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Hypercyclic

Definition

A (linear and continuous) operator T in a topological vector space X is
said to be hypercyclic if there exists a vector x € X, also called
hypercyclic, whose orbit {T"x : n € N} is dense in X.
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Hypercyclic

Definition

A (linear and continuous) operator T in a topological vector space X is
said to be hypercyclic if there exists a vector x € X, also called
hypercyclic, whose orbit {T"x : n € N} is dense in X.

Examples:
Ta Birkhoff (1929)
D MacLane (1952/53)
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Frequently hypercyclic

Definition (Bayart and Grivaux, 2006)

Let X be a topological vector space and T : X — X a operator. Then a
vector x € X is called frequently hypercyclic for T if, for every
non-empty open subset U of X,

dens{neN: T"'xe U} >0.

The operator T is called frequently hypercyclic if it possesses a
frequently hypercyclic vector.
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Frequently hypercyclic

Definition (Bayart and Grivaux, 2006)

Let X be a topological vector space and T : X — X a operator. Then a
vector x € X is called frequently hypercyclic for T if, for every
non-empty open subset U of X,

dens{neN: T"'xe U} >0.

The operator T is called frequently hypercyclic if it possesses a
frequently hypercyclic vector.

The lower density of a subset A of N is defined by

#{neA:n< N}
N )

dens (A) = liminfy_..

where # denotes the cardinality of a set.
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A vector x € X is frequently hypercyclic for an operator T in X if and
only if for every non-empty open subset U of X, there is a strictly
increasing sequence (n) of positive integers and some C > 0 such
that

ng<Ck and T"™xc U paratodo k € N.
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A vector x € X is frequently hypercyclic for an operator T in X if and
only if for every non-empty open subset U of X, there is a strictly
increasing sequence (n) of positive integers and some C > 0 such
that

ng<Ck and T"™xc U paratodo k € N.

Theorem (Bayart and Grivaux, 2006)

D is frequently hypercyclic.
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Differences between hypercyclic and frequently

hypercyclic vectors
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Differences between hypercyclic and frequently

hypercyclic vectors

Let T: X — X be, X a Frechet space

HC(T) = { set of hypercyclic vectors }
FHC(T) = { set of frequently hypercyclic vectors }
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Differences between hypercyclic and frequently

hypercyclic vectors

Let T: X — X be, X a Frechet space

HC(T) = { set of hypercyclic vectors }
FHC(T) = { set of frequently hypercyclic vectors }

Then
HC(T) =Nk>1Upso {x € X; T"x € By}

where {Bk}«>1 is @ numerable basis of open sets.
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Differences between hypercyclic and frequently

hypercyclic vectors

Let T: X — X be, X a Frechet space

HC(T) = { set of hypercyclic vectors }

FHC(T) = { set of frequently hypercyclic vectors }

Then
HC(T) =Nk>1Upso {x € X; T"x € By}

where {Bk}«>1 is @ numerable basis of open sets.

Hence if T is hypercyclic, HC(T) is a dense Gs-set in X, thusitis
residual.

A. Bonilla () Rate of growth of D-frequently hypercyclic fun‘ i




Differences between hypercyclic and frequently

hypercyclic vectors
Let T: X — X be, X a Frechet space

HC(T) = { set of hypercyclic vectors }
FHC(T) = { set of frequently hypercyclic vectors }
Then
HC(T) =Nk>1Upso {x € X; T"x € Bx}
where {Bk}«>1 is @ numerable basis of open sets.

Hence if T is hypercyclic, HC(T) is a dense Gs-set in X, thusitis
residual.

In the known examples of FHC operators, in particular, D and T,
FHC(T) is a dense set of first category.
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Order of growth and D-frequently hypercyclic function

Given a entire function f is defined for 1 < p < oo,

21 ) 1/
Mp(f,r) = (;ﬂ/o #(re"yPat) " r > 0.
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Order of growth and D-frequently hypercyclic function

Given a entire function f is defined for 1 < p < oo,

2n )
My(f,r) = (;ﬂ/o |f(re”)]pdt)1/p,r>0.
Theorem (K.-G. Grosse-Erdmann, 1990)

Let1 < p<oo.

