Topological and algebraic structure of the set of strongly annular functions

Luis Bernal González (University of Sevilla)

Complex and Harmonic Analysis 2011
Málaga (Spain), July 11-14 (2011)
Joint work with Antonio Bonilla

Definition of SA

Motivation: Study of functions in $H(\mathbb{D})$ having fast radial growth. There is not any function $f \in H(\mathbb{D})$ such that

$$
\lim _{|z| \rightarrow 1}|f(z)|=+\infty .
$$

Definition of SA

Motivation: Study of functions in $H(\mathbb{D})$ having fast radial growth. There is not any function $f \in H(\mathbb{D})$ such that

$$
\lim _{|z| \rightarrow 1}|f(z)|=+\infty
$$

- What about if we relax the condition

$$
" \lim _{|z| \rightarrow 1}|f(z)|=+\infty " ?
$$

Definition of SA

Motivation: Study of functions in $H(\mathbb{D})$ having fast radial growth. There is not any function $f \in H(\mathbb{D})$ such that

$$
\lim _{|z| \rightarrow 1}|f(z)|=+\infty
$$

- What about if we relax the condition

$$
" \lim _{|z| \rightarrow 1}|f(z)|=+\infty " ?
$$

Definition: A function $f \in H(\mathbb{D})$ is strongly annular [$f \in \mathcal{S A}$] provided that

$$
\limsup _{r \rightarrow 1} \min \{|f(z)|:|z|=r\}=+\infty .
$$

Definition of SA

Motivation: Study of functions in $H(\mathbb{D})$ having fast radial growth. There is not any function $f \in H(\mathbb{D})$ such that

$$
\lim _{|z| \rightarrow 1}|f(z)|=+\infty .
$$

- What about if we relax the condition

$$
" \lim _{|z| \rightarrow 1}|f(z)|=+\infty " ?
$$

Definition: A function $f \in H(\mathbb{D})$ is strongly annular [$f \in \mathcal{S A}$] provided that

$$
\limsup _{r \rightarrow 1} \min \{|f(z)|:|z|=r\}=+\infty .
$$

- Hence $f \in \mathcal{S A} \Longleftrightarrow \exists$ a sequence of circles $C_{n}=\left\{|z|=r_{n}\right\}$ in \mathbb{D} with $r_{n} \uparrow 1$ such that $\lim _{n \rightarrow \infty} \min \left\{|f(z)|: z \in C_{n}\right\}=+\infty$.

Algebraic size, I

But ... do these functions really exist?

Algebraic size, I

But ... do these functions really exist?

- YES. [Bonar, 1971]:

Take $0<a_{n}<b_{n}<a_{n+1}<\cdots \rightarrow 1$ and $n_{1}:=1$, and choose $n_{k+1}:=\min \left\{m \in \mathbb{N}:\left(b_{k} / a_{k+1}\right)^{m} \leq 1 /\left(3 k^{2}\right)\right\}$. Then $\prod_{k=1}^{\infty}\left(1-\frac{3 z^{n_{k}}}{a_{k}^{n_{k}}}\right) \in \mathcal{S} \mathcal{A}$.

Algebraic size, I

But ... do these functions really exist?

- YES. [Bonar, 1971]:

Take $0<a_{n}<b_{n}<a_{n+1}<\cdots \rightarrow 1$ and $n_{1}:=1$, and choose $n_{k+1}:=\min \left\{m \in \mathbb{N}:\left(b_{k} / a_{k+1}\right)^{m} \leq 1 /\left(3 k^{2}\right)\right\}$. Then $\prod_{k=1}^{\infty}\left(1-\frac{3 z^{n_{k}}}{a_{k}^{n_{k}}}\right) \in \mathcal{S} \mathcal{A}$.

- An example with power series: Take $0<a_{n}<b_{n}<a_{n+1}<\cdots \rightarrow 1$ and choose $\left(n_{k}\right) \uparrow \infty$ such that $\left(r_{k} / s_{k}\right)^{n_{k}} \geq k\left(1+\sum_{j=1}^{k-1}\left(r_{k} / s_{j}\right)^{n_{j}}\right)$ and $\left(r_{k-1} / s_{k}\right)^{n_{k}} \leq 1 / 2^{k}(k \geq 1)$. Then $\sum_{k=1}^{\infty}\left(z / s_{k}\right)^{n_{k}} \in \mathcal{S} \mathcal{A}$.

Algebraic size, I

But ... do these functions really exist?

- YES. [Bonar, 1971]:

Take $0<a_{n}<b_{n}<a_{n+1}<\cdots \rightarrow 1$ and $n_{1}:=1$, and
choose $n_{k+1}:=\min \left\{m \in \mathbb{N}:\left(b_{k} / a_{k+1}\right)^{m} \leq 1 /\left(3 k^{2}\right)\right\}$.
Then $\prod_{k=1}^{\infty}\left(1-\frac{3 z^{n_{k}}}{a_{k}^{k_{k}}}\right) \in \mathcal{S} \mathcal{A}$.

