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Definition of SA

Motivation: Study of functions in H(D) having fast radial
growth. There is not any function f ∈ H(D) such that

lim|z|→1 |f(z)| = +∞.

I What about if we relax the condition
“lim|z|→1 |f(z)| = +∞”?

Definition: A function f ∈ H(D) is strongly annular
[f ∈ SA] provided that

lim supr→1min{|f(z)| : |z| = r} = +∞.
I Hence f ∈ SA ⇐⇒ ∃ a sequence of circles

Cn = {|z| = rn} in D with rn ↑ 1 such that
limn→∞min{|f(z)| : z ∈ Cn} = +∞.
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Algebraic size, I

But ... do these functions really exist?

I YES. [Bonar, 1971]:
Take 0 < an < bn < an+1 < · · · → 1 and n1 := 1, and
choose nk+1 := min{m ∈ N : (bk/ak+1)

m ≤ 1/(3k2)}.
Then

∏∞
k=1(1−

3znk

a
nk
k

) ∈ SA.

I An example with power series: Take
0 < an < bn < an+1 < · · · → 1 and choose (nk) ↑ ∞

such that (rk/sk)
nk ≥ k(1 +

∑k−1
j=1(rk/sj)

nj) and
(rk−1/sk)

nk ≤ 1/2k (k ≥ 1). Then
∑∞

k=1(z/sk)
nk ∈ SA.

I There are also explicit constructions of series
∑∞

n=0 anz
n ∈ SA with an → 0.

[Bonar, Carroll and Piranian, 1977].
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Topological size, I

I A very curious fact [Howell, 1975]: There is a SA
function f(z) =

∑∞
n=0 anz

n such that an ∈ {1,−1}
(n ≥ 0).

I But ... can we get a great deal of SA functions?
I [Bonar and Carroll, 1975]:

SA is a residual subset of (H(D), τc).
I A digression: coming back to an example from the

last slide, if
X := {f(z) =

∑∞
n=0 anz

n : {an}n≥0 ⊂ {1,−1}} then
SA ∩X is a residual subset of (X, τc) [Howell].

I To sum up: SA is topologically large.
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Topological size, II

I Are there strict vector subspaces of H(D) whose
SA-functions form a residual subset?

Theorem 1: Assume that Y is a Baire topological vector
space with Y ⊂ H(D) such that Y is endowed with a
topology τ which is finer that τc|Y . If SA ∩ Y 6= ∅ and
there is a dense subset D of Y such that each function
f ∈ D is bounded on D, then SA ∩ Y is residual in Y .
I Concrete examples?
I Hardy spaces Hp(D) := {f ∈ H(D) :

sup0≤r<1

∫ 2π
0 |f(reiθ)|p dθ < +∞} (p > 0) and H∞(D)

are discarded, due to Fatou’s theorem.
In fact, Hp(D) ∩ SA = ∅.
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Topological size, III

I A positive example: In 2007, Redett constructed a
SA-function in each generalized Bergman space,
defined for 0 < p < +∞, α > −1 as Ap

α(D) :=
{

f ∈ H(D) :
∫ 1
0

∫ 2π
0 |f(reiθ)|p(1− r)αr dθdr < +∞

}

.

I For the construction, Redett used the following result
[Buckley, Koskela and Vukotic, 1999]:
Let (pn) ⊂ N with pn+1 > 2pn (n ≥ 1), and
f(z) =

∑∞
n=0 anz

pn ∈ H(D). Then f ∈ Ap
α(D) if and

only if
∑∞

n=1 |an|
pp−α−1

n < +∞.
I Note that Ap

α(D) is a Fréchet space [even a Banach
space if p ≥ 1, and a Hilbert space if p = 2].

Corollary: SA ∩ Ap
α(D) is residual in Ap

α(D).
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Topological size, IV

I The sequence of radii σ = (rn) ↑ 1 and the speed of
growth, given by a continuous function
ϕ : D → (0,+∞) can be prescribed:

Theorem 2: For σ and ϕ as above, the set SA(ϕ, σ) :=
{f ∈ H(D) : limn→∞min|z|=rn |f(z)|/ϕ(z) = +∞}

is residual in H(D).
I What can be said about the algebraic size of SA?

Note SA is not a VS: take f ∈ SA and consider
0 = f + (−f).

I In the first decade of the present millenium, Aron,
Bayart, Gurariy, Seoane, Quarta and LBG coined the
following notions.
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Algebraic size, I

Definition: Assume that X is a TVS and µ is a cardinal
number. A subset A ⊂ X is called:

• µ-lineable if A ∪ {0} contains an infinite dimensional
vector space M with dim(M) = µ,

• dense-lineable whenever A ∪ {0} contains a dense
vector subspace of X,

• maximal dense-lineable if A ∪ {0} contains a dense
vector subspace M of X with dim(M) = dim(X)
[⇐⇒ dim (M) = c, if X a separable F-space],

• spaceable whenever A ∪ {0} contains a closed
infinite dimensional vector subspace of X, and

• algebrable if X is a function space and A ∪ {0}
contains some infinitely generated algebra.
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Algebraic size, II

Lemma A [LBG, 2010]: Assume that X is a metrizable
separable TVS. Suppose that Γ is a family of linear
subspaces of X such that

⋂

S∈Γ S is dense in X and
⋂

S∈Γ(X \ S) is µ-lineable, where µ is an infinite cardinal
number. Then

⋂

S∈Γ(X \ S) ∪ {0} contains a dense
µ-dimensional VS.

