and v(r) = v(r0) on [0, r0]. One can
take r0 = 1

2p .

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 29

/ 31



The following diagram represents our knowledge of possible or
impossible growth rates er/ra for frequent hypercyclicity with respect to
the differentiation operator D two weeks ago.
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Theorem (Drasin-Saksman, in a couple weeks in ArXiv)
For any C > 0 there is an entire function D-frequently hypercyclic f with

Mp(f , r)≤ C
er

ra(p)

where a(p) = 1
4 for p ∈ [2,∞] and a(p) = 1

2p for p ∈ (1,2]

The construction is direct with no functional analysis, but uses
remarkable polynomials of Rudin-Shapiro and de la Vallee
Poussin.(Conference in honour of P. Gauthier and K. Gowrisankaran,
june 20-23, 2011)

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 31

/ 31



Theorem (Drasin-Saksman, in a couple weeks in ArXiv)
For any C > 0 there is an entire function D-frequently hypercyclic f with

Mp(f , r)≤ C
er

ra(p)

where a(p) = 1
4 for p ∈ [2,∞] and a(p) = 1

2p for p ∈ (1,2]

The construction is direct with no functional analysis, but uses
remarkable polynomials of Rudin-Shapiro and de la Vallee
Poussin.(Conference in honour of P. Gauthier and K. Gowrisankaran,
june 20-23, 2011)

A. Bonilla () Rate of growth of D-frequently hypercyclic functions
Departamento de Análisis Matemático Universidad de La Laguna 31

/ 31


