Rate of growth of D-frequently hypercyclic functions

A. Bonilla

Departamento de Análisis Matemático Universidad de La Laguna

Hypercyclic,

Definition

A (linear and continuous) operator T in a topological vector space X is said to be hypercyclic if there exists a vector $x \in X$, also called hypercyclic, whose orbit $\{T^nx : n \in \mathbb{N}\}$ is dense in X.

Hypercyclic

Definition

A (linear and continuous) operator T in a topological vector space X is said to be hypercyclic if there exists a vector $x \in X$, also called hypercyclic, whose orbit $\{T^nx : n \in \mathbb{N}\}$ is dense in X.

Examples:

 T_a Birkhoff (1929)

D MacLane (1952/53)

Frequently hypercyclic

Definition (Bayart and Grivaux, 2006)

Let X be a topological vector space and $T: X \to X$ a operator. Then a vector $x \in X$ is called frequently hypercyclic for T if, for every non-empty open subset U of X,

$$\underline{\textit{dens}}\{\textit{n}\in\mathbb{N}:\textit{T}^{\textit{n}}\textit{x}\in\textit{U}\}>0.$$

The operator T is called frequently hypercyclic if it possesses a frequently hypercyclic vector.

Frequently hypercyclic

Definition (Bayart and Grivaux, 2006)

Let X be a topological vector space and $T: X \to X$ a operator. Then a vector $x \in X$ is called frequently hypercyclic for T if, for every non-empty open subset U of X,

$$\underline{dens}\{n\in\mathbb{N}:T^nx\in U\}>0.$$

The operator T is called frequently hypercyclic if it possesses a frequently hypercyclic vector.

The lower density of a subset A of \mathbb{N} is defined by

$$\underline{\mathsf{dens}}(A) = \mathit{liminf}_{N \to \infty} \frac{\#\{n \in A : n \le N\}}{N},$$

where # denotes the cardinality of a set.

Remark

A vector $x \in X$ is frequently hypercyclic for an operator T in X if and only if for every non-empty open subset U of X, there is a strictly increasing sequence (n_k) of positive integers and some C > 0 such that

 $n_k \leq Ck$ and $T^{n_k}x \in U$ para todo $k \in \mathbb{N}$.

Remark

A vector $x \in X$ is frequently hypercyclic for an operator T in X if and only if for every non-empty open subset U of X, there is a strictly increasing sequence (n_k) of positive integers and some C > 0 such that

 $n_k \leq Ck$ and $T^{n_k}x \in U$ para todo $k \in \mathbb{N}$.

Theorem (Bayart and Grivaux, 2006)

D is frequently hypercyclic.

```
Let T: X \to X be, X a Frechet space HC(T) = \{ \text{ set of hypercyclic vectors } \} FHC(T) = \{ \text{ set of frequently hypercyclic vectors } \}
```

Let $T: X \to X$ be, X a Frechet space

$$HC(T) = \{ \text{ set of hypercyclic vectors } \}$$

 $FHC(T) = \{ \text{ set of frequently hypercyclic vectors } \}$

Then

$$HC(T) = \cap_{k \geq 1} \cup_{n \geq 0} \{x \in X; T^n x \in B_k\}$$

where $\{B_k\}_{k\geq 1}$ is a numerable basis of open sets.

Let $T: X \rightarrow X$ be, X a Frechet space

$$HC(T) = \{ \text{ set of hypercyclic vectors } \}$$
 $FHC(T) = \{ \text{ set of frequently hypercyclic vectors } \}$

Then

$$HC(T) = \bigcap_{k \geq 1} \bigcup_{n \geq 0} \{x \in X; T^n x \in B_k\}$$

where $\{B_k\}_{k\geq 1}$ is a numerable basis of open sets.

Hence if T is hypercyclic, HC(T) is a dense G_{δ} -set in X, thus it is residual.

Let $T: X \rightarrow X$ be, X a Frechet space

$$HC(T) = \{ \text{ set of hypercyclic vectors } \}$$

 $FHC(T) = \{ \text{ set of frequently hypercyclic vectors } \}$

Then

$$HC(T) = \bigcap_{k \geq 1} \bigcup_{n \geq 0} \{x \in X; T^n x \in B_k\}$$

where $\{B_k\}_{k\geq 1}$ is a numerable basis of open sets.