- An example with power series: Take $0<a_{n}<b_{n}<a_{n+1}<\cdots \rightarrow 1$ and choose $\left(n_{k}\right) \uparrow \infty$ such that $\left(r_{k} / s_{k}\right)^{n_{k}} \geq k\left(1+\sum_{j=1}^{k-1}\left(r_{k} / s_{j}\right)^{n_{j}}\right)$ and $\left(r_{k-1} / s_{k}\right)^{n_{k}} \leq 1 / 2^{k}(k \geq 1)$. Then $\sum_{k=1}^{\infty}\left(z / s_{k}\right)^{n_{k}} \in \mathcal{S} \mathcal{A}$.
- There are also explicit constructions of series
$\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{S A}$ with $a_{n} \rightarrow 0$.
[Bonar, Carroll and Piranian, 1977].

Topological size, I

- A very curious fact [Howell, 1975]: There is a SA function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in\{1,-1\}$ ($n \geq 0$).

Topological size, I

- A very curious fact [Howell, 1975]: There is a SA function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in\{1,-1\}$ ($n \geq 0$).
- But ... can we get a great deal of SA functions?

Topological size, I

- A very curious fact [Howell, 1975]: There is a SA function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in\{1,-1\}$ ($n \geq 0$).
- But ... can we get a great deal of SA functions?
- [Bonar and Carroll, 1975]: $\mathcal{S A}$ is a residual subset of $\left(H(\mathbb{D}), \tau_{c}\right)$.

Topological size, I

- A very curious fact [Howell, 1975]: There is a SA function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in\{1,-1\}$ ($n \geq 0$).
- But ... can we get a great deal of SA functions?
- [Bonar and Carroll, 1975]: $\mathcal{S A}$ is a residual subset of $\left(H(\mathbb{D}), \tau_{c}\right)$.
- A digression: coming back to an example from the last slide, if
$X:=\left\{f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}:\left\{a_{n}\right\}_{n \geq 0} \subset\{1,-1\}\right\}$ then $\mathcal{S A} \cap X$ is a residual subset of $\left(X, \tau_{c}\right)$ [Howell].

Topological size, I

- A very curious fact [Howell, 1975]: There is a SA function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in\{1,-1\}$ ($n \geq 0$).
- But ... can we get a great deal of SA functions?
- [Bonar and Carroll, 1975]: $\mathcal{S A}$ is a residual subset of $\left(H(\mathbb{D}), \tau_{c}\right)$.
- A digression: coming back to an example from the last slide, if
$X:=\left\{f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}:\left\{a_{n}\right\}_{n \geq 0} \subset\{1,-1\}\right\}$ then $\mathcal{S A} \cap X$ is a residual subset of $\left(X, \tau_{c}\right)$ [Howell].
- To sum up: $\mathcal{S A}$ is topologically large.

Topological size, II

- Are there strict vector subspaces of $H(\mathbb{D})$ whose SA-functions form a residual subset?

Topological size, II

- Are there strict vector subspaces of $H(\mathbb{D})$ whose SA-functions form a residual subset?

Theorem 1: Assume that Y is a Baire topological vector space with $Y \subset H(\mathbb{D})$ such that Y is endowed with a topology τ which is finer that $\left.\tau_{c}\right|_{Y}$. If $\mathcal{S} \mathcal{A} \cap Y \neq \emptyset$ and there is a dense subset \mathcal{D} of Y such that each function $f \in \mathcal{D}$ is bounded on \mathbb{D}, then $\mathcal{S A} \cap Y$ is residual in Y.

Topological size, II

- Are there strict vector subspaces of $H(\mathbb{D})$ whose SA-functions form a residual subset?

Theorem 1: Assume that Y is a Baire topological vector space with $Y \subset H(\mathbb{D})$ such that Y is endowed with a topology τ which is finer that $\left.\tau_{c}\right|_{Y}$. If $\mathcal{S A} \cap Y \neq \emptyset$ and there is a dense subset \mathcal{D} of Y such that each function $f \in \mathcal{D}$ is bounded on \mathbb{D}, then $\mathcal{S A} \cap Y$ is residual in Y.

- Concrete examples?

Topological size, II

- Are there strict vector subspaces of $H(\mathbb{D})$ whose SA-functions form a residual subset?

Theorem 1: Assume that Y is a Baire topological vector space with $Y \subset H(\mathbb{D})$ such that Y is endowed with a topology τ which is finer that $\left.\tau_{c}\right|_{Y}$. If $\mathcal{S} \mathcal{A} \cap Y \neq \emptyset$ and there is a dense subset \mathcal{D} of Y such that each function $f \in \mathcal{D}$ is bounded on \mathbb{D}, then $\mathcal{S A} \cap Y$ is residual in Y.

- Concrete examples?
- Hardy spaces $H^{p}(\mathbb{D}):=\{f \in H(\mathbb{D})$:
$\left.\sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<+\infty\right\}(p>0)$ and $H^{\infty}(\mathbb{D})$ are discarded, due to Fatou's theorem.
In fact, $H^{p}(\mathbb{D}) \cap \mathcal{S} \mathcal{A}=\emptyset$.

