A brief review on Brennan's conjecture

Georgios Stylogiannis

Department of Mathematics, Aristotle University of Thessaloniki, Greece.

Malaga, July 10-14, 2011

1. Basic notation

$$
\begin{aligned}
& \mathbb{C}_{\infty}=\mathbb{C} \cup\{\infty\}, \quad \text { The extened complex plane. } \\
& \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}, \quad \text { The unit disc. } \\
& \partial \mathbb{D}=\{z \in \mathbb{C}:|z|=1\}, \text { The unit circle. } \\
& \mathbb{D}_{e}=\left\{z \in \mathbb{C}_{\infty}:|z|>1\right\}, \text { The exterior of the unit disc. } \\
& \mathcal{H}(\mathbb{D})=\{f: \mathbb{D} \rightarrow \mathbb{C}, f \text { analytic }\} .
\end{aligned}
$$

We consider $f: \mathbb{D} \rightarrow \mathbb{C}$ analytic and univalent.

Theorem (Koebe)

Let $f: \mathbb{D} \rightarrow \mathbb{C}$ univalent, then for $z \in \mathbb{D}$
(a) $\left|f^{\prime}(0)\right| \frac{|z|}{(1+|z|)^{2}} \leq|f(z)-f(0)| \leq\left|f^{\prime}(0)\right| \frac{|z|}{(1-|z|)^{2}}$,
(b) $\quad\left|f^{\prime}(0)\right| \frac{1-|z|}{(1+|z|)^{3}} \leq\left|f^{\prime}(z)\right| \leq\left|f^{\prime}(0)\right| \frac{1+|z|}{(1-|z|)^{3}}$.

Classes of analytic functions

- $S=\left\{f \in \mathcal{H}(\mathbb{D}): f\right.$ univalent and $\left.f(0)=f^{\prime}(0)-1=0\right\}$

Example 1. The Koebe function

$$
k(z)=\frac{z}{(1-z)^{2}}, \quad z \in \mathbb{D}
$$

with range $k(\mathbb{D})=\mathbb{C} \backslash(-\infty,-1 / 4]$.

- $S_{b}=\{f \in \mathcal{H}(\mathbb{D}): f$ univalent and bounded with $f(0)=0\}$
- $\Sigma=\left\{f: \mathbb{D}_{e} \rightarrow \mathbb{C}_{\infty}: f\right.$ univalent with $\left.f(z)=z+b_{0}+\Sigma_{n=1}^{\infty} b_{n} z^{-n}\right\}$

Example 2.

$$
f(z)=z+\frac{1}{z}, \quad z \in \mathbb{D}_{e}
$$

with range $f\left(\mathbb{D}_{e}\right)=\mathbb{C}_{\infty} \backslash[-2,2]$.

Brennan's Conjecture

Let G be a simply connected planar domain and $g: G \rightarrow \mathbb{D}$ conformal. The conjecture is that, for all such G and g,

$$
\begin{equation*}
\int_{G}\left|g^{\prime}\right|^{p} d A<\infty \tag{1}
\end{equation*}
$$

holds for $4 / 3<p<4$. It is an easy consequence of the Koebe distortion theorem that (1) holds when $4 / 3<p<3$. Brennan (1978) extended this to $4 / 3<p<3+\delta$ where $\delta>0$, and conjectured that (1) holds for $4 / 3<p<4$.

The roots of the conjecture can be found in the work of T. A. Metzger (1973) in connection with a question in approximation theory.

Brennan's conjecture can also be formulated for analytic and univalent maps of \mathbb{D} by setting $f=g^{-1}$. Thus the conjecture becomes:

$$
\begin{equation*}
\int_{\mathbb{D}}\left|f^{\prime}\right|^{p} d A<\infty \tag{2}
\end{equation*}
$$

for $-2<p<2 / 3$ and for all univalent $f: \mathbb{D} \rightarrow \mathbb{C}$.
This is known for the range $-1,78 \lesssim p<2 / 3$ (S. Shimorin (2005)).

Example 3.