(a) For any function ¢ : R, — R with ¢(r) — e as r — oo there is a
D-hypercyclic entire function f with

r

My(f,r) < o(r)=

NG for r > 0 sufficiently large.
(b) There is no D-hypercyclic entire function f that satisfies

Mp(f,r) < C

er
— forr>0,
r

7
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@ [Bayart and Grivaux, 2006] D is frequently hypercyclic.
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@ [Bayart and Grivaux, 2006] D is frequently hypercyclic.

@ [ B. and Grosse-Erdmann, 2006] Ve > 0 there exist entire
functions D-frequently hypercyclic with

f(2)| < Ce(' &) for |z| = r.
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Does there exist an entire function D-frequently hypercyclic f with

e’ L
M.(f,r) < 7 for |z| = r sufficiently large?
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Does there exist an entire function D-frequently hypercyclic f with

e’ L
M.(f,r) < 7 for |z| = r sufficiently large?

N =
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Does there exist an entire function D-frequently hypercyclic f with

e’ L
M.(f,r) < 7 for |z| = r sufficiently large?

@ a> —:No

@ a<0:Yes
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Does there exist an entire function D-frequently hypercyclic f with

e’ L
M.(f,r) < 7 for |z| = r sufficiently large?

@ a> —:No
@ a<0:Yes

1
< -7
oO_a<2
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Does there exist an entire function D-frequently hypercyclic f with

r
Mp(f,r) < % for |z| = r sufficiently large?

A. Bonilla () Rate of growth of D-frequently hypercyclic fun‘




Does there exist an entire function D-frequently hypercyclic f with

r

Mp(f,r) < 7 for |z| = r sufficiently large?
d
112
) No
14
7
Yes ' . 1
0 : 2D
1 2 p
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Theorem (Blasco-B-Grosse-Erdmann, PEMS 2009)

Lety: R,y — R, be a function with w(r) — 0 as r — oo.
a)lf1 < p <2, there is no D-frequently hypercyclic entire function f that
satisfies

r

Mo(f,1) < W(r) =755

for r > 0 sufficiently large.

b)lf2 < p < o, there is no D-frequently hypercyclic entire function f that
satisfies

r

Mp(f,r) < y/(r)% for r > 0 sufficiently large.
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Lemma

Lety:R,; — R, be a function with y(r) —0asr—e,1<p<2andf
is an entire function that satisfies

f

Mo(F.r) < Y(r)

for r > 0 sufficiently large.

Then
— Z 1£(M(0)]9 — 0.

where q is the conjugate exponent of p.
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Proof of theorem

For p=1, is consequence of Grosse-Erdmann’s theorem. (There is no
D-hypercyclic entire function f that satisfies

r
Mp(f,r) < C\; forr >0,

where C > 0.)
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Proof of theorem

For p=1, is consequence of Grosse-Erdmann’s theorem. (There is no
D-hypercyclic entire function f that satisfies

r
Mp(f,r) < C\; forr >0,

where C > 0.)
For 1 < p <2 is consequence of Lemma. Because given the open set

U={geH(C):[g(0) >1}
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Proof of theorem

For p=1, is consequence of Grosse-Erdmann’s theorem. (There is no

D-hypercyclic entire function f that satisfies
r

e
My(f,r) < C— forr>0,
P( ) = \ﬁ
where C > 0.)
For 1 < p <2 is consequence of Lemma. Because given the open set

U={geH(C):[g(0) >1}

dens{ne N : f7 ¢ Uy = Iiminfmﬁm:—n#{n < m: [fM(0)] > 1}

g/iminf,,Hx,1 Z|f”) )|9=0,
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Proof of theorem

For p=1, is consequence of Grosse-Erdmann’s theorem. (There is no

D-hypercyclic entire function f that satisfies
el’
My(f,r) < C— forr>0,
P( ) = \ﬁ
where C > 0.)
For 1 < p <2 is consequence of Lemma. Because given the open set

U={geH(C):[g(0) >1}

dens{ne N : f7 ¢ Uy = Iiminfmﬁm:—n#{n < m: [fM(0)] > 1}

g/iminfm% Z 1£(M(0)|9 =0,

which shows that f is not frequently hypercyclic for the differentiation _
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Proof of the lemma

a)Let p=2 be. Assume that y is decreasing.
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Proof of the lemma

a)Let p=2 be. Assume that y is decreasing.
Then
> 1/2 r
Mo(f,r) = < Y \an\2r2”> < y/(r)% for r > 0 sufficiently large.
n=0
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Proof of the lemma

a)Let p=2 be. Assume that y is decreasing.

