Three Problems for Weighted Bloch-Lipschitz Spaces of Holomorphic Functions on the Unit Ball

H. Turgay Kaptanoğlu

Department of Mathematics, Bilkent University, Ankara, Turkey kaptan@fen.bilkent.edu.tr http://www.fen.bilkent.edu.tr/~kaptan/

Joint work with Serdar Tülü

July 2011

()

Radial Differential Operators

Let $H(\mathbb{B})$ be the space of holomorphic functions on the unit ball \mathbb{B} of \mathbb{C}^N . Every $f \in H(\mathbb{B})$ has a homogeneous expansion $f = \sum_{k=0}^{\infty} f_k$, where f_k is a homogeneous polynomial of degree k.

For $s, t \in \mathbb{R}$, we have invertible radial differential operators D_s^t on $H(\mathbb{B})$ defined by $D_s^t f = \sum_{k=0}^{\infty} d_k f_k$. Each D_s^t is of order t for any $s, d_k \neq 0$ for all k = 0, 1, 2, ..., and $d_k \sim k^t$ as $k \to \infty$.

Here $a \sim b$ means $C_1|b| \leq |a| \leq C_2|b|$ for two positive constants.

If p is a polynomial of degree m, then $D_s^t p$ also has degree m. We also have $D_s^0 = I$ and $(D_s^t)^{-1} = D_{s+t}^{-t}$.

We use $\langle \cdot, \cdot \rangle$ to denote the usual Hermitian inner product on \mathbb{C}^N ; the corresponding norm is $|\cdot|$. If $z \in \mathbb{C}^N$, then $z = (z_1, \ldots, z_N)$.

The usual radial derivative R is given by $Rf(z) = \langle \nabla f(z), \overline{z} \rangle$. We have $D^1_{-N} = I + R$.

イロト 不得下 イヨト イヨト 二日

The Spaces

Definition 1.

Let $\alpha \in \mathbb{R}$. The weighted Bloch space \mathcal{B}^{α} is defined as the space of those $f \in H(\mathbb{B})$ for which $||f||_{B^{\alpha}} = \sup_{z \in \mathbb{B}} (1 - |z|^2)^{\alpha + t} |D_s^t f(z)|$ is finite for some s, t satisfying $\alpha + t > 0$. The weighted little Bloch space \mathcal{B}_0^{α} is that subspace of \mathcal{B}^{α} whose elements f satisfy $\lim_{|z| \to 1} (1 - |z|^2)^{\alpha + t} |D_s^t f(z)| = 0$.

The condition $\alpha + t > 0$ ensures that the spaces contain the polynomials and thus are nontrivial. Using Bergman-Besov projections, it can be shown that the spaces are independent of such t and $s > \alpha - 1$, although the norms are only equivalent.

Our use of α is nonstandard and the classical Bloch space is \mathcal{B}^0 and the classical little Bloch space is \mathcal{B}^0_0 using t = 1. Other people write α in place of our $\alpha + t$.

- 4 同 6 4 日 6 4 日 6

Elementary Relations

For $\alpha < 0$, the spaces \mathcal{B}^{α} are the holomorphic *Lipschitz spaces* $\Lambda_{-\alpha}$. In particular, \mathcal{B}^{-1} is the *Zygmund class*. See Zhu's book on these connections.

For $\alpha > 0$, t = 0 satisfies $\alpha + t > 0$, and no derivatives are needed in the definition of \mathcal{B}^{α} . So $f \in \mathcal{B}^{\alpha}$ if and only if $(1 - |z|^2)^{\alpha} |f(z)|$ is bounded on \mathbb{B} . These spaces are also called the *growth spaces*. In particular \mathcal{B}^2 is the *Bers space*.

The definitions immediately imply the following.

Theorem 2.

For any α and s, t, $D_s^t(\mathcal{B}^{\alpha}) = \mathcal{B}^{\alpha+t}$ is an isomorphism, and also an isometry when norms with appropriate s, t are used in the two spaces.

In this talk we concentrate on results that are valid for all $\alpha \in \mathbb{R}$.

