Holomorphic dependence of diagonal operators between sequence spaces

José Bonet

Instituto Universitario de Matemática Pura y Aplicada
Universidad Politécnica de Valencia

Complex and harmonic analysis 2011 Málaga July, 2011

Joint work with C. Gómez, D. Jornet and E. Wolf

What do we want to study?

AIM

Investigate properties of diagonal operators defined on Köthe echelon spaces in case the diagonal depends holomorphically on a parameter $z \in \mathbb{D}$.

Köthe matrix

 $A=(a_n(i))_{i,n\in\mathbb{N}}$ a matrix of non-negative numbers is a *Köthe matrix* if for each $i\in\mathbb{N}$ and $n\in\mathbb{N}$

$$0 < a_n(i) \le a_{n+1}(i)$$

Köthe echelon spaces

For $1 \le p < \infty$,

$$\lambda_p(A)=\{x\in\mathbb{C}^\mathbb{N}\ :\ q_n(x):=\big(\sum_{i=1}^\infty(a_n(i)|x_i|)^p\big)^{1/p}<\infty\ \text{for all}\ n\in\mathbb{N}\}.$$

Examples

Clearly

$$\lambda_p(A) = \bigcap_{n \in \mathbb{N}} \ell_p(a_n).$$

- $H(\mathbb{D}) \simeq \lambda_1(A)$ with $a_n(i) = (n/(n+1))^i$.
- $H(\mathbb{C}) \simeq \lambda_1(A)$ with $a_n(i) = n^i$.
- $S \simeq C^{\infty}([0,1]) \simeq \mathcal{D}([0,1]) \simeq \lambda_1(A)$ with $a_n(i) = i^n$.

Köthe echelon spaces are Fréchet spaces, i.e., metrizable complete locally convex spaces.

Diagonal operators

$$\lambda_p \equiv \lambda_p(A)$$
.

 $f_i: \mathbb{D} \to \mathbb{C}$ holomorphic, $i \in \mathbb{N}$, $(f_i)_{i \in \mathbb{N}}$ bounded for the co-topology.

Diagonal operators in Köthe echelon spaces

We consider the following operator-valued function

$$\psi: \mathbb{D} \to L_b(\lambda_p, \lambda_p)$$

$$z \leadsto \psi(z)(x) = (f_i(z)x_i)_{i \in \mathbb{N}}$$

Notation

X, Y Fréchet spaces.

 $L_b(X, Y)$ linear continuous operators between X and Y endowed with the topology of uniform convergence on bounded subsets of X. If X and Y are Banach spaces, this is the topology of the operator norm.

 $H(\mathbb{D},X)$ space of vector-valued analytic functions.

 $\psi:\mathbb{D}\to L_b(X,Y)$ an analytic operator-valued function

Proposition

Let $f_i : \mathbb{D} \to \mathbb{C}$, $i \in \mathbb{N}$, be holomorphic functions such that $(f_i)_{i \in \mathbb{N}}$ is bounded for the co-topology. Then

- (a) $\psi \in H(\mathbb{D}, L_b(\lambda_p, \lambda_p)).$
- (b) If $(f_i)_{i\in\mathbb{N}}$ tends to 0 in the co-topology, then $\psi(z)$ is **Montel** for all $z\in\mathbb{D}$, i.e. each $\psi(z)$ maps bounded sets into relatively compact sets.

In case X and Y are Banach spaces, Montel operators are exactly compact operators.

Proof

For (a) we use

Theorem (Grosse-Erdmann)

E complete lcs, $\psi: \Omega \to E$ locally bounded, and Ω domain in \mathbb{C} . If $H \subset E'$ is $\sigma(E', E)$ -dense in E' and $u \circ \psi$ holomorphic for $u \in H$, then $\psi \in H(\Omega, E)$.

And we check

- $\psi : \mathbb{D} \to L_b(\lambda_p, \lambda_p)$ is locally bounded
- $G = \text{span}\{u \otimes y : u \in \lambda_p', y \in \lambda_p\}$ is weak*-dense in $L_b(\lambda_p, \lambda_p)'$
- Finally, $(u \otimes y) \circ \psi(z) = \sum_i u_i y_i f_i(z)$ holomorphic in $H(\mathbb{D})$.

Operator weighted composition operators

X, Y Fréchet spaces.

$$\varphi: \mathbb{D} \to \mathbb{D}$$
, $\psi: \mathbb{D} \to L_b(X, Y)$ analytic.

The operator-weighted composition operator

Continuity

The operator $W_{\psi,\varphi}: H(\mathbb{D},X) \longrightarrow H(\mathbb{D},Y)$ is well-defined and continuous.