(i) The Koebe function $k(z): \mathbb{D} \rightarrow \mathbb{C}$, where

$$
k(z)=\frac{z}{(1-z)^{2}}, \quad z \in \mathbb{D}
$$

shows that the range of p cannot be extended outside ($-2,2 / 3$).
(ii) The conjecture holds for close to convex domains. This is due to B. Dahlberg and J. Lewis (1978).

Let $f: \mathbb{D} \rightarrow \mathbb{C}$ univalent and $t \in \mathbb{R}$. The integral means of f^{\prime} is

$$
\begin{equation*}
M_{t}\left(r, f^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{t} d \theta, \quad(0 \leq r<1) \tag{3}
\end{equation*}
$$

Define

$$
\begin{equation*}
\beta_{f}(t)=\underset{r \rightarrow 1}{\limsup } \frac{\log M_{t}\left(r, f^{\prime}\right)}{\log \frac{1}{1-r}}, \quad(t \in \mathbb{R}) \tag{4}
\end{equation*}
$$

Thus $\beta_{f}(t)$ is the smallest number such that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{t} d \theta=O\left(\frac{1}{(1-r)^{\beta_{f}(t)+\varepsilon}}\right), \quad(r \rightarrow 1) \tag{5}
\end{equation*}
$$

for every $\varepsilon>0$. The function β_{f} is called the integral means spectrum of f.

Example 4 (Pommerenke). Let $f(\mathbb{D})$ be a heart-shaped domain with an inward-pointing cusp and an outward-pointing cusp. Then

$$
\beta_{f}(t)= \begin{cases}|t|-1, & \text { for }|t| \geq 1 \tag{6}\\ 0, & \text { for }|t|<1\end{cases}
$$

Proposition (3.1)

The function β_{f} is continuous and convex in \mathbb{R}. Moreover if the domain $G=f(\mathbb{D})$ is bounded then
(i) $\beta_{f}(t \pm s) \leq \beta_{f}(t)+s$, for $t \neq 0, s \geq 0$,
(ii) $\beta_{f}(t) \leq t-1$, for $t \geq 2$.

For $-\infty<t<+\infty$, the universal integral means spectrum of bounded univalent functions is defined as follows:

$$
B_{S_{b}}(t)=\sup \left\{\beta_{f}(t): f \text { is bounded and univalent in } \mathbb{D}\right\} .
$$

Theorem (Properties of $B_{S_{b}}$)

The following hold:
(i) $B_{S_{b}}(t)$ is a convex function,
(ii) $B_{S_{b}}(t)=t-1$ for $t \geq 2$, [Pommerenke (1999)]
(iii) $B_{S_{b}}(t)=t-1+O((t-2))^{2}$ as $t \rightarrow 2$, [Jones and Makarov (1995)],
(iv) $B_{S_{b}}(t) \geq 0.117 t^{2}$, for small $|t|,[$ Makarov (1986) and Rohde (1989)],
(v) $B_{S_{b}}(t) \geq t^{2} / 5$, for $0<t \leq \frac{2}{5}$, [Kayumov (2006)].

Remark. The following are equivalent:
(i) Brennan's conjecture is true,
(ii) $B_{S_{b}}(-2)=1$,
(iii) $B_{S_{b}}(t)=|t|-1$, for $t \leq-2$.
$(i) \Leftrightarrow(i i)$. Assume that the conjecture is true. Then because the integral means $M_{t}\left(r, f^{\prime}\right)$ are non decreasing in r,

$$
\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{t} d \theta \leq \frac{1}{(1-r)} \int_{\{r<|z|<1\}}\left|f^{\prime}(z)\right|^{t} d A(z)
$$

and $B_{S_{b}}(t) \leq 1$. Therefore by continuity $B_{S_{b}}(-2) \leq 1$ and since $B_{S_{b}}(t) \geq|t|-1$ for $|t| \geq 1$ by the heart-shaped example, we have

$$
B_{S_{b}}(-2)=1
$$

Conversely assume $B_{S_{b}}(-2)=1$ and thus $B_{S}(-2)=1$. Let $-2<t<0$. Then $B_{S}(t)<\alpha<1$ by convexity, so that for all $f \in S$

$$
\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{t} d \theta \leq C \frac{1}{(1-r)^{\alpha}}
$$

Then an application of Fubini's theorem implies Brennan's conjecture.
(ii) \Leftrightarrow (iii). Since

$$
|t|-1 \leq B_{S_{b}}(t) \leq B_{S_{b}}(-2)+|t|-2, \quad \text { for } t \leq-2
$$

the equivalence of (ii) and (iii) is obvious.