- 4 週 ト - 4 三 ト - 4 三 ト

Some Isometries of \mathcal{B}^{lpha}

Let φ_b be the automorphism of \mathbb{B} (involutive Möbius transformation) that exchanges 0 and $b \in \mathbb{B}$. For $f \in H(\mathbb{B})$ and $\alpha \in \mathbb{R}$, define

$$T_b^{\alpha}f(z) = \frac{(1-|b|^2)^{\alpha}}{(1-\langle z,b\rangle)^{2\alpha}} f(\varphi_b(z)) = C f(\varphi_b(z)) (J\varphi_b)^{2\alpha/(N+1)},$$

where |C| = 1 and J is the complex Jacobian. On $H(\mathbb{B})$, further define

$$W_b^{\alpha} = D_{s+t}^{-t} T_b^{\alpha+t} D_s^t.$$

Replacing φ_b by a general automorphism ψ of \mathbb{B} , we have $\mathcal{T}^{\alpha}_{\psi}$ and $\mathcal{W}^{\alpha}_{\psi}$.

Lemma 3.

Given $\alpha \in \mathbb{R}$, pick s, t to satisfy $\alpha + t > 0$, and consider \mathcal{B}^{α} with the norm using these s, t. Then W_b^{α} with the same s, t is a linear surjective involutive isometry of \mathcal{B}^{α} .

We use W_b^{α} to move from $0 \in \mathbb{B}$ to $b \in \mathbb{B}$.

An Extremal Problem

For each $b \in \mathbb{B}$, consider the extremal problem of determining

$$S_lpha(b) = \sup \left\{ \, f(b) > 0 : f \in \mathcal{B}^lpha, \ \|f\|_{\mathcal{B}^lpha} = 1 \,
ight\}$$

and if possible finding a function realizing it. The problem also depends on the s, t used in the norm.

Vukotić solved this problem in weighted Bergman spaces, and Kaptanoğlu extended it to all two-parameter Besov spaces.

Theorem 4.

An extremal function attaining $S_{\alpha}(b)$ exists and lies in \mathcal{B}_{0}^{α} . For b = 0, it is the constant function 1, and for $b \neq 0$, it is $W_{b}^{\alpha}1 = T_{b}^{\alpha+t}1$.

The solution is valid for all $\alpha \in \mathbb{R}$.

A B F A B F

α -Möbius Invariance

Definition 5.

Let $(X, \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{B} . We call X an α -*Möbius-invariant* space if for some s, t satisfying $\alpha + t > 0$, we have $W_{\psi}^{\alpha}f \in X$ whenever $f \in X$, $\|W_{\psi}^{\alpha}f\| \leq C \|f\|$, and the action $\psi \mapsto W_{\psi}^{\alpha}f$ is continuous for $f \in X$ and *unitary* ψ .

Lemma 6.

For $\alpha \neq 0$, an α -Möbius-invariant space X contains all polynomials.

The case $\alpha = 0$ requires also that X contains a nonconstant function; see Zhu's book.

Definition 7.

A nonzero bounded linear functional on X is called *decent* if it extends to be continuous on $H(\mathbb{B})$.

イロト イポト イヨト イヨト

Maximality of \mathcal{B}^{lpha}

Theorem 8.

The space \mathcal{B}^{α} contains with continuous inclusion those α -Möbius-invariant spaces that possess a decent linear functional.

Rubel and Timoney proved this for the classical Bloch space ($\alpha = 0$) on the unit disc in \mathbb{C}^1 , and later Timoney extended it to the case $\alpha = 0$ on bounded symmetric domains. Our result is valid for all $\alpha \in \mathbb{R}$.

Corollary 9.

There is no α -Möbius-invariant closed subspace of $H(\mathbb{B})$ other than $\{0\}$, and also \mathbb{C} for $\alpha = 0$.

Corollary 10.

Suppose p > 0 and q > -1, or $p \ge 2$ and $-(N + 1) \le q \le 1$. Suppose also $\alpha > 0$ and $N + 1 + q = \alpha p$. Then the Besov space B_q^p is an α -Möbius-invariant space and $B_q^p \subset \mathcal{B}^{\alpha}$ with continuous inclusion.

