Schwarzian derivative for harmonic mappings

Rodrigo Hernández

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez Viña del Mar, Chile Joint work with María José Martín (UAM)

> July 14, 2011 Málaga, Spain

- Definition
- Related results

æ

Part II

2 Harmonic case

- Backgrounds
- Definition of the Schwarzian derivative for harmonic mappings
- Some Results and open problems

Part I

Analytic case

Rodrigo Hernández Schwarzian derivative for harmonic mappings

æ

Image: Image:

Let $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ be a locally univalent analytic mapping $(f' \neq 0)$ and Ω simply connected domian, the Schwarzian derivative is defined as

$$Sf = (f''/f')' - (1/2)(f''/f')^2$$
.

This operator characterizes the Möbius transformations: $Sf \equiv 0$ if and only if f = T, where T is a Möbius transformation given by

$$T(z)=rac{az+b}{cz+d}\,,\quad ad-bc
eq 0.$$

/□ ▶ < 글 ▶ < 글

Let $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ be a locally univalent analytic mapping $(f' \neq 0)$ and Ω simply connected domian, the Schwarzian derivative is defined as

$$Sf = (f''/f')' - (1/2)(f''/f')^2$$
 .

This operator characterizes the Möbius transformations: $Sf \equiv 0$ if and only if f = T, where T is a Möbius transformation given by

$$T(z)=rac{\mathsf{a} z+\mathsf{b}}{\mathsf{c} z+\mathsf{d}}\,,\quad \mathsf{a} \mathsf{d}-\mathsf{b} \mathsf{c}
eq 0.$$

白 ト イ ヨ ト イ ヨ

Properties

If $f = h \circ g$ it follows that

$$Sf = (Sh \circ g)(g')^2 + Sg$$
.

This implies that
$$Sf(a)(1 - |a|^2)^2 = S(f \circ \phi_a)(0)$$
, where $\phi_a(z) = \frac{a-z}{1 - \overline{a}z}$.

Then, the norm of the schwarzian derivative of $f : \mathbb{D} \to \mathbb{C}$ is define by:

$$||Sf|| = \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |Sf(z)|$$

/□ ▶ < 글 ▶ < 글

Properties

If $f = h \circ g$ it follows that

$$Sf = (Sh \circ g)(g')^2 + Sg$$
.

This implies that
$$Sf(a)(1 - |a|^2)^2 = S(f \circ \phi_a)(0)$$
, where $\phi_a(z) = \frac{a-z}{1 - \overline{a}z}$.

Then, the norm of the schwarzian derivative of $f : \mathbb{D} \to \mathbb{C}$ is define by:

$$||Sf|| = \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |Sf(z)|$$

/□ ▶ < 글 ▶ < 글

Properties

If $f = h \circ g$ it follows that

$$Sf = (Sh \circ g)(g')^2 + Sg$$
.

This implies that
$$Sf(a)(1 - |a|^2)^2 = S(f \circ \phi_a)(0)$$
, where $\phi_a(z) = \frac{a-z}{1 - \overline{a}z}$.

Then, the norm of the schwarzian derivative of $f: \mathbb{D} \to \mathbb{C}$ is define by:

$$||Sf|| = \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |Sf(z)|$$

/□ ▶ < 글 ▶ < 글

Let $f : \mathbb{D} \to \mathbb{C}$ be a locally univalent mapping. If $||Sf|| \le 2$ then f is univalent in \mathbb{D} .

Theorem (Krauss)

Let $f : \mathbb{D} \to \mathbb{C}$ be a univalent mapping, then If $||Sf|| \leq 6$.

Moreover, if $f(\mathbb{D})$ is a convex domain, then $||Sf|| \leq 2$.

This inequalities are sharp.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let $f : \mathbb{D} \to \mathbb{C}$ be a locally univalent mapping. If $||Sf|| \le 2$ then f is univalent in \mathbb{D} .

Theorem (Krauss)

Let $f : \mathbb{D} \to \mathbb{C}$ be a univalent mapping, then If $||Sf|| \leq 6$.

Moreover, if $f(\mathbb{D})$ is a convex domain, then $||Sf|| \leq 2$.

This inequalities are sharp.

Let $f : \mathbb{D} \to \mathbb{C}$ be a locally univalent mapping. If $||Sf|| \le 2$ then f is univalent in \mathbb{D} .