Towards this direction L. Carleson and N. G. Makarov (1994) proved (iii) for large $|t|$, namely:

Theorem (Carleson and Makarov)
There exists a $t_{0} \leq-2$ such that

$$
B_{S_{b}}(t)=|t|-1, \quad \text { for } \quad t \leq t_{0}
$$

In (1999) N. G. Makarov gave a complete description of the functions that may occur as $\beta_{f}(t)$.

Theorem (Makarov)

Let $\beta: \mathbb{R} \rightarrow[0,+\infty)$ be convex. Then there exists a bounded univalent function f such that $\beta=\beta_{f}$, if and only if:
(i) $\beta(t) \leq B_{S_{b}}(t)$ for $-\infty<t<+\infty$,
(ii) $\left|\beta^{\prime}(t \pm 0)\right| \leq(\beta(t)+1) /|t|$ for $t \neq 0$.

In (1996) P. Kraetzer using computational methods proposed the following conjecture.

Kraetzer conjecture: $B_{S_{b}}(t)=t^{2} / 4$, for $|t| \leq 2$.

This would imply that

$$
B_{S_{b}}(t)= \begin{cases}t^{2} / 4, & \text { for }|t| \leq 2 \\ |t|-1, & \text { for }|t|>2\end{cases}
$$

Kraetzer's conjecture reduces to Brennan's conjecture for $t \leq-2$ and moreover states that

$$
B_{S_{b}}(t)=t-1+(t-2)^{2} / 4
$$

which is in agreement with the known properties of $B_{S_{b}}$.
Furthermore $t^{2} / 4$ is the only polynomial of degree at most 3 that satisfies the known values:

$$
B_{S_{b}}(0)=B_{S_{b}}^{\prime}(0)=0, \quad B_{S_{b}}(2)=B_{S_{b}}^{\prime}(2)=1
$$

For the other classes of functions i.e S and Σ, we can define $\beta_{f}(t)$ in an analogous way. Thus

$$
B_{S}(t)=\sup \left\{\beta_{f}(t): f \in S\right\}
$$

and

$$
B_{\Sigma}(t)=\sup \left\{\beta_{f}(t): f \in \Sigma\right\} .
$$

Theorem (3.1)

We have
(i) $B_{\Sigma}(t)=B_{S_{b}}(t)$, for $t \in \mathbb{R},[K$ raetzer (1995)],
(ii) $B_{S}(t)=\max \left\{B_{S_{b}}(t), 3 t-1\right\}$, [Makarov (1999)],
(iii) $B_{S}(t)=3 t-1$, for $2 / 5 \leq t<\infty$, [Feng and MacGregor (1976)].

Now since for univalent f the derivative f^{\prime} is never zero in \mathbb{D}, we can define $\left(f^{\prime}(z)\right)^{\tau}$ for arbitrary $\tau \in \mathbb{C}$ and thus the notions of $\beta_{f}(\tau)$ and $B(\tau)$ are well defined.

Theorem (3.2)

We have:
(i) $B_{S_{b}}(\tau)=B_{\Sigma}(\tau)$, for $\tau \in \mathbb{C}$, [Hedenmalm and Sola (2008)],
(ii) $B_{S}(\tau)=B_{\Sigma}(\tau)$, for $\operatorname{Re} \tau \leq 0$, [Binder (1998)],
(iii) $B_{S}(\tau)=\max \left\{B_{\Sigma}(\tau),|\tau|+2 \operatorname{Re} \tau-1\right\}$, for $\operatorname{Re} \tau>0 \quad[$ Binder (1998)],
(iv) $B_{S_{b}}(2-\tau) \leq 1-\operatorname{Re} \tau+\left(9 e^{2} / 2+o(1)\right)|\tau|^{2} \log |\tau|$, as $|\tau| \rightarrow 0$, [Baranov and Hedenmalm (2006)].