Hermitian Metrics on $\mathbb B$

For $-1 < \alpha < 0$, the holomorphic Lipschitz space $B^{\alpha} = \Lambda_{-\alpha}$ is traditionally defined as the space of those $f \in H(\mathbb{B})$ satisfying $|f(z) - f(w)| \le C |z - w|^{-\alpha}$ for all $z, w \in \mathbb{B}$.

Further, if ρ_0 is the Bergman metric on \mathbb{B} , then f belongs to the classical Bloch space B^0 if and only if $|f(z) - f(w)| \leq C \rho_0(z, w)$ for all $z, w \in \mathbb{B}$ (Timoney). We do the same for weighted Bloch spaces \mathcal{B}^{α} for $\alpha > 0$.

For $\alpha > 0$, we define new infinitesimal Hermitian metrics on $\mathbb B$ by

$$g_{lpha_{ij}}=rac{1}{(1-|z|^2)^{2(1+lpha)}}\left(\left(1-|z|^2
ight)\delta_{ij}+z_i\overline{z}_j
ight) \qquad (1\leq i,j\leq {\sf N}).$$

We let ρ_{α} be the corresponding integrated distance function.

It turns out that \mathbb{B} is unbounded in ρ_{α} for $\alpha > 0$, that is, geodesics can be continued indefinitely, that is, $(\mathbb{B}, \rho_{\alpha})$ is geodesically complete. Then by the Hopf-Rinow theorem, $(\mathbb{B}, \rho_{\alpha})$ is a complete metric space, its closed and bounded subsets are compact, and there exists a geodesic of g_{α} joining any two points of \mathbb{B} .

H. T. Kaptanoğlu (Bilkent, Ankara)

Properties of the Metrics

The Laplace-Beltrami operator associated to g_{α} is

$$ilde{\Delta}_{lpha} = \sum_{i,j=1}^{N} g^{ij}_{lpha} \, rac{\partial^2}{\partial z_i \, \partial \overline{z}_j} + 4 \, (N-1) \, lpha \, (1-|z|^2)^{1+2lpha} \, (R+\overline{R}),$$

where $[g_{\alpha}^{ij}]$ is the inverse if $[g_{\alpha}_{ij}]$. The presence of the first-order terms in $\tilde{\Delta}_{\alpha}$ for $\alpha > 0$ and N = 1 shows that g_{α} is not a *Kähler metric*. This means that it can*not* be obtained by differentiation as

$$g_{0_{ij}}(z) = rac{1}{N+1} rac{\partial^2 \log K(z,z)}{\partial \overline{z}_i \, \partial z_j}$$

unless $\alpha = 0$ or N = 1; here K is the Bergman kernel for \mathbb{B} .

But for N = 1 and, say, $\alpha = 1$, a Kähler potential for g_1 is

$$L_1(z,w) = \frac{1}{3} \left(\log \frac{1}{1-z\overline{w}} + \frac{1}{1-z\overline{w}} + \frac{1}{2(1-z\overline{w})^2} \right).$$

Lipschitz Property for $\alpha > 0$

The (holomorphic sectional) curvature of g_{α} at $z \in \mathbb{B}$ for $\alpha > 0$ is negative, but tends to 0 as $|z| \rightarrow 1$. For N = 1, the curvature is

$$\kappa_lpha(z) = -rac{\Delta\log g_lpha(z)}{g_lpha(z)} = -4\left(1+lpha
ight)\left(1-|z|^2
ight)^{2lpha}.$$

The explicit form of ρ_{α} can be obtained when N = 1; for $\alpha = 1$, it is

$$\rho_1(z,w) = \frac{1}{4} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|} + \frac{1}{2} \frac{|\varphi_z(w)| \left(1 - 2 \operatorname{Re}(\overline{z} \, \varphi_z(w)) + |z|^2\right)}{1 - |\varphi_z(w)|^2}$$

Our final result is the following Lipschitz property.

Theorem 11.

For $\alpha > 0$, if $f \in \mathcal{B}^{\alpha}$, then $|f(z) - f(w)| \leq C \rho_{\alpha}(z, w)$ for all $z, w \in \mathbb{B}$. The converse also holds for N = 1.