Remarks on weighted mixed norm spaces

OSCAR BLASCO

¹Departamento Análisis Matemático Universidad Valencia

Charm2011-Málaga 13 July 2011

▲ 글 ▶ 글 글

The operators The spaces The weights

The operators

Given $\alpha > -1$ one defines the **Bergman-type projection** P_{α} by the formula

$$P_{\alpha}(f)(z) = (\alpha + 1) \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\alpha} f(w)}{(1 - \bar{w}z)^{2 + \alpha}} dA(w)$$
(1)

for any $f \in L^1((1-|w|^2)^{lpha} dA(w)).$

물 🖌 🛪 물 🕨

æ

The operators The spaces The weights

The operators

Given $\alpha > -1$ one defines the **Bergman-type projection** P_{α} by the formula

$$P_{\alpha}(f)(z) = (\alpha + 1) \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\alpha} f(w)}{(1 - \bar{w}z)^{2 + \alpha}} dA(w)$$
(1)

for any $f \in L^1((1-|w|^2)^{lpha} dA(w)).$

물 🖌 🛪 물 🕨

æ

The operators The spaces The weights

The operators

Given $\alpha > -1$ one defines the **Bergman-type projection** P_{α} by the formula

$$P_{\alpha}(f)(z) = (\alpha + 1) \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\alpha} f(w)}{(1 - \bar{w}z)^{2 + \alpha}} dA(w)$$
(1)

for any $f \in L^1((1-|w|^2)^{\alpha} dA(w))$. Given a function $\varphi \in L^1(\mathbb{D})$, its **Berezin transform** is defined by

$$\widetilde{\varphi}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{|1 - \overline{w}z|^4} dA(w)$$
(2)

< ≣ >

The operators The spaces The weights

The operators

Given $\alpha > -1$ one defines the **Bergman-type projection** P_{α} by the formula

$$P_{\alpha}(f)(z) = (\alpha + 1) \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\alpha} f(w)}{(1 - \bar{w}z)^{2 + \alpha}} dA(w)$$
(1)

for any $f \in L^1((1 - |w|^2)^{\alpha} dA(w))$. Given a function $\varphi \in L^1(\mathbb{D})$, its **Berezin transform** is defined by

$$\widetilde{\varphi}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{|1 - \overline{w}z|^4} dA(w)$$
(2)

For a fixed 0 $< \alpha < \pi,$ the **averaging operator** of φ is given by

$$A_{\alpha}(\varphi)(z) = \frac{1}{|A(z,\alpha)|} \int_{A(z,\alpha)} \varphi(\omega) dA(\omega), \qquad (3)$$

where $A(z, \alpha) = \{w : |z| < |w| < 1, |Arg(w) - Arg(z)| < \alpha(1 - |z|)\}$ is the Carleson box at the point z.

Introduction The of Main results The s A proof The v

The operator The spaces The weights

Mixed norm spaces

Let $\alpha \in \mathbb{R}$, $0 < p, q \leq \infty$ the mixed norm spaces $L^{p,q,\alpha}$ consist of all measurable complex functions f on \mathbb{D} such that

$$\|f\|_{L^{p,q,\alpha}} = \left(\int_0^1 (1-r^2)^{q\alpha-1} M_p^q(f,r) dr\right)^{1/q} < \infty,$$
(4)

with

$$M_{p}(f,r) = \left(\int_{0}^{2\pi} \left|f(re^{i\theta})\right|^{p} \frac{d\theta}{2\pi}\right)^{1/p}$$

A 10

Э

Introduction The of Main results The s A proof The v

The spaces The weights

Mixed norm spaces

Let $\alpha \in \mathbb{R}$, $0 < p, q \leq \infty$ the mixed norm spaces $L^{p,q,\alpha}$ consist of all measurable complex functions f on \mathbb{D} such that

$$\|f\|_{L^{p,q,\alpha}} = \left(\int_0^1 (1-r^2)^{q\alpha-1} M_p^q(f,r) dr\right)^{1/q} < \infty,$$
(4)

with

$$M_{\rho}(f,r) = \left(\int_{0}^{2\pi} \left|f(re^{i\theta})\right|^{\rho} \frac{d\theta}{2\pi}\right)^{1/\rho}$$