The Brennan conjecture in the complex case as suggested by J. Becker and Ch. Pommerenke (1987) is whether

$$
B_{S_{b}}(\tau)=1, \quad \text { for all } \quad|\tau|=2
$$

For the universal integral means spectrum I. A. Binder conjectured:

$$
B_{S_{b}}(\tau)=\left\{\begin{array}{lc}
|\tau|^{2} / 4, & \text { for }|\tau| \leq 2 \\
|\tau|-1, & \text { for }|\tau|>2
\end{array}\right.
$$

To this direction I. A. Binder in (2009) proved the following theorem:

Theorem (Binder)

For each $\theta, 0 \leq \theta<2 \pi$ there exists $T_{\theta}>0$ such that

$$
B_{S_{b}}\left(t e^{i \theta}\right)=t-1, \quad \text { for } \quad t \geq T_{\theta}
$$

The Bergman space A_{α}^{p}

For $0<p<+\infty$ and $\alpha>-1$, the weighted Bergman space A_{α}^{p} consists of those $f \in \mathcal{H}(\mathbb{D})$ with the property

$$
\|f\|_{p, \alpha}^{p}=(\alpha+1) \int_{\mathbb{D}}|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha} d A(z)<\infty
$$

where $d A$ is the normalized area measure on \mathbb{D}.
For $1 \leq p<\infty$ and $\alpha>-1$ fixed, A_{α}^{p} is a Banach space and for $p=2, A_{\alpha}^{2}$ is a Hilbert space with inner product given by

$$
\langle f, g\rangle=(\alpha+1) \int_{\mathbb{D}} f(z) \overline{g(z)}\left(1-|z|^{2}\right)^{\alpha} d A(z)
$$

The reproducing kernel of A_{α}^{2} at the point $a \in \mathbb{D}$ is

$$
K_{a}(z)=\frac{1}{(1-\bar{a} z)^{2+\alpha}}, \quad z \in \mathbb{D}
$$

Thus for every $f \in A_{\alpha}^{2}$ and every $a \in \mathbb{D}$ we have

$$
\left\langle f, K_{a}\right\rangle=f(a)
$$

For $\alpha=0$, we get the standard unweighted Bergman space A^{p}.

A_{α}^{p}-Carleson measures

A finite measure μ in \mathbb{D} is called A_{α}^{p}-Carleson measure if the inclusion map $i(f)=f: A_{\alpha}^{p} \rightarrow L^{p}(\mathbb{D}, d \mu)$ is continuous.
Equivalently if the inequality

$$
\int_{\mathbb{D}}|f(z)|^{p} d \mu(z) \leq C \int_{\mathbb{D}}|f(z)|^{p}(1-|z|)^{\alpha} d A(z)
$$

holds for every $f \in A_{\alpha}^{p}$.

Theorem (A_{α}^{p}-Carleson measures)

The following are equivalent:
(i) The measure μ is an A_{α}^{p}-Carleson measure.
(ii) $\int_{\mathbb{D}} \frac{d \mu(z)}{|1-\bar{\lambda} z|^{\gamma}} \leq \frac{C(\mu, \gamma)}{\left(1-|\lambda|^{2}\right)^{\gamma-\alpha-2}}$, for some $\gamma>\alpha+2$ and any $\lambda \in \mathbb{D}$.

Integral means spectrum revised

The integral means spectrum admits an easy description in terms of weighted Bergman spaces A_{α}^{2}. Namely if $\left(f^{\prime}\right)^{t / 2} \in A_{\alpha}^{2}$ then

$$
\beta_{f}(t) \leq \alpha+1
$$

On the other hand if $\beta_{f}(t) \leq \beta_{0}$ then

$$
\left(f^{\prime}\right)^{t / 2} \in A_{\alpha}^{2}
$$

for any $\alpha>\beta_{0}-1$. Therefore

$$
\begin{equation*}
\beta_{f}(t)=\inf \left\{\alpha>0:\left(f^{\prime}\right)^{t / 2} \in A_{\alpha-1}^{2}\right\} \tag{7}
\end{equation*}
$$

Shimorin's approach (2005)

Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$, with $\varphi \in S_{b}$. We define the weighted composition operator W_{φ}^{t} on $\mathcal{H}(\mathbb{D})$ as follows:

$$
W_{\varphi}^{t}(f)(z)=\left(\varphi^{\prime}(z)\right)^{t} f(\varphi(z)), \quad z \in \mathbb{D} .
$$

Theorem (Boundedness)

Let φ be a univalent self-map of \mathbb{D}. Then the following are equivalent:
(i) W_{φ}^{t} is bounded on A_{α}^{p}.
(ii) The measure μ defined as

$$
\mu(E):=\int_{\varphi^{-1}(E)}\left|\varphi^{\prime}(z)\right|^{p t}\left(1-|z|^{2}\right)^{\alpha} d A(z)
$$

is an A_{α}^{p}-Carleson measure.

