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 DEFINITIONS 
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 be the sequence of partial sums of the Taylor 

development of  
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f ( z ) c ( z )ξ
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=

= −∑    in the open disk D( ,R )ξ ,  0 < R 

< ∞ .  
  
          If  K ⊂ �  with K D( ,R )ξ∩ =∅ , then we say 

that the function f  (or the Taylor series 
k

k
k 0

c ( z )ξ
∞

=

−∑ ) is universal with respect to K (or K–

universal), if for every function  
  
 h : K → �  continuous on K and holomorphic in the 

interior  
  
 of K (if oK ≠∅ ), there exists a sequence of natural 

numbers 
  
  { }nk ,n∈� , such that the subsequence nkS ( f , )( z )ξ  

converges  
 
to h(z) uniformly on K.  
             
 
           Let f  be a K–universal function, 0z ∈K and a > −1 . We  
 
say that f  is (C ,a )− summable at 0z  to a finite sum s, if we  
 
have that:  
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 EXAMPLES  

 
1. Let Ω ≠ �  be a simply connected domain in �  and ξ Ω∈ . 
We denote by H( )Ω  the set of holomorphic functions on Ω , 
endowed with the topology of uniform convergence on 
compact sets. We also denote by K=c.c.c. any subset K of � , 
which is Compact with Connected Complement. Then:  

 
(a) The following class of universal functions  

 
{ }1U ( , ) f H( ) : f ( z ) K universal , K c.c.c.,KΩ ξ Ω Ω= ∈ = − ∀ = ∩ =∅

 
 
is a Gδ −dense subset of H( )Ω . These classes studied, 
initially in the case where D(0,1 )Ω = , by Luh and 
independently by Chui and Parnes – in the early of 70’s.  
 
        Universal functions in 1U ( D,0 )  have as natural 
boundary the unit circle { }T D(0,1 ) z : z 1= ∂ = ∈ =� , but they 
may be smooth on T.  
       There are functions in this class, which have the highest 
order of regularity and summability at the boundary of  
D(0,1); their Taylor developments are (C ,a ) -summable for 
every a > −1 , at any point of T.  
 
        (b) In 1996, V. Nestoridis strengthened the results of 
Luh and Chui – Parnes by allowing to the compact set K to 
meet T and the universal approximation was obtained on the 
boundary of D(0,1) as well. Then, the following new class of 
universal functions, defined by 
 



{ }U( , ) f H( ) : f ( z ) K universal , K c.c.c .,KΩ ξ Ω Ω= ∈ = − ∀ = ∩ =∅ ,  
  
is again a Gδ −dense subset of H( )Ω . It is a proper subset of 
the previous class and the universal functions in U(  
have several wild properties. For instance, when 

, )Ω ξ
D(0,1 )Ω = , 

their Taylor coefficients can not have polynomial growth 
and so their Taylor development can not be 
(C ,a )− summable, for every a > −1 , at any point of T.  This 
argument gives the (C ,a )−non-summability simultaneously 
for all points of T and it is not possible to have the result for 
some such points. There is a different proof of this fact, 
based on an extension of Rogosinski’ s formula, which 
enables one to distinguish some points on T and so we shall 
follow this method here.  
 
2. There are unbounded non-simply connected domains Ω  
in � , where universal Taylor series exist. On the other hand, 
if Ω  is a bounded annulus the class of universal functions is 
empty. This leads us to look for weaker approximation 
results on arbitrary planar domains. 
 From their main results we  
need the following:  
      Let Ω ≠ �  be an arbitrary  
planar domain, ξ Ω∈ ,  
            ( )R dist , 0ξ Ω= ∂ > ,  
       J( , ) C( ,R )Ω ξ ξ Ω= ∩∂ , 
and { }C( ,R ) z : z Rξ ξ= ∈ − =� .  
Then, we define the following  
class of universal functions: 
 

{ }B( , ) f H( ) : f ( z ) K universal , K c.c.c.,K J( , )Ω ξ Ω Ω ξ= ∈ = − ∀ = ⊂

  
This class is again a Gδ −dense subset of H( )Ω .  
        If J( , )Ω ξ  contains an arc of C( ,R )ξ  with strictly 
positive opening, then the Taylor coefficients of any 
f B( , )Ω ξ∈  can not have polynomial growth and so the 



Taylor development of f , with center ξ , can not be 
(C ,a )− summable for any z J( , )Ω ξ∈  and every a 1> − . 