In particular, $L(p, p, 1/p) = L^p(\mathbb{D}, dA), L(p, p, \beta/p) = L^p(\mathbb{D}, (1 - |z|)^{\beta - 1} dA).$

伺き くほき くほう

3

Introduction The of Main results The s A proof The v

The spaces The weights

Mixed norm spaces

Let $\alpha \in \mathbb{R}$, $0 < p, q \leq \infty$ the mixed norm spaces $L^{p,q,\alpha}$ consist of all measurable complex functions f on \mathbb{D} such that

$$\|f\|_{L^{p,q,\alpha}} = \left(\int_0^1 (1-r^2)^{q\alpha-1} M_p^q(f,r) dr\right)^{1/q} < \infty,$$
(4)

with

$$M_{\rho}(f,r) = \left(\int_{0}^{2\pi} \left|f(re^{i\theta})\right|^{\rho} \frac{d\theta}{2\pi}\right)^{1/\rho}$$

In particular, $L(p, p, 1/p) = L^p(\mathbb{D}, dA), L(p, p, \beta/p) = L^p(\mathbb{D}, (1 - |z|)^{\beta - 1} dA).$

伺き くほき くほう

3

The operator The spaces The weights

Weighted mixed norm spaces

Oscar Blasco Remarks on weighted mixed norm spaces

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

The spaces

Weighted mixed norm spaces

Let $\rho : (0,1] \rightarrow \mathbb{R}^+$ is measurable and bounded on compact sets of (0,1]. Define $L(p,q,\rho)$ the space of measurable functions on the unit disc \mathbb{D} such that

$$\|f\|_{L(p,q,\rho)} = \left(\int_0^1 \frac{\rho(1-r)}{1-r} M_p^q(f,r) dr\right)^{1/q} < \infty.$$
(5)

프 🖌 🛪 프 🛌

Weighted mixed norm spaces

Let $\rho : (0,1] \to \mathbb{R}^+$ is measurable and bounded on compact sets of (0,1]. Define $L(p,q,\rho)$ the space of measurable functions on the unit disc \mathbb{D} such that

$$\|f\|_{L(p,q,\rho)} = \left(\int_0^1 \frac{\rho(1-r)}{1-r} M_p^q(f,r) dr\right)^{1/q} < \infty.$$
(5)

In particular, $\rho(t) = t^{\alpha/p}$, $L(p,q,\rho) = L(p,q,\alpha)$.

三下 人王下

Introduction	The operato
Main results	The spaces
A proof	The weights

The conditions on weights

For $\varepsilon \in \mathbb{R}$, ρ is said to satisfy **Dini condition of order** ε , in short $\rho \in D_{\varepsilon}$, if $\int_{0}^{1} \frac{\rho(t)t^{\varepsilon}}{t} dt < \infty$ and there exist C > 0 such that

$$\int_0^s \frac{\rho(t)t^{\varepsilon}}{t} dt \le C\rho(s)s^{\varepsilon}, 0 < s \le 1.$$
(6)

Introduction	The operator
Main results	The spaces
A proof	The weights

The conditions on weights

For $\varepsilon \in \mathbb{R}$, ρ is said to satisfy **Dini condition of order** ε , in short $\rho \in D_{\varepsilon}$, if $\int_{0}^{1} \frac{\rho(t)t^{\varepsilon}}{t} dt < \infty$ and there exist C > 0 such that

$$\int_0^s \frac{\rho(t)t^{\varepsilon}}{t} dt \le C\rho(s)s^{\varepsilon}, 0 < s \le 1.$$
(6)

For $\delta \in \mathbb{R}$, ρ is said to satisfy the b_{δ} -condition, in short $\rho \in b_{\delta}$, if there exist C > 0 such that

$$\int_{s}^{1} \frac{\rho(t)}{t^{1+\delta}} dt \le C \frac{\rho(s)}{s^{\delta}}, 0 < s \le 1.$$
(7)