Theorem 3: SA is maximal dense-lineable.

Sketch of proof: Apply Theorem 2 to ϕ(z) := exp 1
1−|z| , fix

any σ and select f0 ∈ SA(ϕ, σ). Then
M := span {exp(α ·)f0 : α > 0}

is a VS with dim(M) = c and M ⊂ SA ∪ {0}.
Apply Lemma A with X = H(D), µ = c and
Γ = {〈f〉+ {polynomials} : f ∈ H(D) \ SA}. �
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Algebraic size, III

Theorem 4: SA is algebrable.

Sketch of proof: Fix any σ and ϕ0(z) ≡ 1. Apply
Theorem 2 to select f1 ∈ SA(ϕ0, σ). By induction and
Theorem 2, if f1, . . . , fN−1, ϕ0, . . . , ϕN−2 have been
already determined, define ϕN−1(z) := expM(fN−1, |z|)
and choose fN ∈ SA(ϕN−1, σ). Consider the algebra
generated by (fn). �

Theorem 5: SA ∩ Ap
α(D) is dense-lineable in Ap

α(D).

Sketch of proof: Use Buckley–Koskela–Vukotic’s result
to produce a power series

∑∞
n=0 anz

n ∈ SA ∩ Ap
α(D)

[coefficients an should be bigger enough than a0, ..., an−1

but not too much!] such that after an infinite partitioning,
the resulting fn’s are still in SA. Then
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Algebraic size, IV

M := span {fn : n ∈ N}

is a VS with dim (M) = card (N).

Apply Lemma A with µ = card(N), X = Ap
α(D) and

Γ = {〈f〉+ {polynomials} : f ∈ Ap
α(D) \ SA}. �

I In fact, each SA(ϕ, σ) is maximal dense-lineable and
algebrable ... but we do not know whether or not
these properties are true for SA ∩Ap

α(D)
[H(D)-proofs do not adapt].

Problem: Are these sets spaceable?

[Recall: A ⊂ X TVS is spaceable if ∃ closed VS M ⊂ X
with dim(M) = +∞ and M ⊂ A ∪ {0}]
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Entire functions, I

Definition: A function f ∈ H(C) is strongly annular
[f ∈ SAe] provided that

lim supr→∞min{|f(z)| : |z| = r} = +∞.

I Trivially, SA-entire functions do exist !:
limr→∞min{|f(z)| : |z| = r} = +∞ ⇐⇒ f is a
nonconstant polynomial.
Hence SAe is dense.

I Trivially, SAe is lineable: zP ⊂ SAe ∪ {0}.
I [Wiman, 1915] If f is entire, nonconstant and

lim supr→∞
logM(f,r)

r1/2
< +∞ then f ∈ SAe.

Theorem 6: SAe is residual and algebrable.
The same for each family SAe(ϕ, σ).
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Entire functions, II

I But the proof of the maximal dense lineability do not
adapt to the case H(C). We need the following
result, which is more precise than Wiman’s:

Lemma B [Pólya, 1922]: If f is entire with
ρ(f) := lim supr→∞

log logM(f,r)
log r ∈ (0, 1/2) and ω < cos(πρ)

then ∃(rn) ↑ ∞ such that m(f, rn) > M(f, rn)
ω for all

n ≥ 1.

Theorem 7: SAe is maximal dense-lineable.

Sketch of proof: The trick is to demonstrate the property
for the (smaller) class S(γ) :=

{f ∈ H(C) : lim supr→∞
m(f,r)
erγ

= +∞}, where γ ∈ (0, 1/2).
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Lemma B [Pólya, 1922]: If f is entire with
ρ(f) := lim supr→∞

log logM(f,r)
log r ∈ (0, 1/2) and ω < cos(πρ)

then ∃(rn) ↑ ∞ such that m(f, rn) > M(f, rn)
ω for all

n ≥ 1.

Theorem 7: SAe is maximal dense-lineable.

Sketch of proof: The trick is to demonstrate the property
for the (smaller) class S(γ) :=

{f ∈ H(C) : lim supr→∞
m(f,r)
erγ

= +∞}, where γ ∈ (0, 1/2).

Strongly annular functions – 13/15



Entire functions, II

I But the proof of the maximal dense lineability do not
adapt to the case H(C). We need the following
result, which is more precise than Wiman’s:
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Entire functions, III

Fix δ ∈ (γ, 1/2). Then g0(z) :=
∑∞

n=1 n
−n/δzn is entire and

satisfies limr→∞
log logM(f,r)

log r = δ [“regular growth”].

Since g0 is not a polynomial, the functions fα := g0(αz)
(α > 0) are linearly independent. Then

M := span {fα : α > 0}

is a VS of H(C) satisfying dim(M) = c.
Using growth regularity + Lemma B one gets
M ⊂ S(γ) ∪ {0}.
Apply Lemma A with X = H(C), µ = c and
Γ = {〈f〉+ P : f ∈ H(C) \ S(γ)}. �
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Since g0 is not a polynomial, the functions fα := g0(αz)
(α > 0) are linearly independent. Then

M := span {fα : α > 0}

is a VS of H(C) satisfying dim(M) = c.
Using growth regularity + Lemma B one gets
M ⊂ S(γ) ∪ {0}.
Apply Lemma A with X = H(C), µ = c and
Γ = {〈f〉+ P : f ∈ H(C) \ S(γ)}. �
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Problems

Problems:

• Is S(γ) maximal dense-lineable for γ ≥ 1/2?

• Is SAe spaceable?

The End
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