Observe that

$$
W_{\varphi}^{t} \circ W_{\psi}^{t}=W_{\psi \circ \varphi}^{t}, \quad \text { (semigroup property) }
$$

S. Shimorin was interested in the restriction of $W_{\varphi}^{t / 2}$ on the weighted Bergman spaces A_{α}^{2}. He introduced the following functions:

$$
\begin{equation*}
\alpha_{\varphi}(t)=: \inf \left\{\alpha>0: W_{\varphi}^{t / 2} \text { is bounded on } A_{\alpha-1}^{2}\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
A(t):=\sup _{\varphi} \alpha_{\varphi}(t) \tag{9}
\end{equation*}
$$

By applying the operator $W_{\varphi}^{t / 2}$ to the constant function 1 it is easy to see that

$$
\beta_{\varphi}(t) \leq \alpha_{\varphi}(t) \quad \text { and } \quad B_{S_{b}}(t) \leq A(t)
$$

The functions $\alpha_{\varphi}(t)$ and $A(t)$ have the following properties:

Proposition (Properties of $\alpha_{\varphi}(t)$ and $A(t)$)

The following holds:
(i) The functions $\alpha_{\varphi}(t)$ and $A(t)$ are both convex.
(ii) $\alpha_{\varphi}(t \pm r) \leq \alpha_{\varphi}(t)+r$, for $r \geq 0$ and $t \in \mathbb{R}$.
(iii) $\left|A\left(t_{1}\right)-A\left(t_{2}\right)\right| \leq\left|t_{1}-t_{2}\right|$.

Since W_{φ}^{1} is bounded on A^{2}, we have

$$
A(2) \leq 1,
$$

and thus

$$
A(t)=A(t-2+2) \leq t-2+A(2) \leq t-1, \quad \text { for } \quad t \geq 2
$$

Since $A(t) \geq B_{S_{b}}(t)=t-1$, for $t \geq 2$, we have

$$
A(t)=t-1, \quad \text { for } \quad t \geq 2
$$

Theorem (Shimorin (2005))

Let t_{0} be the critical value in Carleson-Makarov theorem then

$$
A(t)=|t|-1, \quad \text { for } \quad t \leq t_{0}
$$

Remark. According to Shimorin's theorem, the validity of Brennan's conjecture is equivalent to the fact that

$$
A(-2)=1
$$

or to the property

$$
W_{\varphi}^{t} \text { is bounded on } A^{2}, \text { for every } t \in(-1,0)
$$

The proof of the theorem is based on the following result of Bertilsson:

Theorem (Bertilsson) For $t \leq t_{0}$, there is a constant $C=C(t)$ such that for any $f \in S$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|r^{2} \frac{f^{\prime}\left(r e^{i \theta}\right)}{f^{2}\left(r e^{i \theta}\right)}\right|^{t} d \theta \leq \frac{C}{(1-r)^{|t|-1}} \tag{10}
\end{equation*}
$$

Proof. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ univalent with $\varphi(0)=0$. Fix $\lambda \in \mathbb{D}$. Thus

$$
f(z)=\frac{\varphi^{\prime}(0)^{-1} \varphi(z)}{(1-\bar{\lambda} \varphi(z))^{2}} \in S
$$