Introduction	The operato
Main results	The spaces
A proof	The weights

The conditions on weights

For $\varepsilon \in \mathbb{R}$, ρ is said to satisfy **Dini condition of order** ε , in short $\rho \in D_{\varepsilon}$, if $\int_{0}^{1} \frac{\rho(t)t^{\varepsilon}}{t} dt < \infty$ and there exist C > 0 such that

$$\int_0^s \frac{\rho(t)t^{\varepsilon}}{t} dt \le C\rho(s)s^{\varepsilon}, 0 < s \le 1.$$
(6)

For $\delta \in \mathbb{R}$, ρ is said to satisfy the b_{δ} -condition, in short $\rho \in b_{\delta}$, if there exist C > 0 such that

$$\int_{s}^{1} \frac{\rho(t)}{t^{1+\delta}} dt \leq C \frac{\rho(s)}{s^{\delta}}, 0 < s \leq 1.$$
(7)

 $\text{For }\rho(t)=t^{\alpha}\Big(\log(\tfrac{e}{t})\Big)^{\beta}\text{, }\rho\in D_{\varepsilon}\cap b_{\delta}\text{ if and only if }-\varepsilon<\alpha<\delta.$

The operators The spaces The weights

A basic lemma

Lemma

Let $\varepsilon, \delta \in \mathbb{R}$ such that $\varepsilon + \delta \neq 0$. The following are equivalent (i) $\rho \in D_{\varepsilon} \cap b_{\delta}$. (ii) $\int_{0}^{1} \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr \leq C \frac{\rho(1-s)}{(1-s)^{\delta}}, 1/2 \leq s < 1$.

골▶ ★ 골▶ -

The operators The spaces The weights

A basic lemma

Lemma

Let $\varepsilon, \delta \in \mathbb{R}$ such that $\varepsilon + \delta \neq 0$. The following are equivalent (i) $\rho \in D_{\varepsilon} \cap b_{\delta}$. (ii) $\int_{0}^{1} \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr \leq C \frac{\rho(1-s)}{(1-s)^{\delta}}, 1/2 \leq s < 1$.

Proof For $1/2 \le s < 1$

$$\int_{0}^{1} \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr = \int_{0}^{1} \frac{\rho(t)t^{\varepsilon-1}}{(st+(1-s))^{\varepsilon+\delta}} dt$$

문▶ ★ 문▶ -

The operators The spaces The weights

A basic lemma

Lemma

Let $\varepsilon, \delta \in \mathbb{R}$ such that $\varepsilon + \delta \neq 0$. The following are equivalent (i) $\rho \in D_{\varepsilon} \cap b_{\delta}$. (ii) $\int_{0}^{1} \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr \leq C \frac{\rho(1-s)}{(1-s)^{\delta}}, 1/2 \leq s < 1$.

Proof For $1/2 \le s < 1$

$$\int_0^1 \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr = \int_0^1 \frac{\rho(t)t^{\varepsilon-1}}{(st+(1-s))^{\varepsilon+\delta}} dt$$
$$\approx \quad \int_0^{1-s} \frac{\rho(t)t^{\varepsilon-1}}{(t+(1-s))^{\varepsilon+\delta}} dt + \int_{1-s}^1 \frac{\rho(t)t^{\varepsilon-1}}{(t+(1-s))^{\varepsilon+\delta}} dt$$

문▶ ★ 문▶ -

The operators The spaces The weights

A basic lemma

Lemma

Let $\varepsilon, \delta \in \mathbb{R}$ such that $\varepsilon + \delta \neq 0$. The following are equivalent (i) $\rho \in D_{\varepsilon} \cap b_{\delta}$. (ii) $\int_{0}^{1} \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr \leq C \frac{\rho(1-s)}{(1-s)^{\delta}}, 1/2 \leq s < 1$.