Topological size, III

- A positive example: In 2007, Redett constructed a SA-function in each generalized Bergman space, defined for $0<p<+\infty, \alpha>-1$ as $A_{\alpha}^{p}(\mathbb{D}):=$ $\left\{f \in H(\mathbb{D}): \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha} r d \theta d r<+\infty\right\}$.

Topological size, III

- A positive example: In 2007, Redett constructed a SA-function in each generalized Bergman space, defined for $0<p<+\infty, \alpha>-1$ as $A_{\alpha}^{p}(\mathbb{D}):=$ $\left\{f \in H(\mathbb{D}): \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha} r d \theta d r<+\infty\right\}$.
- For the construction, Redett used the following result [Buckley, Koskela and Vukotic, 1999]:
Let $\left(p_{n}\right) \subset \mathbb{N}$ with $p_{n+1}>2 p_{n}(n \geq 1)$, and
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{p_{n}} \in H(\mathbb{D})$. Then $f \in A_{\alpha}^{p}(\mathbb{D})$ if and only if $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p} p_{n}^{-\alpha-1}<+\infty$.

Topological size, III

- A positive example: In 2007, Redett constructed a SA-function in each generalized Bergman space, defined for $0<p<+\infty, \alpha>-1$ as $A_{\alpha}^{p}(\mathbb{D}):=$ $\left\{f \in H(\mathbb{D}): \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha} r d \theta d r<+\infty\right\}$.
- For the construction, Redett used the following result [Buckley, Koskela and Vukotic, 1999]: Let $\left(p_{n}\right) \subset \mathbb{N}$ with $p_{n+1}>2 p_{n}(n \geq 1)$, and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{p_{n}} \in H(\mathbb{D})$. Then $f \in A_{\alpha}^{p}(\mathbb{D})$ if and only if $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p} p_{n}^{-\alpha-1}<+\infty$.
- Note that $A_{\alpha}^{p}(\mathbb{D})$ is a Fréchet space [even a Banach space if $p \geq 1$, and a Hilbert space if $p=2$].

Topological size, III

- A positive example: In 2007, Redett constructed a SA-function in each generalized Bergman space, defined for $0<p<+\infty, \alpha>-1$ as $A_{\alpha}^{p}(\mathbb{D}):=$ $\left\{f \in H(\mathbb{D}): \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha} r d \theta d r<+\infty\right\}$.
- For the construction, Redett used the following result [Buckley, Koskela and Vukotic, 1999]: Let $\left(p_{n}\right) \subset \mathbb{N}$ with $p_{n+1}>2 p_{n}(n \geq 1)$, and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{p_{n}} \in H(\mathbb{D})$. Then $f \in A_{\alpha}^{p}(\mathbb{D})$ if and only if $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p} p_{n}^{-\alpha-1}<+\infty$.
- Note that $A_{\alpha}^{p}(\mathbb{D})$ is a Fréchet space [even a Banach space if $p \geq 1$, and a Hilbert space if $p=2$].

Corollary: $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ is residual in $A_{\alpha}^{p}(\mathbb{D})$.

Topological size, IV

- The sequence of radii $\sigma=\left(r_{n}\right) \uparrow 1$ and the speed of growth, given by a continuous function $\varphi: \mathbb{D} \rightarrow(0,+\infty)$ can be prescribed:

Topological size, IV

- The sequence of radii $\sigma=\left(r_{n}\right) \uparrow 1$ and the speed of growth, given by a continuous function $\varphi: \mathbb{D} \rightarrow(0,+\infty)$ can be prescribed:

Theorem 2: For σ and φ as above, the set $\mathcal{S} \mathcal{A}(\varphi, \sigma):=$ $\left\{f \in H(\mathbb{D}): \lim _{n \rightarrow \infty} \min _{|z|=r_{n}}|f(z)| / \varphi(z)=+\infty\right\}$
is residual in $H(\mathbb{D})$.

Topological size, IV

- The sequence of radii $\sigma=\left(r_{n}\right) \uparrow 1$ and the speed of growth, given by a continuous function $\varphi: \mathbb{D} \rightarrow(0,+\infty)$ can be prescribed:

Theorem 2: For σ and φ as above, the set $\mathcal{S A}(\varphi, \sigma):=$ $\left\{f \in H(\mathbb{D}): \lim _{n \rightarrow \infty} \min _{|z|=r_{n}}|f(z)| / \varphi(z)=+\infty\right\}$
is residual in $H(\mathbb{D})$.

- What can be said about the algebraic size of $\mathcal{S A}$? Note $\mathcal{S A}$ is not a VS: take $f \in \mathcal{S A}$ and consider $0=f+(-f)$.

Topological size, IV

- The sequence of radii $\sigma=\left(r_{n}\right) \uparrow 1$ and the speed of growth, given by a continuous function $\varphi: \mathbb{D} \rightarrow(0,+\infty)$ can be prescribed:

Theorem 2: For σ and φ as above, the set $\mathcal{S A}(\varphi, \sigma):=$ $\left\{f \in H(\mathbb{D}): \lim _{n \rightarrow \infty} \min _{|z|=r_{n}}|f(z)| / \varphi(z)=+\infty\right\}$
is residual in $H(\mathbb{D})$.