  
 

 CESARO SUMMABILITY IN THE GENERAL 
CASE 

 

     If k
k

k 0

f ( z ) c ( z )ξ
∞

=

= −∑  ( z D( ,R )ξ∈ , 0 < R <∞ ) is a universal 

function with respect some K ,⊂ �  K D( ,R )ξ∩ =∅  and 
0z K∈ , then the question is  

 
under what conditions on K and z0  the above Taylor series is 
not (C ,a )− summable at 0z  to a finite sum (a 1> − )?  
     
    It is well known that for 0z  with 0z Rξ− >  the above series 
is not (C ,a )− summable at 0z , for every a > −1 . So, from now 
on, we assume that 0z K C( ,R )ξ∈ ∩ . Moreover, without loss 
of generality we may assume that:   
 

D( ,R ) D(0,1 )ξ = ,  K⊂T   and   0z 1 K T= ∈ ∩ . 
  
We recall now the classical formula of Rogosinski:  
 

Rogosinski’s formula: nz ∈� , n∈� : 1- n
1z O( )
n

=  and k
k 0

c
∞

=
∑  is 

(C ,1 )− summable to s∈� . If 
n

k
n

k 0
kS ( z ) c z

=

=∑ , then we have:  

( ) n
n n n n nS ( z ) s S ( 1 ) s z 0→∞− − − ⎯⎯⎯→ .  

 
From this we obtain easily the following:  
 

Proposition 1: Let K ⊂T, 1∈K and k
k

k 0

f ( z ) c z
∞

=

=∑  be a K-

universal function. If there exists a sequence { }nz K⊂  such 
that:  



(i) 1 n
1z O( )
n

− =  and  

(ii) { }n
nz  has not 1 as a limit point,  

then the series k
k 0

c
∞

=
∑  is not (C,1) – summable.  

Proof:  

Suppose that the series k
k 0

c
∞

=
∑  is (C,1) – summable to s∈� . Put 

h(z)=s+1, z∈K. Since f  is K-universal there exists a 
sequence { }nk ⊂ � , such that nk nS ( z ) →∞⎯⎯⎯→h(z)=s+1 
uniformly on K. Then, Rogosinski’s formula implies that  

n

n

k
k nz →∞⎯⎯⎯→1, a contradiction by (ii).  

 
       Since we used Rogosinski’s formula, condition (i) in 
Prop. 1 is necessary.  
      The question is if condition (ii) is necessary, or we can 
replace it by a weaker one.  
      Of course, there are stronger conditions which imply 
conditions (i) and especially (ii) and we give two such 
examples.  
 
      (C.1) If [ ]{ }itK̂ t , : z e Kπ π= ∈ − = ∈ , then 0 is a right (resp. 
left) density point of K̂ .   
 
      (C,1) implies also the following condition (C.2), which in 
turn implies (i) and (ii).  
 
      (C.2) ∃ nit

nz e= ∈K such that (a) n nn 1 z →∞− ⎯⎯⎯→c > 0 and          
(b) ∃ 0n ∈� : n 1n t c 2π< < , 0n n∀ ≥ .  
 
Remark: As we shall see, (a) of (C.2) guarantees the (C,1) – 

non – summability of the series k
k 0

c
∞

=
∑ . Thus, for example, if 

n
2 iz exp
n
π⎛ ⎞= ∈⎜ ⎟

⎝ ⎠
K, then 2π  > 0 and so k

k 0

c
∞

=
∑  is n nn 1 z →∞− ⎯⎯⎯→



not (C,1) – summable. Moreover, ( )n
nz exp 2 iπ= =1, which 

implies that the answer to the previous question is negative 
and condition (ii) is not necessary.   
 
        Now, if we examine more carefully the above conditions 
and especially (a) of (C.2), we see that the following 
condition (C*) is a (weaker) conclusion of (a) of (C.2) and it 
is sufficient for our purposes.   
 

       Let [ ]{ }itK̂ t , : z e Kπ π= ∈ − = ∈ . We assume that:  

∀ N ∈� , N ≥1 and ∀  ⊂ �S , S  infinite, 

(C*)       ∃ N Na a ( )S , N Nb b ( )= S   with  0 < Na  < Nb  < 1
N

,  =

∃ { }nk ⊂ S   and  ∃ { }n
ˆt ⊂ K  such that  

( )n n N Nk t a ,b∈ , for every n=1,2,3,….  