Proof For $1/2 \le s < 1$

$$\int_{0}^{1} \frac{\rho(1-r)(1-r)^{\varepsilon-1}}{(1-rs)^{\varepsilon+\delta}} dr = \int_{0}^{1} \frac{\rho(t)t^{\varepsilon-1}}{(st+(1-s))^{\varepsilon+\delta}} dt$$
$$\approx \quad \int_{0}^{1-s} \frac{\rho(t)t^{\varepsilon-1}}{(t+(1-s))^{\varepsilon+\delta}} dt + \int_{1-s}^{1} \frac{\rho(t)t^{\varepsilon-1}}{(t+(1-s))^{\varepsilon+\delta}} dt$$
$$\approx \quad \frac{1}{(1-s)^{\varepsilon+\delta}} \int_{0}^{1-s} \frac{\rho(t)t^{\varepsilon}}{t} dt + \int_{1-s}^{1} \frac{\rho(t)}{t^{1+\delta}} dt$$

문▶ ★ 문▶ -

The averaging operator The Bergman projection The Berezin transform

The averaging operator

Recall the notation

$$A_{lpha}(\varphi)(z) = rac{1}{|A(z, lpha)|} \int_{A(z, lpha)} \varphi(\omega) dA(\omega)$$

and

$$\hat{\varphi}_s(z) = rac{1}{|D(z,s)|} \int_{D(z,s)} \varphi(\omega) dA(\omega)$$

where $D(z,s) = \{w : |\frac{w-z}{1-\overline{z}w}| < s\}.$

The averaging operator The Bergman projection The Berezin transform

The averaging operator

Recall the notation

$$A_{\alpha}(\varphi)(z) = rac{1}{|A(z,\alpha)|} \int_{A(z,\alpha)} \varphi(\omega) dA(\omega)$$

and

$$\hat{\varphi}_s(z) = rac{1}{|D(z,s)|} \int_{D(z,s)} \varphi(\omega) dA(\omega)$$

where
$$D(z,s) = \{w : |\frac{w-z}{1-\bar{z}w}| < s\}.$$

Theorem

Let $0 and <math>\rho$ be a non-negative continuous function. The following are equivalent:

(i) $\rho \in b_1$. (ii) The averaging operator A_{α} is bounded on $L(p,1,\rho)$ for all $1 \le p \le \infty$. (iii) The averaging operator A_{α} is bounded on $L(p,1,\rho)$ for some 0 .

The averaging operator The Bergman projection The Berezin transform

Theorem

Let $1 \le p \le \infty$ and $1 < q < \infty$. If $\rho \in b_{\delta}$ for some $\delta < q$ then the averaging operator A_{α} is bounded on $L(p,q,\rho)$.

▲圖▶ ▲屋▶ ▲屋▶

3

The averaging operator The Bergman projection The Berezin transform

Theorem

Let $1 \le p \le \infty$ and $1 < q < \infty$. If $\rho \in b_{\delta}$ for some $\delta < q$ then the averaging operator A_{α} is bounded on $L(p,q,\rho)$.

Corollary

Let $1 \le p, q < \infty$. Then the averaging operator $\phi \to \widehat{\phi}_s$ is bounded on $L(p,q,\alpha)$ for $\alpha < 1$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Bergman type projections

Denote $H(p,q,\rho) = L(p,q,\rho) \cap \mathscr{H}(\mathbb{D})$. In particular $H(p,p,\alpha/p) = A^{p}_{\alpha}(\mathbb{D})$.

★ 문 ► ★ 문 ► ...

A 10

æ

Introduction Main results A proof The Bergman projection The Berezin transform

Bergman type projections

Denote $H(p,q,\rho) = L(p,q,\rho) \cap \mathscr{H}(\mathbb{D})$. In particular $H(p,p,\alpha/p) = A^{p}_{\alpha}(\mathbb{D})$.

Theorem

Let $\alpha > -1$, $1 \le p \le \infty$, $1 < q < \infty$, $\rho \in D_{\varepsilon} \cap b_{\delta}$ for some $\varepsilon < 0$ and $\delta < q(1+\alpha)$ with $\varepsilon + \delta \ne 0$. Then P_{α} is a projection from $L(p,q,\rho)$ onto $H(p,q,\rho)$.

Э

Introduction Main results A proof The Bergman projection The Berezin transform

Bergman type projections

Denote $H(p,q,\rho) = L(p,q,\rho) \cap \mathscr{H}(\mathbb{D})$. In particular $H(p,p,\alpha/p) = A^{p}_{\alpha}(\mathbb{D})$.