Then for $t \leq t_{0}$, we have by Bertilsson's theorem

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\left|\varphi^{\prime}\left(r e^{i \theta}\right)\right|^{t}}{\left|1-\bar{\lambda} \varphi\left(r e^{i \theta}\right)\right|^{|t|}} d \theta & \leq C(\varphi, t) \int_{0}^{2 \pi}\left|r^{2} \frac{f^{\prime}\left(r e^{i \theta}\right)}{f^{2}\left(r e^{i \theta}\right)}\right|^{t} d \theta \\
& \leq \frac{C_{1}(\varphi, t)}{(1-r)^{|t|-1}}
\end{aligned}
$$

where

$$
\frac{z^{2} f^{\prime}(z)}{f(z)^{2}}=\varphi^{\prime}(0)\left(\frac{z}{\varphi(z)}\right)^{2} \varphi^{\prime}(z)(1+\bar{\lambda} \varphi(z))(1-\bar{\lambda} \varphi(z))
$$

For $0<\varepsilon<1$ and $\gamma>|t|+\varepsilon+1$, we have

$$
\begin{aligned}
& \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{t}}{|1-\bar{\lambda} \varphi(z)|^{\gamma}}\left(1-|z|^{2}\right)^{|t|-2+\varepsilon} d A(z) \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \frac{\left|\varphi^{\prime}\left(r e^{i \theta}\right)\right|^{t}}{\left|1-\bar{\lambda} \varphi\left(r e^{i \theta}\right)\right|^{|t|}} \frac{\left(1-r^{2}\right)^{|t|-2+\varepsilon}}{\left|1-\bar{\lambda} \varphi\left(r e^{i \theta}\right)\right|^{\gamma-|t|}} 2 r d \theta d r \\
& \leq C_{2} \int_{0}^{1} \int_{0}^{2 \pi} \frac{\left|\varphi^{\prime}\left(r e^{i \theta}\right)\right|^{t}}{\left|1-\bar{\lambda} \varphi\left(r e^{i \theta}\right)\right|^{|t|}} \frac{\left(1-r^{2}\right)^{|t|-2+\varepsilon}}{(1-r|\lambda|)^{\gamma-|t|}} d \theta d r \\
& \leq C_{3} \int_{0}^{1} \frac{(1-r)^{\varepsilon-1}}{(1-r|\lambda|)^{\gamma-|t|}} d r \\
& =C_{3}\left(\int_{0}^{|\lambda|}+\int_{|\lambda|}^{1}\right) \frac{(1-r)^{\varepsilon-1}}{(1-r|\lambda|)^{\gamma-|t|}} d r=C_{3}\left(I_{1}+I_{2}\right)
\end{aligned}
$$

Moreover

$$
I_{1} \leq(1-|\lambda|)^{\varepsilon-1} \int_{0}^{|\lambda|} \frac{d r}{(1-r|\lambda|)^{\gamma-|t|}} \leq \frac{C_{4}}{(1-|\lambda|)^{\gamma-|t|-\varepsilon}}
$$

and

$$
I_{2} \leq(1-|\lambda|)^{|t|-\gamma} \int_{|\lambda|}^{1}(1-r)^{\varepsilon-1} d r=\frac{C_{5}}{(1-|\lambda|)^{\gamma-|t|-\varepsilon}}
$$

Thus we have

$$
\int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{t}}{|1-\bar{\lambda} \varphi(z)|^{\gamma}}\left(1-|z|^{2}\right)^{|t|-2+\varepsilon} d A(z) \leq \frac{C_{6}}{(1-|\lambda|)^{\gamma-|t|-\varepsilon}},
$$

where the constant C_{6} is independent of λ. Thus by the boundedness theorem and the A_{α}^{p}-Carleson measures theorem the operator $W_{\varphi}^{t / 2}$ is bounded on $A_{|t|-2+\varepsilon}^{2}$, which shows
$\alpha_{\varphi}(t) \leq|t|-1+\varepsilon$. Hence by letting $\varepsilon \rightarrow 0$ the proof is complete.

W. Smith 2005

Let G be a simply connected planar domain and $\tau: \mathbb{D} \rightarrow G$ be a conformal map. For $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ analytic, W. Smith defined the weighted composition operator given by

$$
A_{\varphi, p}(f)(z)=\left(Q_{\varphi}(z)\right)^{p} f(\varphi(z)), \quad \text { where } \quad Q_{\varphi}(z)=\frac{\tau^{\prime}(\varphi(z))}{\tau^{\prime}(z)}
$$

He showed that the Brennan conjecture is equivalent to the problem of determining for which values of the parameter p there is a choice of φ that make $A_{\varphi, p}$ compact on A^{2}.

