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The operators

Given α >−1 one defines the Bergman-type projection Pα by the
formula

Pα (f )(z) = (α + 1)
∫
D

(1−|w |2)α f (w)

(1− w̄z)2+α
dA(w) (1)

for any f ∈ L1((1−|w |2)α dA(w)).

Given a function ϕ ∈ L1(D), its Berezin transform is defined by

ϕ̃(z) = (1−|z |2)2
∫
D

ϕ(w)

|1− w̄z |4
dA(w) (2)

For a fixed 0 < α < π, the averaging operator of ϕ is given by

Aα (ϕ)(z) =
1

|A(z ,α)|

∫
A(z,α)

ϕ(ω)dA(ω), (3)

where A(z ,α) = {w : |z |< |w |< 1, |Arg(w)−Arg(z)|< α(1−|z |)} is
the Carleson box at the point z .
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Mixed norm spaces

Let α ∈ R, 0 < p,q ≤ ∞ the mixed norm spaces Lp,q,α consist of all
measurable complex functions f on D such that

‖f ‖Lp,q,α =

(∫ 1

0
(1− r 2)qα−1Mq

p (f , r)dr

)1/q

< ∞, (4)

with

Mp(f , r) =

(∫ 2π

0

∣∣∣f (re iθ )
∣∣∣p dθ

2π

)1/p

.

In particular,
L(p,p,1/p) = Lp(D,dA),L(p,p,β/p) = Lp(D,(1−|z |)β−1dA).
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Weighted mixed norm spaces

Let ρ : (0,1]→ R+ is measurable and bounded on compact sets of (0,1].
Define L(p,q,ρ) the space of measurable functions on the unit disc D
such that

‖f ‖L(p,q,ρ) =

(∫ 1

0

ρ(1− r)

1− r
Mq

p (f , r)dr

)1/q

< ∞. (5)

In particular, ρ(t) = tα/p,L(p,q,ρ) = L(p,q,α).
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The conditions on weights

For ε ∈ R, ρ is said to satisfy Dini condition of order ε, in short

ρ ∈ Dε , if
∫ 1

0
ρ(t)tε

t dt < ∞ and there exist C > 0 such that∫ s

0

ρ(t)tε

t
dt ≤ Cρ(s)sε ,0 < s ≤ 1. (6)

For δ ∈ R, ρ is said to satisfy the bδ -condition, in short ρ ∈ bδ , if there
exist C > 0 such that∫ 1

s

ρ(t)

t1+δ
dt ≤ C

ρ(s)

sδ
,0 < s ≤ 1. (7)

For ρ(t) = tα

(
log( e

t )
)β

, ρ ∈ Dε ∩bδ if and only if −ε < α < δ .
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A basic lemma

Lemma

Let ε,δ ∈ R such that ε + δ 6= 0. The following are equivalent
(i) ρ ∈ Dε ∩bδ .

(ii)
∫ 1

0
ρ(1−r)(1−r)ε−1

(1−rs)ε+δ
dr ≤ C ρ(1−s)

(1−s)δ
,1/2≤ s < 1.

Proof For 1/2≤ s < 1∫ 1

0

ρ(1− r)(1− r)ε−1

(1− rs)ε+δ
dr =

∫ 1

0

ρ(t)tε−1

(st + (1− s))ε+δ
dt

≈
∫ 1−s

0

ρ(t)tε−1

(t + (1− s))ε+δ
dt +

∫ 1

1−s

ρ(t)tε−1

(t + (1− s))ε+δ
dt

≈ 1

(1− s)ε+δ

∫ 1−s

0

ρ(t)tε

t
dt +

∫ 1

1−s

ρ(t)

t1+δ
dt
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The averaging operator

Recall the notation

Aα (ϕ)(z) =
1

|A(z ,α)|

∫
A(z,α)

ϕ(ω)dA(ω)

and

ϕ̂s(z) =
1

|D(z ,s)|

∫
D(z,s)

ϕ(ω)dA(ω)

where D(z ,s) = {w : | w−z1−z̄w |< s}.

Theorem

Let 0 < p ≤ ∞ and ρ be a non-negative continuous function. The
following are equivalent:
(i) ρ ∈ b1.
(ii) The averaging operator Aα is bounded on L(p,1,ρ) for all 1≤ p ≤ ∞.
(iii) The averaging operator Aα is bounded on L(p,1,ρ) for some
0 < p ≤ ∞.
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Theorem

Let 1≤ p ≤ ∞ and 1 < q < ∞. If ρ ∈ bδ for some δ < q then the
averaging operator Aα is bounded on L(p,q,ρ).

Corollary

Let 1≤ p,q < ∞. Then the averaging operator ϕ → ϕ̂s is bounded on
L(p,q,α) for α < 1.
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Bergman type projections

Denote H(p,q,ρ) = L(p,q,ρ)∩H (D). In particular
H(p,p,α/p) = Ap

α (D).