- What can be said about the algebraic size of $\mathcal{S A}$? Note $\mathcal{S A}$ is not a VS: take $f \in \mathcal{S A}$ and consider $0=f+(-f)$.
- In the first decade of the present millenium, Aron, Bayart, Gurariy, Seoane, Quarta and LBG coined the following notions.

Algebraic size, I

Definition: Assume that X is a TVS and μ is a cardinal

 number. A subset $A \subset X$ is called:
Algebraic size, I

Definition: Assume that X is a TVS and μ is a cardinal number. A subset $A \subset X$ is called:

- μ-lineable if $A \cup\{0\}$ contains an infinite dimensional vector space M with $\operatorname{dim}(M)=\mu$,

Algebraic size, I

Definition: Assume that X is a TVS and μ is a cardinal number. A subset $A \subset X$ is called:

- μ-lineable if $A \cup\{0\}$ contains an infinite dimensional vector space M with $\operatorname{dim}(M)=\mu$,
- dense-lineable whenever $A \cup\{0\}$ contains a dense vector subspace of X,

Algebraic size, I

Definition: Assume that X is a TVS and μ is a cardinal number. A subset $A \subset X$ is called:

- μ-lineable if $A \cup\{0\}$ contains an infinite dimensional vector space M with $\operatorname{dim}(M)=\mu$,
- dense-lineable whenever $A \cup\{0\}$ contains a dense vector subspace of X,
- maximal dense-lineable if $A \cup\{0\}$ contains a dense vector subspace M of X with $\operatorname{dim}(M)=\operatorname{dim}(X)$ [$\Longleftrightarrow \operatorname{dim}(M)=c$, if X a separable F-space],

Algebraic size, I

Definition: Assume that X is a TVS and μ is a cardinal number. A subset $A \subset X$ is called:

- μ-lineable if $A \cup\{0\}$ contains an infinite dimensional vector space M with $\operatorname{dim}(M)=\mu$,
- dense-lineable whenever $A \cup\{0\}$ contains a dense vector subspace of X,
- maximal dense-lineable if $A \cup\{0\}$ contains a dense vector subspace M of X with $\operatorname{dim}(M)=\operatorname{dim}(X)$ [$\Longleftrightarrow \operatorname{dim}(M)=c$, if X a separable F-space],
- spaceable whenever $A \cup\{0\}$ contains a closed infinite dimensional vector subspace of X, and

Algebraic size, I

Definition: Assume that X is a TVS and μ is a cardinal number. A subset $A \subset X$ is called:

- μ-lineable if $A \cup\{0\}$ contains an infinite dimensional vector space M with $\operatorname{dim}(M)=\mu$,
- dense-lineable whenever $A \cup\{0\}$ contains a dense vector subspace of X,
- maximal dense-lineable if $A \cup\{0\}$ contains a dense vector subspace M of X with $\operatorname{dim}(M)=\operatorname{dim}(X)$ [$\Longleftrightarrow \operatorname{dim}(M)=c$, if X a separable F-space],
- spaceable whenever $A \cup\{0\}$ contains a closed infinite dimensional vector subspace of X, and
- algebrable if X is a function space and $A \cup\{0\}$ contains some infinitely generated algebra.

Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable separable TVS. Suppose that Γ is a family of linear subspaces of X such that $\bigcap_{S \in \Gamma} S$ is dense in X and $\bigcap_{S \in \Gamma}(X \backslash S)$ is μ-lineable, where μ is an infinite cardinal number. Then $\bigcap_{S \in \Gamma}(X \backslash S) \cup\{0\}$ contains a dense μ-dimensional VS.

Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable separable TVS. Suppose that Γ is a family of linear subspaces of X such that $\bigcap_{S \in \Gamma} S$ is dense in X and $\bigcap_{S \in \Gamma}(X \backslash S)$ is μ-lineable, where μ is an infinite cardinal number. Then $\bigcap_{S \in \Gamma}(X \backslash S) \cup\{0\}$ contains a dense μ-dimensional VS.

Theorem 3: $\mathcal{S A}$ is maximal dense-lineable.

Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable separable TVS. Suppose that Γ is a family of linear subspaces of X such that $\bigcap_{S \in \Gamma} S$ is dense in X and $\bigcap_{S \in \Gamma}(X \backslash S)$ is μ-lineable, where μ is an infinite cardinal number. Then $\bigcap_{S \in \Gamma}(X \backslash S) \cup\{0\}$ contains a dense μ-dimensional VS.

Theorem 3: $\mathcal{S A}$ is maximal dense-lineable. Sketch of proof:

Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable separable TVS. Suppose that Γ is a family of linear subspaces of X such that $\bigcap_{S \in \Gamma} S$ is dense in X and $\bigcap_{S \in \Gamma}(X \backslash S)$ is μ-lineable, where μ is an infinite cardinal number. Then $\bigcap_{S \in \Gamma}(X \backslash S) \cup\{0\}$ contains a dense μ-dimensional VS.