Hence if T is hypercyclic, HC(T) is a dense G_{δ} -set in X, thus it is residual.

In the known examples of FHC operators, in particular, D and T_a FHC(T) is a dense set of first category.

Order of growth and *D*-frequently hypercyclic function

Given a entire function f is defined for $1 \le p < \infty$,

$$M_{p}(f,r) = \left(\frac{1}{2\pi}\int_{0}^{2\pi}|f(re^{it})|^{p}dt\right)^{1/p}, r>0.$$

Order of growth and *D*-frequently hypercyclic function

Given a entire function f is defined for $1 \le p < \infty$,

$$M_{p}(f,r) = \left(\frac{1}{2\pi}\int_{0}^{2\pi}|f(re^{it})|^{p}dt\right)^{1/p}, r>0.$$

Theorem (K.-G. Grosse-Erdmann, 1990)

Let $1 \le p \le \infty$.

(a) For any function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(r) \to \infty$ as $r \to \infty$ there is a D-hypercyclic entire function f with

$$M_p(f,r) \le \varphi(r) \frac{e^r}{\sqrt{r}}$$
 for $r > 0$ sufficiently large.

(b) There is no D-hypercyclic entire function f that satisfies

$$M_p(f,r) \leq C \frac{e^r}{\sqrt{r}}$$
 for $r > 0$,

where C > 0.

• [Bayart and Grivaux, 2006] D is frequently hypercyclic.

- [Bayart and Grivaux, 2006] D is frequently hypercyclic.
- [B. and Grosse-Erdmann, 2006] $\forall \varepsilon > 0$ there exist entire functions D-frequently hypercyclic with

$$|f(z)| \leq Ce^{(1+\varepsilon)r}$$
 for $|z| = r$.

$$M_{\infty}(f,r) \leq \frac{e^r}{r^a}$$
 for $|z| = r$ sufficiently large?

$$M_{\infty}(f,r) \leq \frac{e^r}{r^a}$$
 for $|z| = r$ sufficiently large?

•
$$a \ge \frac{1}{2}$$
: No

$$M_{\infty}(f,r) \leq \frac{e^r}{r^a}$$
 for $|z| = r$ sufficiently large?

- $a \ge \frac{1}{2}$: No
- *a* < 0: Yes

$$M_{\infty}(f,r) \leq \frac{e^r}{r^a}$$
 for $|z| = r$ sufficiently large?

- $a \ge \frac{1}{2}$: No
- *a* < 0: Yes
- $0 \le a < \frac{1}{2}$: ?

$$M_p(f,r) \le \frac{e^r}{r^a}$$
 for $|z| = r$ sufficiently large?

$$M_p(f,r) \le \frac{e^r}{r^a}$$
 for $|z| = r$ sufficiently large?

Theorem (Blasco-B-Grosse-Erdmann, PEMS 2009)

Let $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ be a function with $\psi(r) \to 0$ as $r \to \infty$.

a)If $1 \le p \le 2$, there is no D-frequently hypercyclic entire function f that satisfies

$$M_p(f,r) \le \psi(r) \frac{e^r}{r^{1/2p}}$$
 for $r > 0$ sufficiently large.

b)If 2 , there is no D-frequently hypercyclic entire function f that satisfies

$$M_p(f,r) \le \psi(r) \frac{e^r}{r^{1/4}}$$
 for $r > 0$ sufficiently large.

Lemma

Let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be a function with $\psi(r) \to 0$ as $r \to \infty$, 1 and <math>f is an entire function that satisfies

$$M_p(f,r) \le \psi(r) \frac{e^r}{r^{1/2p}}$$
 for $r > 0$ sufficiently large.

Then

$$\frac{1}{m}\sum_{n=0}^{m}|f^{(n)}(0)|^{q}\to 0.$$

where q is the conjugate exponent of p.

For p=1, is consequence of Grosse-Erdmann's theorem. (There is no D-hypercyclic entire function f that satisfies

$$M_p(f,r) \leq C \frac{e^r}{\sqrt{r}}$$
 for $r > 0$,

where C > 0.)