Theorem (Smith (2005))

Let τ be holomorphic and univalent on \mathbb{D} and let $p \in \mathbb{R}$. $\left(1 / \tau^{\prime}\right)^{p} \in A^{2}$ if and only if there exists an analytic self $\operatorname{map} \varphi$ of \mathbb{D} such that $A_{\varphi, p}$ is compact on A^{2}.

Sketch of the proof.

(\Longrightarrow) If $\left(1 / \tau^{\prime}\right)^{p} \in A^{2}$ then for $b \in \mathbb{D}$, let $\varphi_{b}(z) \equiv b$. Thus

$$
A_{\varphi, p}(z)=\left(\tau^{\prime}(b)\right)^{p} f(b) /\left(\tau^{\prime}\right)^{p}
$$

and therefore $A_{\varphi, p}$ is compact on A^{2} as a bounded rank one operator.
(\Longleftarrow) Suppose that $A_{\varphi, p}$ is compact on A^{2}. Then it follows that:
(i) φ is not an automorphism,
(ii) φ must have a fixed point in \mathbb{D}.

The first assertion follows from the fact that if φ was an automorphism then $C_{\varphi^{-1}}$ is well defined and

$$
\left(A_{\varphi, p} C_{\varphi^{-1}}\right)(f)(z)=\left(Q_{\varphi}(z)\right)^{p} f(z)
$$

But the only compact multiplication operator is the one with symbol identically 0 . So $A_{\varphi, p} C_{\varphi^{-1}}$ is not compact and since $C_{\varphi^{-1}}$ is bounded on $A^{2}, A_{\varphi, p}$ is not compact.

The second assertion is proved again by contradiction. The main steps are:
(i) If φ does not have a fixed point in \mathbb{D}, then by the Denjoy Wolff theorem there exist a unique boundary fixed point ζ with the angular derivative $\varphi^{\prime}(\zeta)$ finite.
(ii) $A_{\varphi, p}$ is compact $\Longrightarrow A_{\varphi, p}^{*}$ is compact.
(iii) Since $A_{\varphi, p}^{*}$ is compact we have $\left\|A_{\varphi, p}^{*} k_{a}\right\| \rightarrow 0$, as $|a| \rightarrow 1$, where $\left\{k_{a}: a \in \mathbb{D}\right\}$ is the set of the normalized reproducing kernels of A^{2}.
(iv) The existence of a sequence $\left\{a_{n}\right\} \in \mathbb{D}$ with $a_{n} \rightarrow \zeta$ nontangentially and $\liminf _{n \rightarrow \infty}\left\|A_{\varphi, p}^{*} k_{a_{n}}\right\| \geq C\left(\zeta, \varphi^{\prime}(\zeta), p\right)>0$.
Let $b \in \mathbb{D}$ the fixed point of φ, then

$$
A_{\varphi, p}^{*} K_{b}=K_{b}
$$

Hence the number 1 is an eigenvalue of $A_{\varphi, p}^{*}$ and so it is in the spectrum of $A_{\varphi, p}$. But $A_{\varphi, p}$ is compact, thus 1 is an eigenvalue of $A_{\varphi, p}$. Therefore there exists a nonzero $f \in A^{2}$ such that

$$
A_{\varphi, p} f=f
$$

or equivalently the function $g=\left(\tau^{\prime}\right)^{p} f$ satisfies

$$
g \circ \varphi=g .
$$

We already know that φ is not an automorphism, so its iterates $\varphi_{n} \rightarrow b(n \rightarrow \infty)$ uniformly on compact subsets of \mathbb{D}. Hence for $z \in \mathbb{D}$ we have

$$
g(z)=g(\varphi(z))=g\left(\varphi_{n}(z)\right) \rightarrow g(b), \quad \text { as } \quad n \rightarrow \infty
$$

Thus g is the constant function $g(z) \equiv g(b) \neq 0$, since $f \not \equiv 0$. Hence

$$
\left(1 / \tau^{\prime}\right)^{p}=g(b)^{-1} f \in A^{2}
$$

Gracias!