Theorem (Krauss)

Let $f : \mathbb{D} \to \mathbb{C}$ be a univalent mapping, then If $||Sf|| \leq 6$.

Moreover, if $f(\mathbb{D})$ is a convex domain, then $||Sf|| \leq 2$.

This inequalities are sharp.

(人間) (人) (人) (人) (人) (人)

Let $f : \mathbb{D} \to \mathbb{C}$ be a locally univalent mapping. If $||Sf|| \le 2$ then f is univalent in \mathbb{D} .

Theorem (Krauss)

Let $f : \mathbb{D} \to \mathbb{C}$ be a univalent mapping, then If $||Sf|| \leq 6$.

Moreover, if $f(\mathbb{D})$ is a convex domain, then $||Sf|| \leq 2$.

This inequalities are sharp.

Definition Related results

Prescribing the Schwarzian derivative

Given Sf = 2p, then f = u/v such that u and v are linearly independent solutions of

$$u''+pu=0.$$

Lemma: f is univalent iff the equation u'' + pu = 0 is disconjugate.

Remark: This is one of the way to prove the Nehari's theorem.

Related results

Prescribing the Schwarzian derivative

Given Sf = 2p, then f = u/v such that u and v are linearly independent solutions of

$$u''+pu=0\,.$$

Lemma: f is univalent iff the equation u'' + pu = 0 is disconjugate.

Remark: This is one of the way to prove the Nehari's theorem.

Related results

Prescribing the Schwarzian derivative

Given Sf = 2p, then f = u/v such that u and v are linearly independent solutions of

$$u''+pu=0\,.$$

Lemma: f is univalent iff the equation u'' + pu = 0 is disconjugate.

Remark: This is one of the way to prove the Nehari's theorem.

Best Möbius approximation

(Tamanoi, Math Ann. 1996) Given f we want to find a möbius T such that $ad - bc \neq 0 (= 1)$ and f(0) = T(0), f'(0) = T'(0), f''(0) = T''(0).

This produce a function $F = T^{-1} \circ f$ which satisfies that

$$F(z) = (z - w) + Sf(w)(z - w)^3 + \dots + S_n(w)(z - w)^n$$

伺 ト イ ヨ ト イ ヨ ト

Best Möbius approximation

(Tamanoi, Math Ann. 1996) Given f we want to find a möbius T such that $ad - bc \neq 0 (= 1)$ and f(0) = T(0), f'(0) = T'(0), f''(0) = T''(0).

This produce a function $F = T^{-1} \circ f$ which satisfies that

$$F(z)=(z-w)+Sf(w)(z-w)^3+\cdots+S_n(w)(z-w)^n\,,$$

伺 ト く ヨ ト く ヨ ト

Best Möbius approximation

(Tamanoi, Math Ann. 1996) Given f we want to find a möbius T such that $ad - bc \neq 0 (= 1)$ and f(0) = T(0), f'(0) = T'(0), f''(0) = T''(0).

This produce a function $F = T^{-1} \circ f$ which satisfies that

$$F(z)=(z-w)+Sf(w)(z-w)^3+\cdots+S_n(w)(z-w)^n\,,$$

伺 ト く ヨ ト く ヨ ト

Part II

Harmonic case

æ

→ 3 → < 3</p>

A complex-value harmonic mapping is define as f = u + iv where $\triangle u = \triangle v = 0$.

In a simply connected domain f has the representation $f = h + \overline{g}$, where h and g are analytic. This representation is unique up to an additive constant.

f is locally univalent and sense preserving wherever $J_f = |h'|^2 - |g'|^2 > 0$ (this implies that $h' \neq 0$).

The complex dilatation of f is given by $\omega = g'/h'$. In this talk we consider $|\omega| < 1$ (sense preserving mappings).

< 口 > < 同 > < 三 > < 三

A complex-value harmonic mapping is define as f = u + iv where $\triangle u = \triangle v = 0$.

In a simply connected domain f has the representation $f = h + \overline{g}$, where h and g are analytic. This representation is unique up to an additive constant.

f is locally univalent and sense preserving wherever $J_f = |h'|^2 - |g'|^2 > 0$ (this implies that $h' \neq 0$).

The complex dilatation of f is given by $\omega = g'/h'$. In this talk we consider $|\omega| < 1$ (sense preserving mappings).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

A complex-value harmonic mapping is define as f = u + iv where $\triangle u = \triangle v = 0$.