For p=1, is consequence of Grosse-Erdmann's theorem. (There is no D-hypercyclic entire function f that satisfies

$$M_p(f,r) \leq C \frac{e^r}{\sqrt{r}}$$
 for $r > 0$,

where C > 0.)

For 1 is consequence of Lemma. Because given the open set

$$U = \{g \in H(\mathbb{C}) : |g(0)| > 1\}$$

For p=1, is consequence of Grosse-Erdmann's theorem. (There is no D-hypercyclic entire function f that satisfies

$$M_p(f,r) \leq C \frac{e^r}{\sqrt{r}}$$
 for $r > 0$,

where C > 0.)

For 1 is consequence of Lemma. Because given the open set

$$U = \{g \in H(\mathbb{C}) : |g(0)| > 1\}$$

$$\frac{\text{dens}\{n \in \mathbb{N} : f^{(n)} \in U\} = \lim_{m \to \infty} \frac{1}{m} \#\{n \le m : |f^{(n)}(0)| > 1\}$$

$$\le \lim_{m \to \infty} \frac{1}{m} \sum_{n=0}^{m} |f^{(n)}(0)|^{q} = 0,$$

For p=1, is consequence of Grosse-Erdmann's theorem. (There is no D-hypercyclic entire function f that satisfies

$$M_p(f,r) \le C \frac{e^r}{\sqrt{r}}$$
 for $r > 0$,

where C > 0.)

For 1 is consequence of Lemma. Because given the open set

$$U = \{g \in H(\mathbb{C}) : |g(0)| > 1\}$$

$$\frac{\text{dens}\{n \in \mathbb{N} : f^{(n)} \in U\} = \lim_{m \to \infty} \frac{1}{m} \#\{n \le m : |f^{(n)}(0)| > 1\}}{\leq \lim_{m \to \infty} \frac{1}{m} \sum_{n=0}^{m} |f^{(n)}(0)|^{q} = 0,}$$

which shows that f is not frequently hypercyclic for the differentiation $_{\sim \sim}$

Proof of the lemma

a)Let p=2 be. Assume that ψ is decreasing.

Proof of the lemma

a)Let p=2 be. Assume that ψ is decreasing. Then

$$M_2(f,r)=\Big(\sum_{n=0}^{\infty}|a_n|^2r^{2n}\Big)^{1/2}\leq \psi(r)rac{e^r}{r^{1/4}}\quad ext{for } r>0 ext{ sufficiently large}.$$

Proof of the lemma

a)Let p=2 be. Assume that ψ is decreasing. Then

$$M_2(f,r) = \left(\sum_{n=0}^{\infty} |a_n|^2 r^{2n}\right)^{1/2} \le \psi(r) \frac{e^r}{r^{1/4}}$$
 for $r > 0$ sufficiently large.

Hence, for big values of r,

$$\sum_{n=0}^{\infty} |f^{(n)}(0)|^2 \frac{r^{2n+1/2}e^{-2r}}{\psi(r)^2(n!)^2} \leq C$$

Fix $m \ge 1$. Using Stirling formula, we see that the function

$$r\mapsto \frac{r^{2n+1/2}e^{-2r}}{(n!)^2}$$

has its maximum at n+1/4 of order $1/\sqrt{n}$ and an inflection point at $n+1/4\pm\sqrt{\frac{n}{2}+\frac{1}{8}}$. Hence, if $m\leq n<2m$ then

Fix $m \ge 1$. Using Stirling formula, we see that the function

$$r\mapsto \frac{r^{2n+1/2}e^{-2r}}{(n!)^2}$$

has its maximum at n+1/4 of order $1/\sqrt{n}$ and an inflection point at $n+1/4\pm\sqrt{\frac{n}{2}+\frac{1}{8}}$. Hence, if $m\leq n<2m$ then