Theorem 3: $\mathcal{S A}$ is maximal dense-lineable.
Sketch of proof: Apply Theorem 2 to $\varphi(z):=\exp \frac{1}{1-|z|}$, fix any σ and select $f_{0} \in \mathcal{S} \mathcal{A}(\varphi, \sigma)$. Then

Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable separable TVS. Suppose that Γ is a family of linear subspaces of X such that $\bigcap_{S \in \Gamma} S$ is dense in X and $\bigcap_{S \in \Gamma}(X \backslash S)$ is μ-lineable, where μ is an infinite cardinal number. Then $\bigcap_{S \in \Gamma}(X \backslash S) \cup\{0\}$ contains a dense μ-dimensional VS.

Theorem 3: $\mathcal{S A}$ is maximal dense-lineable.
Sketch of proof: Apply Theorem 2 to $\varphi(z):=\exp \frac{1}{1-|z|}$,
fix any σ and select $f_{0} \in \mathcal{S A}(\varphi, \sigma)$. Then $M:=\operatorname{span}\left\{\exp (\alpha \cdot) f_{0}: \alpha>0\right\}$
is a VS with $\operatorname{dim}(M)=c$ and $M \subset \mathcal{S} \mathcal{A} \cup\{0\}$.

Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable separable TVS. Suppose that Γ is a family of linear subspaces of X such that $\bigcap_{S \in \Gamma} S$ is dense in X and $\bigcap_{S \in \Gamma}(X \backslash S)$ is μ-lineable, where μ is an infinite cardinal number. Then $\bigcap_{S \in \Gamma}(X \backslash S) \cup\{0\}$ contains a dense μ-dimensional VS.

Theorem 3: $\mathcal{S A}$ is maximal dense-lineable.
Sketch of proof: Apply Theorem 2 to $\varphi(z):=\exp \frac{1}{1-|z|}$,
fix any σ and select $f_{0} \in \mathcal{S A}(\varphi, \sigma)$. Then

$$
M:=\operatorname{span}\left\{\exp (\alpha \cdot) f_{0}: \alpha>0\right\}
$$

is a VS with $\operatorname{dim}(M)=c$ and $M \subset \mathcal{S A} \cup\{0\}$. Apply Lemma A with $X=H(\mathbb{D}), \mu=c$ and $\Gamma=\{\langle f\rangle+\{$ polynomials $\}: f \in H(\mathbb{D}) \backslash \mathcal{S A}\}$.

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable. Sketch of proof:

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.
Sketch of proof: Fix any σ and $\varphi_{0}(z) \equiv 1$. Apply
Theorem 2 to select $f_{1} \in \mathcal{S A}\left(\varphi_{0}, \sigma\right)$.

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.
Sketch of proof: Fix any σ and $\varphi_{0}(z) \equiv 1$. Apply
Theorem 2 to select $f_{1} \in \mathcal{S A}\left(\varphi_{0}, \sigma\right)$. By induction and Theorem 2, if $f_{1}, \ldots, f_{N-1}, \varphi_{0}, \ldots, \varphi_{N-2}$ have been already determined, define $\varphi_{N-1}(z):=\exp M\left(f_{N-1},|z|\right)$ and choose $f_{N} \in \mathcal{S A}\left(\varphi_{N-1}, \sigma\right)$.

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.
Sketch of proof: Fix any σ and $\varphi_{0}(z) \equiv 1$. Apply
Theorem 2 to select $f_{1} \in \mathcal{S A}\left(\varphi_{0}, \sigma\right)$. By induction and Theorem 2, if $f_{1}, \ldots, f_{N-1}, \varphi_{0}, \ldots, \varphi_{N-2}$ have been already determined, define $\varphi_{N-1}(z):=\exp M\left(f_{N-1},|z|\right)$ and choose $f_{N} \in \mathcal{S} \mathcal{A}\left(\varphi_{N-1}, \sigma\right)$. Consider the algebra generated by $\left(f_{n}\right)$.

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.
Sketch of proof: Fix any σ and $\varphi_{0}(z) \equiv 1$. Apply
Theorem 2 to select $f_{1} \in \mathcal{S A}\left(\varphi_{0}, \sigma\right)$. By induction and Theorem 2, if $f_{1}, \ldots, f_{N-1}, \varphi_{0}, \ldots, \varphi_{N-2}$ have been already determined, define $\varphi_{N-1}(z):=\exp M\left(f_{N-1},|z|\right)$ and choose $f_{N} \in \mathcal{S} \mathcal{A}\left(\varphi_{N-1}, \sigma\right)$. Consider the algebra generated by $\left(f_{n}\right)$.

Theorem 5: $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ is dense-lineable in $A_{\alpha}^{p}(\mathbb{D})$.

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.
Sketch of proof: Fix any σ and $\varphi_{0}(z) \equiv 1$. Apply
Theorem 2 to select $f_{1} \in \mathcal{S A}\left(\varphi_{0}, \sigma\right)$. By induction and Theorem 2, if $f_{1}, \ldots, f_{N-1}, \varphi_{0}, \ldots, \varphi_{N-2}$ have been already determined, define $\varphi_{N-1}(z):=\exp M\left(f_{N-1},|z|\right)$ and choose $f_{N} \in \mathcal{S} \mathcal{A}\left(\varphi_{N-1}, \sigma\right)$. Consider the algebra generated by $\left(f_{n}\right)$.