Then
Wa(f.r) = (Y (a2ren) ' < e 0 sufficiently |
b(f,r) = <nzo\an\ r ) _l//(r)m or r > 0 sufficiently large.
Hence, for big values of r,
nd r2n+1/2 g—2r
fD(0)2— 5y < C
ng’o w(r)2(n!)?
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Fix m > 1. Using Stirling formula, we see that the function
r2n+1/26—2r
()2

has its maximum at n+1/4 of order 1/y/n and an inflection point at

r—

n+1/4+,/2+ % Hence, if m< n<2mthen
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Fix m > 1. Using Stirling formula, we see that the function
r2n+1/26—2r
()2

has its maximum at n+1/4 of order 1/y/n and an inflection point at

r—

n+1/4+,/2+ % Hence, if m< n<2mthen
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Fix m > 1. Using Stirling formula, we see that the function
r2n+1/26—2r
()2

has its maximum at n+1/4 of order 1/y/n and an inflection point at

r—

n+1/4+,/2+ % Hence, if m< n<2mthen

3m r2n+1/2 eer 1 1 1 1
L o 2 Cymr vz 8 2 Sy
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Integrating
2 r2n+1/2 g—2r

L OO e <©

on [m,3m] we obtain for m sufficiently large that

Z fD(0) < Cy(m)?,
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Integrating
2 r2n+1/2 g—2r

fMO0)P— 5 < C
L O et
on [m,3m] we obtain for m sufficiently large that
Z (02 < Cy(m)?,

hence

1 2m
72 |F(M(0
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Integrating
|2r2n+1/2e 2r

L OO e <©

on [m,3m] we obtain for m sufficiently large that

Z fD(0) < Cy(m)?,

hence
12m

— Z |F(M(0
This implies

1 m
_ Z ‘f(n)(o) 2
mn:O
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If 1 < p <2, using Hausdorff-Young inequality

o 1 o
( ) ]anlqrq”> i< Mp< ) anz”,r)
n=0 n=0

and the same ideas for p = 2.
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Theorem (Bonet-B., CAOT 2011)

For any function ¢ : Ry — R, with ¢(r) - asr—oo. If1 <p<eo,
there is an entire function D-frequently hypercyclic f with

r
Mp(f,r) < (p(r)ﬂe/—zpfor |z| = r sufficiently large.
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For 1 < p < and a weight function v,

Bp e = Bp(C,v) = {f € H(C) : supv(r)Mp(f,r) <}

r>0

and

Bpo = Bpo(C,v) :={f € H(C) : lim_.v(r)Mp(f,r) = 0}.

These spaces are Banach spaces with the norm

[1£[|p,v == sup v(r)Mp(f,r).
r>0
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1.The polynomials are contained and dense in B, for all 1 < p < .
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1.The polynomials are contained and dense in B, for all 1 < p < .

2.Bp is separable.
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1.The polynomials are contained and dense in B, for all 1 < p < .

2.Bp is separable.

3.The inclusion B, .. C H(C) is continuous.
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< o, Then the

. . r

Let v be a weight function such that sup v _

r>0 V(r + 1)

differentiation operators D : By .. — Bp.. and D : B, o — By are
continuous.

Example: v(r)=e % ,r>0,a>0.
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Theorem (Grivaux, 2011)

Let T be a bounded operator on a complex separable Banach space
X. Suppose that, for any countable set AC T,

span{Ker(T —Al): A € T\ A} is dense in X. Then T is frequently
hypercyclic.
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Lemma
The following conditions are equivalent for a weight v and 1 < p < eo:
(i) {eP%:16|=1} C Bpo.
(i) Thereis 6 € C,|6| =1, such that €% € By .
(iii) lim,%,v(r)e—ir =0
rae
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Proof of the Lemma

Consider f(z) = e,z € C, and write z = r(cost + isint). Now, we can
apply the Laplace methods for integrals, for r > 0,

2 1/2 1
zZ P _ rocost 4y _ (T m ., Al
2My(€%.r) /0 e/Peost g (Trp) et e o(rp).
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Proof of the Lemma

Consider f(z) = e,z € C, and write z = r(cost + isint). Now, we can
apply the Laplace methods for integrals, for r > 0,