 
Then, we have the following:  
 

Theorem: Let K ⊂T, 1∈K and k
k

k 0

f ( z ) c z
∞

=

=∑  be a K-universal 

function. If K satisfies condition (C*), then the  series k
k 0

c
∞

=
∑  is 

not (C,a ) – summable for every a  > −1.    
 
         It is sufficient to prove this Theorem for a =m, an 
arbitrary natural number, since, as it is well known, if a 
series is (C,m)-summable, then it is (C,a )–summable, for 
every a ≥m.  
 
(So, the (C,m)-non-summability, for every m∈� , implies the 
(C,a )-non-summability for every a > − 1).  
        
        We shall not give the proof here, which is much more 
complicated than that of Prop. 1, because of the complexity 



of condition (C*) and the use of the following extension of 
Rogosinski’s formula:  
 

       Let k
k 0

c
∞

=
∑  be (C,m)–summable for some natural number 

m, to a finite sum s and let 
⊂ �S , S  infinite and 

∀n∈S , ∀  j=1,2,…,m, 
∃ j ,nz ∈�  such that 

( )j ,n jn
lim n 1 z ς
→∞

− = , with 1 20 mς ς ς< < < <L . 
Then,  

∀  n∈S , ∀  j=1,2,…,m, 
∃ j ,nλ ∈�  such that 

( ) ( )
m

n j ,n n j ,nn n
j 1 j ,n

1
,nS ( z ) s S ( 1 ) s 0

z
λ ∈ →∞

=

⎡ ⎤
− − − ⎯⎯⎯⎯→⎢ ⎥

⎢ ⎥⎣ ⎦
∑ S    and 

( )j ,nn ,n
j j k

k j

1lim λ
ς ς ς∈ →∞

≠

=
−∏S .  

 
      On the other hand, it seems that the situation is quit 
different in the case where the set K is only a finite subset of 
� , say K { }1 2 nz ,z , ,z= L , with jz ≥1, j=1,2,…,n.  

      Then, there are K–universal functions k
k

k 0

f ( z ) c z
∞

=

=∑  in 

D(0,1), which are (C,a )–summable at every point jz K T∈ ∩  
and every a ≥1.  
        
       For example, let K={1} and let { }nq , n=0,1,2,…, be an 
enumeration of the rational points of � , i.e. nq i∈ +� � . We 
choose a sequence { }nλ  with 0λ =0, n 1 n mλ λ+ > + , where m is 
some suitable natural number and moreover  

0 1 n

n

q q q 1
1 nλ

+ + +
<

1+ +
L

, for every natural number n.  

Then we define  



( ) n
n n

n 0

f ( z ) q q z zλ
∞

=

= −∑ , 

which, for m≥2, has the following properties:  
(i) n nS ( 1 ) qλ = , n=0,1,2,…. 

(ii) 0 1 k 0 1 nS S S q q q 1
k 1 k 1 n 1

+ + + + + +
= <

+ +
L L

+ , 

for every k∈�  with n k n 1λ λ +≤ <  and every n=0,1,2,….  
 
       Since { }nq  is dense in { }∪ ∞� , it follows from (i) that 

k
k

k 0

f ( z ) c z
∞

=

=∑ , is a K–universal function with radius of 

convergence R≤1. By (ii) we have that the Taylor series of f  
is (C,1)–summable, at 0z =1, to the finite sum 0 and so R=1. 

Moreover, for every a ≥1 the series k
k 0

c
∞

=
∑  is (C,a )–summable.    

       Further, if m≥4, we can consider the function  
 

( ) n2 3
n n n n

n 0

f ( z ) q q z q z q z zλ
∞

=

= − − +∑ ,  
 
which is K–universal and has a K–universal and (C,1)–
summable, at 0z =1, derivative and so on.      
 
       In the general case where K { }1 2 nz ,z , ,z= L , with jz ≥1, 
j=1,2,…,n, the construction of K–universal functions 

k
k

k 0

f ( z ) c z
∞

=

=∑  in D(0,1), which are (C,a )–summable at every 

point jz K T∈ ∩  and every a ≥1, is similar to the above 
example. In fact, there are two ways to construct such 
examples. One, by using the following result of Dirichlet:  

 
If { }1 2 mz ,z ,...,z ⊂T, then (1,1,…,1) is a limit  

point of  ( ){ }n n n
1 2 mz ,z ,...,z ,n 1,2,3,...= ,   

 



and second without this, but with some more complicated 
technique.  
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