Theorem

Let $\alpha > -1$, $1 \le p \le \infty$, $1 < q < \infty$, $\rho \in D_{\varepsilon} \cap b_{\delta}$ for some $\varepsilon < 0$ and $\delta < q(1+\alpha)$ with $\varepsilon + \delta \ne 0$. Then P_{α} is a projection from $L(p,q,\rho)$ onto $H(p,q,\rho)$.

Corollary

Let $1 \le p, q < \infty, \alpha, \gamma > -1$ and $\beta \in \mathbb{R}$. (i) Then P_{α} is bounded on $L(p, q, \beta)$ whenever $0 < \beta < (1 + \alpha)$ (see [J]). In particular P_{α} is bounded on $L^{p}(\mathbb{D}, (1 - |z|^{2})^{\gamma} dA(z))$ whenever $0 < \gamma + 1 < p(1 + \alpha)$ (see [HKZ]).

Berezin transform and mixed norm spaces

If $T: A^2 \to A^2$ is bounded and $k_z(w) = \frac{1-|z|^2}{(1-\bar{z}w)^2}$ is the normalized Bergman kernel then

 $\tilde{T}(z) = \langle T(k_z), k_z \rangle.$

물 🖌 🛪 물 🕨

Berezin transform and mixed norm spaces

If $T: A^2 \to A^2$ is bounded and $k_z(w) = \frac{1-|z|^2}{(1-zw)^2}$ is the normalized Bergman kernel then

$$\tilde{T}(z) = \langle T(k_z), k_z \rangle.$$

For Toeplitz operators

$$T_{\varphi}(f)(z) = P_0(\varphi f)(z) = \int_{\mathbb{D}} \frac{\varphi(w)f(w)}{(1 - \bar{w}z)^2} dA(w)$$

one has that $\widetilde{\varphi}(z) = \widetilde{T_{\varphi}}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{|1 - \bar{w}z|^4} dA(w).$

< ∃⇒

Berezin transform and mixed norm spaces

If $T: A^2 \to A^2$ is bounded and $k_z(w) = \frac{1-|z|^2}{(1-\bar{z}w)^2}$ is the normalized Bergman kernel then

$$\tilde{T}(z) = \langle T(k_z), k_z \rangle.$$

For Toeplitz operators

$$T_{\varphi}(f)(z) = P_0(\varphi f)(z) = \int_{\mathbb{D}} \frac{\varphi(w)f(w)}{(1-\bar{w}z)^2} dA(w)$$

one has that $\widetilde{\varphi}(z) = \widetilde{T_{\varphi}}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{|1 - \bar{w}z|^4} dA(w)$. Therefore, for $1 \le p < \infty$

$$|\widetilde{\varphi}(z)|^p \leq (1-|z|^2)^2 \int_{\mathbb{D}} rac{|\varphi(w)|^p}{|1-\overline{w}z|^4} dA(w),$$

< ∃⇒

Berezin transform and mixed norm spaces

If $T: A^2 \to A^2$ is bounded and $k_z(w) = \frac{1-|z|^2}{(1-\bar{z}w)^2}$ is the normalized Bergman kernel then

$$\tilde{T}(z) = \langle T(k_z), k_z \rangle.$$

For Toeplitz operators

$$T_{\varphi}(f)(z) = P_0(\varphi f)(z) = \int_{\mathbb{D}} \frac{\varphi(w)f(w)}{(1-\bar{w}z)^2} dA(w)$$

one has that $\widetilde{\varphi}(z) = \widetilde{T_{\varphi}}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{|1 - \bar{w}z|^4} dA(w)$. Therefore, for $1 \le p < \infty$

$$|\widetilde{\varphi}(z)|^p \leq (1-|z|^2)^2 \int_{\mathbb{D}} rac{|\varphi(w)|^p}{|1-\overline{w}z|^4} dA(w),$$

Hence if $\phi \in L^p(\mathbb{D}, \frac{dA(z)}{(1-|z|^2)^2})$ then $\widetilde{\phi} \in L^p(\mathbb{D}, \frac{dA(z)}{(1-|z|^2)^2})$ for $1 \le p < \infty$.