An auxiliary operator

The auxiliary operator T_{ψ}

Let $\psi : \mathbb{D} \to L_b(X, Y)$ be analytic. We consider the operator

$$T_{\psi}: X \rightarrow H(\mathbb{D}, Y),$$

$$x \sim T_{\psi}(x): \mathbb{D} \rightarrow Y,$$

$$z \sim T_{\psi}(x)(z) = \psi(z)[x]$$

- ullet T_{ψ} is well defined and linear
- ullet T_{ψ} inherits the properties of $W_{\psi,arphi}$

The operators in the case of Köthe echelon spaces

•
$$\psi: \mathbb{D} \to L_b(\lambda_p, \lambda_p), \ \psi(z)(x) = (f_i(z)x_i)_{i \in \mathbb{N}},$$

•
$$W_{\psi,\varphi}: H(\mathbb{D},\lambda_p) \longrightarrow H(\mathbb{D},\lambda_p), \varphi(z) = id(z) = z,$$

$$g(z) = (g_i(z))_i \rightarrow W_{\psi,id}g(z) = (f_i(z)g_i(z))_i.$$

• $T_{\psi}: \lambda_{p} \to H(\mathbb{D}, \lambda_{p}),$

$$T_{\psi}((x_i)_i)(z) = \psi(z)((x_i)_i) = (f_i(z)x_i)_i.$$

Montel operators

Theorem

Let X and Y be Fréchet spaces. Let $\varphi: \mathbb{D} \to \mathbb{D}$ and $\psi: \mathbb{D} \to L_b(X, Y)$, $\psi \neq 0$, be analytic mappings. Then the following assertions are equivalent:

The operator

$$W_{\psi,\varphi}: H(\mathbb{D},X) \longrightarrow H(\mathbb{D},Y)$$

is Montel

- $T_{\psi}: X \to H(\mathbb{D}, Y)$ is Montel
- **3** $\psi(z): X \longrightarrow Y$ is Montel for each $z \in \mathbb{D}$.

Proof

Idea of the proof

- (3) \Rightarrow (2) : Let $\psi(z): X \to Y$ be Montel for all $z \in \mathbb{D}$. Is $T_{\psi}: X \to H(\mathbb{D}, Y)$ Montel?
 - The function ψ is holomorphic with values in $L_b(X,Y)$, and then $\psi(z) = \sum_{m=0}^{\infty} A_m z^m, A_m \in L_b(X,Y)$.
 - $A_0 = \psi(0)$ is Montel and A_m are Montel, for $m \ge 1$ by Cauchy Integral Formula.
 - For $\psi_n(z) = \sum_{m=0}^n A_m z^m$, the operator T_{ψ_n} is Montel.
 - Finally, T_{ψ_n} tends to T_{ψ} in $L_b(X, H(\mathbb{D}, Y))$.
- $(2) \Rightarrow (1)$ requires results on tensor products due to Ruess.

The weighted spaces case

Weights

Let v be a strictly positive continuous **weight** on the open unit disk $\mathbb D$ in the complex plane which is radial (that is, v(z) = v(|z|) for every $z \in \mathbb D$), strictly decreasing with respect to |z| and $\lim_{r \to 1} v(r) = 0$.

Examples

- The standard weights are $v(z) = (1 |z|)^{\alpha}$, $\alpha > 0$.
- $v(r) = \exp(-\frac{1}{(1-r)^{\alpha}}), \ \alpha > 0.$
- $v(r) = (1 \log(1 r))^{-\alpha}, \ \alpha > 0.$

The weighted spaces case

Weighted spaces of holomorphic functions

$$H_{\nu}^{\infty}(\mathbb{D},X) := \{ f \in H(\mathbb{D},X) : \sup_{z \in \mathbb{D}} \nu(z) p(f(z)) < \infty \quad \forall p \in cs(X) \}$$

$$H_{\nu}^{0}(\mathbb{D},X) := \{ f \in H_{\nu}^{\infty}(\mathbb{D},X) : \lim_{|z| \to 1} \nu(z) p(f(z)) = 0 \quad \forall p \in cs(X) \}$$

endowed with the natural topology.

If we do not assume that $\lim_{r\to 1} v(r) = 0$, then $H^\infty_v(\mathbb{D},X) = H^\infty(\mathbb{D},X)$.

The weighted spaces case

Theorem

Let X, Y be Fréchet spaces. Let $\varphi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to L_b(X, Y)$ be analytic maps.

 $W_{\psi,\varphi}:H^\infty_v(\mathbb{D},X)\longrightarrow H^\infty_w(\mathbb{D},Y)$ is continuous if, and only if, the set

$$\left\{ \begin{array}{l} \frac{w(z)}{\tilde{v}(\varphi(z))} \psi(z); \ z \in \mathbb{D} \right\} \end{array}$$

is equicontinuous in $L_b(X, Y)$.

Laitila and Tylli, 2009, have studied these operators for Banach spaces X and Y. Multiplication and composition operators are particular cases.