Fix $m \ge 1$. Using Stirling formula, we see that the function

$$r\mapsto \frac{r^{2n+1/2}e^{-2r}}{(n!)^2}$$

has its maximum at n+1/4 of order $1/\sqrt{n}$ and an inflection point at $n+1/4\pm\sqrt{\frac{n}{2}+\frac{1}{8}}$. Hence, if $m\leq n<2m$ then

$$\int_{m}^{3m} \frac{r^{2n+1/2}e^{-2r}}{\psi(r)^2(n!)^2} \geq C \frac{1}{\psi(m)^2} \frac{1}{\sqrt{n}} \sqrt{\frac{n}{2} + \frac{1}{8}} \geq C \frac{1}{\psi(m)^2}.$$

Integrating

$$\sum_{n=0}^{\infty} |f^{(n)}(0)|^2 \frac{r^{2n+1/2}e^{-2r}}{\psi(r)^2(n!)^2} \leq C$$

on [m,3m] we obtain for m sufficiently large that

$$\frac{1}{m}\sum_{n=m}^{2m}|f^{(n)}(0)|^2\leq C\psi(m)^2,$$

Integrating

$$\sum_{n=0}^{\infty} |f^{(n)}(0)|^2 \frac{r^{2n+1/2}e^{-2r}}{\psi(r)^2(n!)^2} \leq C$$

on [m,3m] we obtain for m sufficiently large that

$$\frac{1}{m}\sum_{n=m}^{2m}|f^{(n)}(0)|^2\leq C\psi(m)^2,$$

hence

$$\frac{1}{m}\sum_{n=m}^{2m}|f^{(n)}(0)|^2\to 0.$$

Integrating

$$\sum_{n=0}^{\infty} |f^{(n)}(0)|^2 \frac{r^{2n+1/2}e^{-2r}}{\psi(r)^2(n!)^2} \leq C$$

on [m,3m] we obtain for m sufficiently large that

$$\frac{1}{m}\sum_{n=m}^{2m}|f^{(n)}(0)|^2\leq C\psi(m)^2,$$

hence

$$\frac{1}{m}\sum_{n=m}^{2m}|f^{(n)}(0)|^2\to 0.$$

This implies

$$\frac{1}{m}\sum_{n=0}^{m}|f^{(n)}(0)|^2\to 0.$$

If $1 \le p < 2$, using Hausdorff-Young inequality

$$\left(\sum_{n=0}^{\infty}|a_n|^qr^{qn}\right)^{\frac{1}{q}}\leq M_p\left(\sum_{n=0}^{\infty}a_nz^n,r\right)$$

and the same ideas for p = 2.

Theorem (Bonet-B., CAOT 2011)

For any function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(r) \to \infty$ as $r \to \infty$. If $1 \le p \le \infty$, there is an entire function D-frequently hypercyclic f with

$$M_p(f,r) \le \varphi(r) \frac{e^r}{r^{1/2p}}$$
 for $|z| = r$ sufficiently large.

For $1 \le p \le \infty$ and a weight function v,

$$B_{p,\infty} = B_{p,\infty}(\mathbb{C}, v) := \{ f \in H(\mathbb{C}) : \sup_{r>0} v(r) M_p(f, r) < \infty \}$$

and

$$B_{p,0} = B_{p,0}(\mathbb{C}, v) := \{ f \in H(\mathbb{C}) : \lim_{r \to \infty} v(r) M_p(f, r) = 0 \}.$$

These spaces are Banach spaces with the norm

$$||f||_{p,v} := \sup_{r>0} v(r)M_p(f,r).$$

Remarks

1. The polynomials are contained and dense in $B_{p,0}$ for all $1 \le p \le \infty$.

Remarks

- 1. The polynomials are contained and dense in $B_{p,0}$ for all $1 \le p \le \infty$.
- $2.B_{p,0}$ is separable.

Remarks

- 1. The polynomials are contained and dense in $B_{p,0}$ for all $1 \le p \le \infty$.
- $2.B_{p,0}$ is separable.
- 3.The inclusion $B_{p,\infty} \subset H(\mathbb{C})$ is continuous.

Lemma

Let v be a weight function such that $\sup_{r>0} \frac{v(r)}{v(r+1)} < \infty$. Then the differentiation operators $D: B_{p,\infty} \to B_{p,\infty}$ and $D: B_{p,0} \to B_{p,0}$ are continuous.