Theorem

Let α >−1, 1≤ p ≤ ∞, 1 < q < ∞, ρ ∈ Dε ∩bδ for some ε < 0 and
δ < q(1 + α) with ε + δ 6= 0. Then Pα is a projection from L(p,q,ρ)
onto H(p,q,ρ).

Corollary

Let 1≤ p,q < ∞, α,γ >−1 and β ∈ R.
(i) Then Pα is bounded on L(p,q,β ) whenever 0 < β < (1 + α) (see [J]).
In particular Pα is bounded on Lp(D,(1−|z |2)γ dA(z)) whenever
0 < γ + 1 < p(1 + α) (see [HKZ]).
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Berezin transform and mixed norm spaces

If T : A2→ A2 is bounded and kz(w) = 1−|z|2
(1−z̄w)2 is the normalized

Bergman kernel then
T̃ (z) = 〈T (kz),kz〉.

For Toeplitz operators

Tϕ (f )(z) = P0(ϕf )(z) =
∫
D

ϕ(w)f (w)

(1− w̄z)2
dA(w)

one has that ϕ̃(z) = T̃ϕ (z) = (1−|z |2)2
∫
D

ϕ(w)

|1−w̄z|4 dA(w).

Therefore, for 1≤ p < ∞

|ϕ̃(z)|p ≤ (1−|z |2)2
∫
D

|ϕ(w)|p

|1− w̄z |4
dA(w),

Hence if φ ∈ Lp(D, dA(z)

(1−|z|2)2 ) then φ̃ ∈ Lp(D, dA(z)

(1−|z|2)2 ) for 1≤ p < ∞.
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Theorem

(B-Pérez-Esteva (IEOT-2011)) Let 1≤ p,q < ∞. Then the Berezin
transform is bounded on L(p,q,α) for −2 < α < 1.

Theorem

Let ρ non negative continuous function. The following are equivalent:

(i) ρ ∈ D2∩b1, i.e.
∫ s

0 ρ(t)tdt ≤ Cs2ρ(s),
∫ 1
s

ρ(t)

t2 dt ≤ C ρ(s)
s .

(ii) The Berezin transform is bounded on L(p,1,ρ) for all 1≤ p ≤ ∞.
(iii) The Berezin transform is bounded on L(p,1,ρ) for some 0 < p ≤ ∞.

Theorem

Let 1≤ p ≤ ∞ and 1 < q < ∞.
If ρ ∈Dε ∩bδ for some ε < 2q and δ < q with ε + δ 6= 0 then the Berezin
transform is bounded on L(p,q,ρ).
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A proof
The case q = 1

From conditions on weights to boundedness of Berezin transform

We show that ρ ∈ D2∩b1 implies that the Berezin transform is bounded
on L(p,1,ρ) for all 1≤ p ≤ ∞.

Let f ∈ L(p,1,ρ).
Use Minkoswki’s and standard estimates to obtain

Mp(f̃ , r)≤ C (1− r)2
∫ 1

0

Mp(f ,s)

(1− rs)3
ds. (8)

Now∫ 1

0

ρ(1− r)

1− r
Mp(f̃ , r)dr ≤

∫ 1

0
ρ(1− r)(1− r)(

∫ 1

0

Mp(f ,s)

(1− rs)3
ds)dr

≤ C
∫ 1

0
(
∫ 1

0

ρ(1− r)(1− r)

(1− rs)3
dr)Mp(f ,s)ds.

The basic lemma applied for ε = 2 and δ = 1 gives∫ 1

0

ρ(1− r)

1− r
Mp(f̃ , r)dr ≤ C

∫ 1

0

ρ(1− s)

1− s
Mp(f ,s)ds.
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A proof
The case q = 1

From boundedness of Berezin transform to conditions on weights

Now we show that the boundedness of Berezin transform on L(p,1,ρ) for
some 1≤ p ≤ ∞ implies ρ ∈ D2∩b1.
Apply the assumption to radial positive functions ϕ to obtain∫ 1

0

ρ(1− r)

1− r
ϕ̃(r)dr ≈

∫ 1

0
(
∫ 1

0

(1− r)ρ(1− r)

(1− rs)3
dr)ϕ(s)ds

≤ C
∫ 1

0

ρ(1− s)

1− s
ϕ(s)ds.

Therefore ∫ 1

0

(
C

ρ(1− s)

1− s
−
∫ 1

0

(1− r)ρ(1− r)

(1− rs)3
dr
)

ϕ(s)ds ≥ 0

for any measurable non-negative function ϕ. Hence

C
ρ(1− s)

1− s
−
∫ 1

0

(1− r)ρ(1− r)

(1− rs)3
dr ≥ 0

which implies the result from the basic lemma again.
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