ヨト イヨト

Berezin transform and mixed norm spaces

If $T: A^2 \to A^2$ is bounded and $k_z(w) = \frac{1-|z|^2}{(1-\bar{z}w)^2}$ is the normalized Bergman kernel then

$$\tilde{T}(z) = \langle T(k_z), k_z \rangle.$$

For Toeplitz operators

$$T_{\varphi}(f)(z) = P_0(\varphi f)(z) = \int_{\mathbb{D}} \frac{\varphi(w)f(w)}{(1-\bar{w}z)^2} dA(w)$$

one has that $\widetilde{\varphi}(z) = \widetilde{T_{\varphi}}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{|1 - \bar{w}z|^4} dA(w)$. Therefore, for $1 \le p < \infty$

$$|\widetilde{\varphi}(z)|^p \leq (1-|z|^2)^2 \int_{\mathbb{D}} rac{|\varphi(w)|^p}{|1-\overline{w}z|^4} dA(w),$$

Hence if $\phi \in L^p(\mathbb{D}, \frac{dA(z)}{(1-|z|^2)^2})$ then $\widetilde{\phi} \in L^p(\mathbb{D}, \frac{dA(z)}{(1-|z|^2)^2})$ for $1 \le p < \infty$.

ヨト イヨト

Introduction	The averaging operator
Main results	The Bergman projection
A proof	The Berezin transform

Theorem

(B-Pérez-Esteva (IEOT-2011)) Let $1 \le p, q < \infty$. Then the Berezin transform is bounded on $L(p,q,\alpha)$ for $-2 < \alpha < 1$.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → ○ Q ()

Theorem

(B-Pérez-Esteva (IEOT-2011)) Let $1 \le p, q < \infty$. Then the Berezin transform is bounded on $L(p,q,\alpha)$ for $-2 < \alpha < 1$.

Theorem

Let ρ non negative continuous function. The following are equivalent: (i) $\rho \in D_2 \cap b_1$, i.e. $\int_0^s \rho(t) t dt \leq Cs^2 \rho(s), \int_s^1 \frac{\rho(t)}{t^2} dt \leq C \frac{\rho(s)}{s}$. (ii) The Berezin transform is bounded on $L(p,1,\rho)$ for all $1 \leq p \leq \infty$. (iii) The Berezin transform is bounded on $L(p,1,\rho)$ for some 0 .

伺き くほき くほう

Theorem

(B-Pérez-Esteva (IEOT-2011)) Let $1 \le p, q < \infty$. Then the Berezin transform is bounded on $L(p,q,\alpha)$ for $-2 < \alpha < 1$.

Theorem

Let ρ non negative continuous function. The following are equivalent: (i) $\rho \in D_2 \cap b_1$, i.e. $\int_0^s \rho(t) t dt \leq Cs^2 \rho(s)$, $\int_s^1 \frac{\rho(t)}{t^2} dt \leq C \frac{\rho(s)}{s}$. (ii) The Berezin transform is bounded on $L(p,1,\rho)$ for all $1 \leq p \leq \infty$. (iii) The Berezin transform is bounded on $L(p,1,\rho)$ for some 0 .

Theorem

Let $1 \le p \le \infty$ and $1 < q < \infty$. If $\rho \in D_{\varepsilon} \cap b_{\delta}$ for some $\varepsilon < 2q$ and $\delta < q$ with $\varepsilon + \delta \ne 0$ then the Berezin transform is bounded on $L(p,q,\rho)$.

→ Ξ → → Ξ →

From conditions on weights to boundedness of Berezin transform

We show that $\rho \in D_2 \cap b_1$ implies that the Berezin transform is bounded on $L(p,1,\rho)$ for all $1 \le p \le \infty$.