Theorem 5: $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ is dense-lineable in $A_{\alpha}^{p}(\mathbb{D})$. Sketch of proof:

Algebraic size, III

Theorem 4: $\mathcal{S A}$ is algebrable.
Sketch of proof: Fix any σ and $\varphi_{0}(z) \equiv 1$. Apply
Theorem 2 to select $f_{1} \in \mathcal{S A}\left(\varphi_{0}, \sigma\right)$. By induction and Theorem 2, if $f_{1}, \ldots, f_{N-1}, \varphi_{0}, \ldots, \varphi_{N-2}$ have been already determined, define $\varphi_{N-1}(z):=\exp M\left(f_{N-1},|z|\right)$ and choose $f_{N} \in \mathcal{S} \mathcal{A}\left(\varphi_{N-1}, \sigma\right)$. Consider the algebra generated by $\left(f_{n}\right)$.

Theorem 5: $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ is dense-lineable in $A_{\alpha}^{p}(\mathbb{D})$. Sketch of proof: Use Buckley-Koskela-Vukotic's result to produce a power series $\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ [coefficients a_{n} should be bigger enough than a_{0}, \ldots, a_{n-1} but not too much!] such that after an infinite partitioning, the resulting f_{n} 's are still in $\mathcal{S A}$. Then

Algebraic size, IV

$$
M:=\operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}
$$

is a VS with $\operatorname{dim}(M)=\operatorname{card}(\mathbb{N})$.

Algebraic size, IV

$$
M:=\operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}
$$

is a VS with $\operatorname{dim}(M)=\operatorname{card}(\mathbb{N})$.
Apply Lemma A with $\mu=\operatorname{card}(\mathbb{N}), X=A_{\alpha}^{p}(\mathbb{D})$ and $\Gamma=\left\{\langle f\rangle+\{\right.$ polynomials $\left.\}: f \in A_{\alpha}^{p}(\mathbb{D}) \backslash \mathcal{S} \mathcal{A}\right\}$.

Algebraic size, IV

$$
M:=\operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}
$$

is a VS with $\operatorname{dim}(M)=\operatorname{card}(\mathbb{N})$.
Apply Lemma A with $\mu=\operatorname{card}(\mathbb{N}), X=A_{\alpha}^{p}(\mathbb{D})$ and $\Gamma=\left\{\langle f\rangle+\{\right.$ polynomials $\left.\}: f \in A_{\alpha}^{p}(\mathbb{D}) \backslash \mathcal{S} \mathcal{A}\right\}$.

- In fact, each $\mathcal{S A}(\varphi, \sigma)$ is maximal dense-lineable and algebrable ...

Algebraic size, IV

$$
M:=\operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}
$$

is a VS with $\operatorname{dim}(M)=\operatorname{card}(\mathbb{N})$.
Apply Lemma A with $\mu=\operatorname{card}(\mathbb{N}), X=A_{\alpha}^{p}(\mathbb{D})$ and $\Gamma=\left\{\langle f\rangle+\{\right.$ polynomials $\left.\}: f \in A_{\alpha}^{p}(\mathbb{D}) \backslash \mathcal{S} \mathcal{A}\right\}$. \square

- In fact, each $\mathcal{S A}(\varphi, \sigma)$ is maximal dense-lineable and algebrable ... but we do not know whether or not these properties are true for $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ [$H(\mathbb{D})$-proofs do not adapt].

Algebraic size, IV

$$
M:=\operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}
$$

is a VS with $\operatorname{dim}(M)=\operatorname{card}(\mathbb{N})$.
Apply Lemma A with $\mu=\operatorname{card}(\mathbb{N}), X=A_{\alpha}^{p}(\mathbb{D})$ and $\Gamma=\left\{\langle f\rangle+\{\right.$ polynomials $\left.\}: f \in A_{\alpha}^{p}(\mathbb{D}) \backslash \mathcal{S} \mathcal{A}\right\}$. \square

- In fact, each $\mathcal{S A}(\varphi, \sigma)$ is maximal dense-lineable and algebrable ... but we do not know whether or not these properties are true for $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ [$H(\mathbb{D})$-proofs do not adapt].

Problem:

Algebraic size, IV

$$
M:=\operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}
$$

is a VS with $\operatorname{dim}(M)=\operatorname{card}(\mathbb{N})$.
Apply Lemma A with $\mu=\operatorname{card}(\mathbb{N}), X=A_{\alpha}^{p}(\mathbb{D})$ and $\Gamma=\left\{\langle f\rangle+\{\right.$ polynomials $\left.\}: f \in A_{\alpha}^{p}(\mathbb{D}) \backslash \mathcal{S} \mathcal{A}\right\}$.

- In fact, each $\mathcal{S A}(\varphi, \sigma)$ is maximal dense-lineable and algebrable ... but we do not know whether or not these properties are true for $\mathcal{S A} \cap A_{\alpha}^{p}(\mathbb{D})$ [$H(\mathbb{D})$-proofs do not adapt].