Example: $v(r) = e^{-ar}, r > 0, a > 0$.

Theorem (Grivaux, 2011)

Let T be a bounded operator on a complex separable Banach space X. Suppose that, for any countable set $A \subset \mathbb{T}$, span $\{Ker(T - \lambda I) : \lambda \in \mathbb{T} \setminus A\}$ is dense in X. Then T is frequently hypercyclic.

Lemma

The following conditions are equivalent for a weight v and $1 \le p < \infty$:

- (i) $\{e^{\theta z}: |\theta|=1\} \subset B_{p,0}$.
- (ii) There is $\theta \in \mathbb{C}, |\theta| = 1$, such that $e^{\theta z} \in B_{p,0}$.

(iii)
$$\lim_{r\to\infty} v(r) \frac{e^r}{r^{\frac{1}{2p}}} = 0$$

Proof of the Lemma

Consider $f(z) = e^z$, $z \in \mathbb{C}$, and write z = r(cost + isint). Now, we can apply the Laplace methods for integrals, for r > 0,

$$2\pi M_p(e^z,r)^p = \int_0^{2\pi} e^{rp\cos t} dt = \left(\frac{\pi}{2rp}\right)^{1/2} e^{rp} + e^{rp} O\left(\frac{1}{rp}\right).$$

Proof of the Lemma

Consider $f(z) = e^z, z \in \mathbb{C}$, and write z = r(cost + isint). Now, we can apply the Laplace methods for integrals, for r > 0,

$$2\pi M_p(e^z,r)^p=\int_0^{2\pi}e^{rp\cos t}dt=\Big(rac{\pi}{2rp}\Big)^{1/2}e^{rp}+e^{rp}O\Big(rac{1}{rp}\Big).$$

This yields, for a certain constant $c_p > 0$ depending only on p,

$$M_p(f,r) = c_p \frac{e^r}{r^{\frac{1}{2p}}} + e^r O\left(\frac{1}{r^{\frac{1}{p}}}\right).$$

Proof of the Lemma

Consider $f(z) = e^z, z \in \mathbb{C}$, and write z = r(cost + isint). Now, we can apply the Laplace methods for integrals, for r > 0,

$$2\pi M_p(e^z,r)^p=\int_0^{2\pi}e^{rp\cos t}dt=\Big(rac{\pi}{2rp}\Big)^{1/2}e^{rp}+e^{rp}O\Big(rac{1}{rp}\Big).$$

This yields, for a certain constant $c_p > 0$ depending only on p,

$$M_p(f,r) = c_p \frac{e^r}{r^{\frac{1}{2p}}} + e^r O\Big(\frac{1}{r^{\frac{1}{p}}}\Big).$$

This implies that for each $1 \le p < \infty$ there are $d_p, D_p > 0$ and $r_0 > 0$ such that for each $|\theta| = 1$ and each $r > r_0$

$$d_{p}\frac{e^{r}}{r^{\frac{1}{2p}}} \leq M_{p}(e^{\theta z}, r) \leq D_{p}\frac{e^{r}}{r^{\frac{1}{2p}}}$$
 (1)

Theorem

Let v be a weight function such that $\lim_{r\to\infty}v(r)\frac{e^r}{r^{\frac{1}{2p}}}=0$ for some $1\leq p\leq\infty$. If the differentiation operator $D:B_{p,0}\to B_{p,0}$ is continuous, then D is frequently hypercyclic.

Idea of the proof

We must to prove for any countable set $A \subset \mathbb{T}$,

 $E_{\mathbb{T}\setminus A} = \operatorname{span}(\{e^{\theta z} : |\theta| = 1, \theta \in \mathbb{T}\setminus A\})$ is contained and dense in $B_{p,0}$.

Idea of the proof

We must to prove for any countable set $A \subset \mathbb{T}$,

$$E_{\mathbb{T}\setminus A} = \operatorname{span}(\{e^{\theta z} : |\theta| = 1, \theta \in \mathbb{T}\setminus A\})$$
 is contained and dense in $B_{p,0}$.