Theorem

Let X,Y be Fréchet spaces. Let $\varphi:\mathbb{D}\to\mathbb{D}$ and $\psi:\mathbb{D}\to L_b(X,Y)$ be analytic maps. Then the following assertions are equivalent:

- **①** The weighted composition operator $W_{\psi,\varphi}: H^\infty_v(\mathbb{D},X) \to H^\infty_w(\mathbb{D},Y)$ is Montel
- (a) $T_{\psi}: X \to H_{w}^{\infty}(\mathbb{D}, Y)$ is Montel.
 - (b) For every $B \in \mathcal{B}(X)$, $q \in cs(Y)$ and $\varepsilon > 0$ there is $r_0 \in (0,1)$ such that if $|\varphi(z)| > r_0$ and $x \in B$, then we have the following inequality

$$\frac{w(z)}{\tilde{v}(\varphi(z))}q(\psi(z)[x])\leq \varepsilon.$$

Examples.

Constant case

If the analytic operator-valued function $\psi: \mathbb{D} \to L_b(X, Y)$ is constant, that is, $\psi(z) = L \neq 0$ for all z, then

- The operator $W_{\psi,\varphi}: H^\infty_{\nu}(\mathbb{D},X) \to H^\infty_{\nu}(\mathbb{D},Y)$ is continuous if and only if $C_{\varphi}: H^\infty_{\nu}(\mathbb{D}) \to H^\infty_{\nu}(\mathbb{D})$ is continuous,
- The operator $W_{\psi,\varphi}: H_v^\infty(\mathbb{D},X) \to H_w^\infty(\mathbb{D},Y)$ is Montel if and only if L is Montel and $C_\varphi: H_v^\infty(\mathbb{D}) \to H_w^\infty(\mathbb{D})$ is compact.

Bonet, Domański, Lindström, Taskinen (1996), Contreras, Hernández-Díaz (2000), Bonet, Friz (2003) The following always holds:

$$W_{\psi,\varphi}$$
 Montel $\Rightarrow T_{\psi}$ Montel $\Rightarrow \psi(z)$ Montel for all z

Question

Is it true in the weighted case that

$$\psi(z)$$
 Montel for all $z \Rightarrow T_{\psi}$ Montel ?

Laitila-Tylli: NO

The diagonal operator for $\lambda_p=\ell_1$

$$\psi: \mathbb{D} \to L(\ell_1, \ell_1), \ \psi(z)(x) = (z^i x_i)_{i \in \mathbb{N}},$$

satisfies that $\psi(z)$ is compact for all z, but $T_{\psi}: \ell_1 \longrightarrow H^{\infty}(\mathbb{D}, \ell_1)$ is not even weakly compact (here $v \equiv 1$).

Theorem

Let X, Y be Fréchet spaces.

Let $\varphi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to L_b(X, Y)$ be analytic maps.

If $\psi \in H^0_w(\mathbb{D}, L_b(X, Y))$ and $\psi(z)$ is Montel for all z, then

$$T_{\psi}: X \longrightarrow H_{w}^{\infty}(\mathbb{D}, Y)$$

is a Montel operator.

Weighted case. Diagonal operators on Köthe echelon spaces

Proposition (Back to the diagonal operator)

Assume that $||f_i||_w := \sup_{z \in \mathbb{D}} w(z)|f_i(z)| \le 1$ for all $i \in \mathbb{N}$. For the operator $\psi : \mathbb{D} \to L_b(\lambda_n, \lambda_n), \ \psi(z)(x) = (f_i(z)x_i)_{i \in \mathbb{N}}$, we have

• $T_{\psi}: \lambda_{p} \longrightarrow H_{w}^{\infty}(\mathbb{D}, \lambda_{p}), \ T_{\psi}((x_{i})_{i}) := (f_{i}(z)x_{i})_{i},$ is well-defined and continuous.

Lemma

For every weight there is a sequence $(f_i)_{i\in\mathbb{N}}$ which tends to 0 for the co-topology, and such that $1\geq \|f_i\|_w>\varepsilon$ for some $\varepsilon>0$ and all $i\in\mathbb{N}$.

A Fréchet space X is called **Montel** if every bounded subset of X is relatively compact; i.e. if the identity map Id on X is a Montel operator.

The space $H(\Omega)$, Ω an open subset of \mathbb{C} , endowed with the compact open topology, is Montel

Theorem

Let w be a weight. If the sequence $(f_i)_{i\in\mathbb{N}}$ tends to 0 for the co-topology and there is $\varepsilon > 0$ such that $\varepsilon < \|f_i\|_w \le 1$ for all $i \in \mathbb{N}$, then

- (a) $\psi(z): \lambda_p \to \lambda_p$ is Montel for all z.
- (b) If λ_p is Montel, then T_{ψ} is a Montel operator.
- (c) If λ_p is not Montel, then T_{ψ} is not a Montel operator.

References

- J. Bonet, M.C. Gómez-Collado, D.Jornet and E. Wolf, Operator-weighted composition operators between vector-valued (weighted) spaces of analytic functions, Preprint 2011.
- J. Laitila and H.-O. Tylli, Operator-weighted composition operators on vector-valued analytic function spaces, Illinois J. Math. 53 (2009), 1019-1032.