Problem: Are these sets spaceable?
[Recall: $A \subset X$ TVS is spaceable if \exists closed VS $M \subset X$
with $\operatorname{dim}(M)=+\infty$ and $M \subset A \cup\{0\}$]

Entire functions, I

Definition: A function $f \in H(\mathbb{C})$ is strongly annular [$f \in \mathcal{S} \mathcal{A}_{e}$] provided that
$\lim \sup _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty$.

Entire functions, I

Definition: A function $f \in H(\mathbb{C})$ is strongly annular [$f \in \mathcal{S} \mathcal{A}_{e}$] provided that
$\lim \sup _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty$.

- Trivially, SA-entire functions do exist !: $\lim _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty \Longleftrightarrow f$ is a nonconstant polynomial.

Entire functions, I

Definition: A function $f \in H(\mathbb{C})$ is strongly annular [$f \in \mathcal{S} \mathcal{A}_{e}$] provided that
$\lim \sup _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty$.

- Trivially, SA-entire functions do exist !: $\lim _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty \Longleftrightarrow f$ is a nonconstant polynomial. Hence $\mathcal{S} \mathcal{A}_{e}$ is dense.

Entire functions, I

Definition: A function $f \in H(\mathbb{C})$ is strongly annular [$f \in \mathcal{S} \mathcal{A}_{e}$] provided that
$\lim \sup _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty$.

- Trivially, SA-entire functions do exist !: $\lim _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty \Longleftrightarrow f$ is a nonconstant polynomial. Hence $\mathcal{S \mathcal { A } _ { e }}$ is dense.
- Trivially, $\mathcal{S A}_{e}$ is lineable: $z \mathcal{P} \subset \mathcal{S} \mathcal{A}_{e} \cup\{0\}$.

Entire functions, I

Definition: A function $f \in H(\mathbb{C})$ is strongly annular [$f \in \mathcal{S} \mathcal{A}_{e}$] provided that
$\limsup _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty$.

- Trivially, SA-entire functions do exist !: $\lim _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty \Longleftrightarrow f$ is a nonconstant polynomial. Hence $\mathcal{S \mathcal { A } _ { e }}$ is dense.
- Trivially, $\mathcal{S A}_{e}$ is lineable: $z \mathcal{P} \subset \mathcal{S} \mathcal{A}_{e} \cup\{0\}$.
- [Wiman, 1915] If f is entire, nonconstant and $\limsup _{r \rightarrow \infty} \frac{\log M(f, r)}{r^{1 / 2}}<+\infty$ then $f \in \mathcal{S} \mathcal{A}_{e}$.

Entire functions, I

Definition: A function $f \in H(\mathbb{C})$ is strongly annular [$f \in \mathcal{S} \mathcal{A}_{e}$] provided that
$\limsup _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty$.

- Trivially, SA-entire functions do exist !: $\lim _{r \rightarrow \infty} \min \{|f(z)|:|z|=r\}=+\infty \Longleftrightarrow f$ is a nonconstant polynomial. Hence $\mathcal{S \mathcal { A } _ { e }}$ is dense.
- Trivially, $\mathcal{S A}_{e}$ is lineable: $z \mathcal{P} \subset \mathcal{S} \mathcal{A}_{e} \cup\{0\}$.
- [Wiman, 1915] If f is entire, nonconstant and $\lim \sup _{r \rightarrow \infty} \frac{\log M(f, r)}{r^{1 / 2}}<+\infty$ then $f \in \mathcal{S} \mathcal{A}_{e}$.

Theorem 6: $\mathcal{S} \mathcal{A}_{e}$ is residual and algebrable.
The same for each family $\mathcal{S} \mathcal{A}_{e}(\varphi, \sigma)$.

Entire functions, II

- But the proof of the maximal dense lineability do not adapt to the case $H(\mathbb{C})$. We need the following result, which is more precise than Wiman's:

Entire functions, II

- But the proof of the maximal dense lineability do not adapt to the case $H(\mathbb{C})$. We need the following result, which is more precise than Wiman's:

Lemma B [Pólya, 1922]: If f is entire with
$\rho(f):=\lim \sup _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r} \in(0,1 / 2)$ and $\omega<\cos (\pi \rho)$ then $\exists\left(r_{n}\right) \uparrow \infty$ such that $m\left(f, r_{n}\right)>M\left(f, r_{n}\right)^{\omega}$ for all $n \geq 1$.

Entire functions, II

- But the proof of the maximal dense lineability do not adapt to the case $H(\mathbb{C})$. We need the following result, which is more precise than Wiman's:

Lemma B [Pólya, 1922]: If f is entire with
$\rho(f):=\lim \sup _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r} \in(0,1 / 2)$ and $\omega<\cos (\pi \rho)$ then $\exists\left(r_{n}\right) \uparrow \infty$ such that $m\left(f, r_{n}\right)>M\left(f, r_{n}\right)^{\omega}$ for all $n \geq 1$.
Theorem 7: $\mathcal{S} \mathcal{A}_{e}$ is maximal dense-lineable.