2% 1/2 1
zZ P _ rocost 4y _ (T ., AP
2My(€%.r) /0 ePeost gt (er) et e o(rp).
This yields, for a certain constant ¢, > 0 depending only on p,

e’ 1
Mo(f.r) = ep—+€"0( = ).
rae re
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Proof of the Lemma

Consider f(z) = e,z € C, and write z = r(cost + isint). Now, we can
apply the Laplace methods for integrals, for r > 0,

2% 1/2 1
zZ P _ rocost 4y _ (T m ., Al
2nMp(e,r) /0 e dt (—er) ef+e O<rp)'
This yields, for a certain constant ¢, > 0 depending only on p,
e’ 1
Mo(f.r) = ep—+€"0( = ).
rae re

This implies that for each 1 < p < e there are dp,D, >0and ry >0
such that for each |6| =1 and each r > g

r r
dpo < Mp(e%2,7) < Dy (1)

ren ren
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p
Let v be a weight function such that lim;_... v(r)e—1 =0 for some

rae
1 < p <. If the differentiation operator D : B, o — B, is continuous,
then D is frequently hypercyclic.
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|dea of the proof

We must to prove for any countable set AC T,
Ep = span({€°?: |6 =1,6 € T\ A}) is contained and dense in Bp.
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|dea of the proof

We must to prove for any countable set AC T,
Ep = span({€°?: |6 =1,6 € T\ A}) is contained and dense in Bp.

To prove the density, we define the following vector valued functions on
the closed unit disc D:

H:D — Byg, H(¢)(2) = %%, { eD.

The function H is well defined, H is holomorphicon D and H: D — Byo
is continuous.
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We proceed with the proof that Er 4 is dense in By, o and apply the
Hahn-Banach theorem.
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We proceed with the proof that Er 4 is dense in By, o and apply the
Hahn-Banach theorem.

Assume that u € (B,)’ vanishes on Er, 4. We must show u = 0.

A. Bonilla () Rate of growth of D-frequently hypercyclic fun‘ i




We proceed with the proof that Er 4 is dense in By, o and apply the
Hahn-Banach theorem.

Assume that u € (B,)’ vanishes on Er\ 4. We must show u = 0.

Since the function uo H is holomorphic in D, continuous at the
boundary and vanishes at the points { € T\ A, itis zero in D. In
particular (uo H)(M(0) = u(H™(0)) = u(z") = 0, hence u vanishes on
the polynomials. As the polynomials are dense in B, o, we conclude
u=0.
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Corollary

Let ¢(r) be a positive function with lim;_...(r) = . Foreach1 < p < e
there is an entire function f such that

Mo(f.r) < (1) &

rae

that is frequently hypercyclic for the differentiation operator D on H(C).
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Proof

It is possible to find a positive increasing continuous function

W(r) < (P(r) with /im,_,ooy/(r) — o0 and Supw < oo,

r~0 w(r)
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Proof

It is possible to find a positive increasing continuous function

. . 1
r>0 ‘I/(r)
%
P
Define v(r) = w(rr)er for r > ro, with ry large enough to ensure that

v(r) is non increasing on [ry,e<[, and v(r) = v(rp) on [0, rp]. One can
take ry = 2lp.
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The following diagram represents our knowledge of possible or
impossible growth rates e /r2 for frequent hypercyclicity with respect to
the differentiation operator D two weeks ago.
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The following diagram represents our knowledge of possible or
impossible growth rates e /r2 for frequent hypercyclicity with respect to
the differentiation operator D two weeks ago.

a
112
No
114
Yes ! a-i
0 : 2p
1 2 p

A. Bonilla () Rate of growth of D-frequently hypercyclic fun‘ i




Theorem (Drasin-Saksman, in a couple weeks in ArXiv)
For any C > 0 there is an entire function D-frequently hypercyclic f with
er

Mp(f,r)g CW

where a(p) = ; for p € [2,%] and a(p) = 5; forp € (1,2]
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Theorem (Drasin-Saksman, in a couple weeks in ArXiv)
For any C > 0 there is an entire function D-frequently hypercyclic f with

ef
Mp(f,r) < CW

where a(p) = § for p € [2,%0] and a(p) = 55 forp € (1,2]

The construction is direct with no functional analysis, but uses
remarkable polynomials of Rudin-Shapiro and de la Vallee
Poussin.(Conference in honour of P. Gauthier and K. Gowrisankaran,
june 20-23, 2011)
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