The case q = 1

From conditions on weights to boundedness of Berezin transform

We show that $\rho \in D_2 \cap b_1$ implies that the Berezin transform is bounded on $L(p,1,\rho)$ for all $1 \le p \le \infty$.Let $f \in L(p,1,\rho)$. Use Minkoswki's and standard estimates to obtain

$$M_{\rho}(\tilde{f},r) \leq C(1-r)^2 \int_0^1 \frac{M_{\rho}(f,s)}{(1-rs)^3} ds.$$
(8)

The case q = 1

From conditions on weights to boundedness of Berezin transform

We show that $\rho \in D_2 \cap b_1$ implies that the Berezin transform is bounded on $L(p,1,\rho)$ for all $1 \le p \le \infty$.Let $f \in L(p,1,\rho)$. Use Minkoswki's and standard estimates to obtain

$$M_{\rho}(\tilde{f},r) \le C(1-r)^2 \int_0^1 \frac{M_{\rho}(f,s)}{(1-rs)^3} ds.$$
(8)

Now

$$\int_0^1 rac{
ho(1-r)}{1-r} M_
ho(ilde{f},r) dr \leq \int_0^1
ho(1-r)(1-r) (\int_0^1 rac{M_
ho(f,s)}{(1-rs)^3} ds) dr \ \leq C \int_0^1 (\int_0^1 rac{
ho(1-r)(1-r)}{(1-rs)^3} dr) M_
ho(f,s) ds.$$

The case q = 1

From conditions on weights to boundedness of Berezin transform

We show that $\rho \in D_2 \cap b_1$ implies that the Berezin transform is bounded on $L(p,1,\rho)$ for all $1 \le p \le \infty$.Let $f \in L(p,1,\rho)$. Use Minkoswki's and standard estimates to obtain

$$M_{\rho}(\tilde{f},r) \le C(1-r)^2 \int_0^1 \frac{M_{\rho}(f,s)}{(1-rs)^3} ds.$$
(8)

Now

$$\begin{split} \int_0^1 \frac{\rho(1-r)}{1-r} M_\rho(\tilde{f},r) dr &\leq \int_0^1 \rho(1-r)(1-r) (\int_0^1 \frac{M_\rho(f,s)}{(1-rs)^3} ds) dr \\ &\leq C \int_0^1 (\int_0^1 \frac{\rho(1-r)(1-r)}{(1-rs)^3} dr) M_\rho(f,s) ds. \end{split}$$

The basic lemma applied for $\mathcal{E}=2$ and $\delta=1$ gives

$$\int_0^1 rac{
ho(1-r)}{1-r} M_
ho(ilde{f},r) dr \leq C \int_0^1 rac{
ho(1-s)}{1-s} M_
ho(f,s) ds.$$

The case q = 1

From boundedness of Berezin transform to conditions on weights

Now we show that the boundedness of Berezin transform on $L(p,1,\rho)$ for some $1 \le p \le \infty$ implies $\rho \in D_2 \cap b_1$.

Apply the assumption to radial positive functions ϕ to obtain

$$\int_0^1 \frac{\rho(1-r)}{1-r} \widetilde{\varphi}(r) dr \approx \int_0^1 \left(\int_0^1 \frac{(1-r)\rho(1-r)}{(1-rs)^3} dr\right) \varphi(s) ds$$
$$\leq C \int_0^1 \frac{\rho(1-s)}{1-s} \varphi(s) ds.$$

The case q = 1

From boundedness of Berezin transform to conditions on weights

Now we show that the boundedness of Berezin transform on $L(p,1,\rho)$ for some $1 \le p \le \infty$ implies $\rho \in D_2 \cap b_1$.

Apply the assumption to radial positive functions ϕ to obtain

$$\int_0^1 \frac{\rho(1-r)}{1-r} \widetilde{\varphi}(r) dr \approx \int_0^1 \left(\int_0^1 \frac{(1-r)\rho(1-r)}{(1-rs)^3} dr\right) \varphi(s) ds$$
$$\leq C \int_0^1 \frac{\rho(1-s)}{1-s} \varphi(s) ds.$$

Therefore

$$\int_{0}^{1} \Big(C \frac{\rho(1-s)}{1-s} - \int_{0}^{1} \frac{(1-r)\rho(1-r)}{(1-rs)^{3}} dr \Big) \varphi(s) ds \ge 0$$

for any measurable non-negative function φ . Hence

$$Crac{
ho(1-s)}{1-s} - \int_0^1 rac{(1-r)
ho(1-r)}{(1-rs)^3} dr \ge 0$$

which implies the result from the basic lemma again

Oscar Blasco