Entire functions, II

- But the proof of the maximal dense lineability do not adapt to the case $H(\mathbb{C})$. We need the following result, which is more precise than Wiman's:

Lemma B [Pólya, 1922]: If f is entire with
$\rho(f):=\lim \sup _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r} \in(0,1 / 2)$ and $\omega<\cos (\pi \rho)$ then $\exists\left(r_{n}\right) \uparrow \infty$ such that $m\left(f, r_{n}\right)>M\left(f, r_{n}\right)^{\omega}$ for all $n \geq 1$.
Theorem 7: $\mathcal{S} \mathcal{A}_{e}$ is maximal dense-lineable.

Sketch of proof:

Entire functions, II

- But the proof of the maximal dense lineability do not adapt to the case $H(\mathbb{C})$. We need the following result, which is more precise than Wiman's:

Lemma B [Pólya, 1922]: If f is entire with
$\rho(f):=\lim \sup _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r} \in(0,1 / 2)$ and $\omega<\cos (\pi \rho)$ then $\exists\left(r_{n}\right) \uparrow \infty$ such that $m\left(f, r_{n}\right)>M\left(f, r_{n}\right)^{\omega}$ for all $n \geq 1$.
Theorem 7: $\mathcal{S} \mathcal{A}_{e}$ is maximal dense-lineable.
Sketch of proof: The trick is to demonstrate the property for the (smaller) class $S(\gamma):=$ $\left\{f \in H(\mathbb{C}): \lim \sup _{r \rightarrow \infty} \frac{m(f, r)}{e^{r \gamma}}=+\infty\right\}$, where $\gamma \in(0,1 / 2)$.

Entire functions, III

Fix $\delta \in(\gamma, 1 / 2)$. Then $g_{0}(z):=\sum_{n=1}^{\infty} n^{-n / \delta} z^{n}$ is entire and satisfies $\lim _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r}=\delta$ ["regular growth"].

Entire functions, III

Fix $\delta \in(\gamma, 1 / 2)$. Then $g_{0}(z):=\sum_{n=1}^{\infty} n^{-n / \delta} z^{n}$ is entire and satisfies $\lim _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r}=\delta$ ["regular growth"]. Since g_{0} is not a polynomial, the functions $f_{\alpha}:=g_{0}(\alpha z)$ $(\alpha>0)$ are linearly independent. Then

Entire functions, III

Fix $\delta \in(\gamma, 1 / 2)$. Then $g_{0}(z):=\sum_{n=1}^{\infty} n^{-n / \delta} z^{n}$ is entire and satisfies $\lim _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r}=\delta$ ["regular growth"]. Since g_{0} is not a polynomial, the functions $f_{\alpha}:=g_{0}(\alpha z)$ $(\alpha>0)$ are linearly independent. Then

$$
M:=\operatorname{span}\left\{f_{\alpha}: \alpha>0\right\}
$$

is a VS of $H(\mathbb{C})$ satisfying $\operatorname{dim}(M)=c$.

Entire functions, III

Fix $\delta \in(\gamma, 1 / 2)$. Then $g_{0}(z):=\sum_{n=1}^{\infty} n^{-n / \delta} z^{n}$ is entire and satisfies $\lim _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r}=\delta$ ["regular growth"]. Since g_{0} is not a polynomial, the functions $f_{\alpha}:=g_{0}(\alpha z)$ $(\alpha>0)$ are linearly independent. Then

$$
M:=\operatorname{span}\left\{f_{\alpha}: \alpha>0\right\}
$$

is a VS of $H(\mathbb{C})$ satisfying $\operatorname{dim}(M)=c$. Using growth regularity + Lemma B one gets $M \subset S(\gamma) \cup\{0\}$.

Entire functions, III

Fix $\delta \in(\gamma, 1 / 2)$. Then $g_{0}(z):=\sum_{n=1}^{\infty} n^{-n / \delta} z^{n}$ is entire and satisfies $\lim _{r \rightarrow \infty} \frac{\log \log M(f, r)}{\log r}=\delta$ ["regular growth"]. Since g_{0} is not a polynomial, the functions $f_{\alpha}:=g_{0}(\alpha z)$ $(\alpha>0)$ are linearly independent. Then

$$
M:=\operatorname{span}\left\{f_{\alpha}: \alpha>0\right\}
$$

is a VS of $H(\mathbb{C})$ satisfying $\operatorname{dim}(M)=c$.
Using growth regularity + Lemma B one gets $M \subset S(\gamma) \cup\{0\}$.
Apply Lemma A with $X=H(\mathbb{C}), \mu=c$ and
$\Gamma=\{\langle f\rangle+\mathcal{P}: f \in H(\mathbb{C}) \backslash S(\gamma)\}$.

Problems

Problems:

Problems

Problems:

- Is $S(\gamma)$ maximal dense-lineable for $\gamma \geq 1 / 2$?

Problems

Problems:

- Is $S(\gamma)$ maximal dense-lineable for $\gamma \geq 1 / 2$?
- Is $\mathcal{S} \mathcal{A}_{e}$ spaceable?

Problems

Problems:

- Is $S(\gamma)$ maximal dense-lineable for $\gamma \geq 1 / 2$?
- Is $\mathcal{S} \mathcal{A}_{e}$ spaceable?

The End