To prove the density, we define the following vector valued functions on the closed unit disc $\overline{\mathbb{D}}$:

$$H:\overline{\mathbb{D}}\to B_{p,0},\ H(\zeta)(z):=e^{\zeta z},\ \zeta\in\overline{\mathbb{D}}.$$

The function H is well defined, H is holomorphic on \mathbb{D} and $H:\overline{\mathbb{D}}\to B_{p,0}$ is continuous.

We proceed with the proof that $E_{\mathbb{T}\setminus A}$ is dense in $B_{\rho,0}$ and apply the Hahn-Banach theorem.

We proceed with the proof that $E_{\mathbb{T}\setminus A}$ is dense in $B_{p,0}$ and apply the Hahn-Banach theorem.

Assume that $u \in (B_{p,0})'$ vanishes on $E_{\mathbb{T} \setminus A}$. We must show u = 0.

We proceed with the proof that $E_{\mathbb{T}\setminus A}$ is dense in $B_{p,0}$ and apply the Hahn-Banach theorem.

Assume that $u \in (B_{p,0})'$ vanishes on $E_{\mathbb{T} \setminus A}$. We must show u = 0.

Since the function $u \circ H$ is holomorphic in \mathbb{D} , continuous at the boundary and vanishes at the points $\zeta \in \mathbb{T} \setminus A$, it is zero in \mathbb{D} . In particular $(u \circ H)^{(n)}(0) = u(H^{(n)}(0)) = u(z^n) = 0$, hence u vanishes on the polynomials. As the polynomials are dense in $B_{p,0}$, we conclude u = 0.

Corollary

Let $\varphi(r)$ be a positive function with $\lim_{r\to\infty} \varphi(r) = \infty$. For each $1 \le p \le \infty$ there is an entire function f such that

$$M_p(f,r) \leq \varphi(r) \frac{e^r}{r^{\frac{1}{2p}}}$$

that is frequently hypercyclic for the differentiation operator D on $H(\mathbb{C})$.

Proof

It is possible to find a positive increasing continuous function $\psi(r) \leq \varphi(r)$ with $\lim_{r \to \infty} \psi(r) = \infty$ and $\sup_{r > 0} \frac{\psi(r+1)}{\psi(r)} < \infty$.

Proof

It is possible to find a positive increasing continuous function $\psi(r) \leq \varphi(r)$ with $\lim_{r \to \infty} \psi(r) = \infty$ and $\sup_{r > 0} \frac{\psi(r+1)}{\psi(r)} < \infty$.

Define $v(r)=\frac{r^{\frac{1}{2p}}}{\psi(r)e^r}$ for $r\geq r_0$, with r_0 large enough to ensure that v(r) is non increasing on $[r_0,\infty[$, and $v(r)=v(r_0)$ on $[0,r_0]$. One can take $r_0=\frac{1}{2p}$.

The following diagram represents our knowledge of possible or impossible growth rates e^r/r^a for frequent hypercyclicity with respect to the differentiation operator D two weeks ago.

The following diagram represents our knowledge of possible or impossible growth rates e^r/r^a for frequent hypercyclicity with respect to the differentiation operator D two weeks ago.

Theorem (Drasin-Saksman, in a couple weeks in ArXiv)

For any C>0 there is an entire function D-frequently hypercyclic f with

$$M_p(f,r) \leq C \frac{e^r}{r^{a(p)}}$$

where
$$a(p) = \frac{1}{4}$$
 for $p \in [2, \infty]$ and $a(p) = \frac{1}{2p}$ for $p \in (1, 2]$

Theorem (Drasin-Saksman, in a couple weeks in ArXiv)

For any C>0 there is an entire function D-frequently hypercyclic f with

$$M_p(f,r) \leq C \frac{e^r}{r^{a(p)}}$$

where $a(p) = \frac{1}{4}$ for $p \in [2, \infty]$ and $a(p) = \frac{1}{2p}$ for $p \in (1, 2]$

The construction is direct with no functional analysis, but uses remarkable polynomials of Rudin-Shapiro and de la Vallee Poussin.(Conference in honour of P. Gauthier and K. Gowrisankaran, june 20-23, 2011)