In a simply connected domain f has the representation $f = h + \overline{g}$, where h and g are analytic. This representation is unique up to an additive constant.

f is locally univalent and sense preserving wherever $J_f = |h'|^2 - |g'|^2 > 0$ (this implies that $h' \neq 0$).

The complex dilatation of f is given by $\omega = g'/h'$. In this talk we consider $|\omega| < 1$ (sense preserving mappings).

イロト イポト イラト イラト

A complex-value harmonic mapping is define as f = u + iv where $\triangle u = \triangle v = 0$.

In a simply connected domain f has the representation $f = h + \overline{g}$, where h and g are analytic. This representation is unique up to an additive constant.

f is locally univalent and sense preserving wherever $J_f = |h'|^2 - |g'|^2 > 0$ (this implies that $h' \neq 0$).

The complex dilatation of f is given by $\omega = g'/h'$. In this talk we consider $|\omega| < 1$ (sense preserving mappings).

- 4 回 ト 4 ヨト 4 ヨト

Formula and Properties

The möbius harmonic mappings are define as:

$$M = T + \alpha \overline{T} \,,$$

where $T(z) = \frac{az+b}{cz+d}$ with $ad - bc \neq 0$.

Using the Tamanoi's ideas in the harmonic case, in order to find a M such that T(0) = h(0), T'(0) = h'(0), $M_{\overline{z}}(0) = \alpha \overline{T'(0)} = \overline{g'(0)}$, T''(0) = h''(0), we obtain that the analogous of the schwarzian derivative is given by:

Definition

Let $f = h + \overline{g}$ be a sense preserving harmonic mapping with complex dilatation ω , we define the Schwarzian derivative as:

$$S_f = Sh + rac{\overline{\omega}}{1 - |\omega|^2} \left(\omega' rac{h''}{h'} - \omega''
ight) - rac{3}{2} \left(rac{\omega' \overline{\omega}}{1 - |\omega|^2}
ight)^2 \,.$$

Rodrigo Hernández

Schwarzian derivative for harmonic mappings

Formula and Properties

The möbius harmonic mappings are define as:

$$M = T + \alpha \overline{T} \,,$$

where $T(z) = \frac{az+b}{cz+d}$ with $ad - bc \neq 0$.

Using the Tamanoi's ideas in the harmonic case, in order to find a M such that T(0) = h(0), T'(0) = h'(0), $M_{\overline{z}}(0) = \alpha \overline{T'(0)} = \overline{g'(0)}$, T''(0) = h''(0), we obtain that the analogous of the schwarzian derivative is given by:

Definition

Let $f = h + \overline{g}$ be a sense preserving harmonic mapping with complex dilatation ω , we define the Schwarzian derivative as:

$$S_f = Sh + rac{\overline{\omega}}{1 - |\omega|^2} \left(\omega' rac{h''}{h'} - \omega''
ight) - rac{3}{2} \left(rac{\omega' \overline{\omega}}{1 - |\omega|^2}
ight)^2 \,.$$

Rodrigo Hernández

Schwarzian derivative for harmonic mappings

Formula and Properties

The möbius harmonic mappings are define as:

$$M=T+\alpha \overline{T}\,,$$

where $T(z) = \frac{az+b}{cz+d}$ with $ad - bc \neq 0$.

Using the Tamanoi's ideas in the harmonic case, in order to find a M such that T(0) = h(0), T'(0) = h'(0), $M_{\overline{z}}(0) = \alpha \overline{T'(0)} = \overline{g'(0)}$, T''(0) = h''(0), we obtain that the analogous of the schwarzian derivative is given by:

Definition

Let $f = h + \overline{g}$ be a sense preserving harmonic mapping with complex dilatation ω , we define the Schwarzian derivative as:

$$S_f = Sh + rac{\overline{\omega}}{1 - |\omega|^2} \left(\omega' rac{h''}{h'} - \omega''
ight) - rac{3}{2} \left(rac{\omega' \overline{\omega}}{1 - |\omega|^2}
ight)^2 \,.$$

- $S_f \equiv 0$ iff f is a Möbius harmonic mapping.
- S_f is analytic iff $f = h + \alpha \overline{h}$, where $|\alpha| < 1$.
- Let φ be analytic function, then $S_{f \circ \varphi}(z) = S_f(\varphi(z))(\varphi'(z))^2 + S\varphi(z).$
- Let $L(z) = az + b\overline{z} + c$ an affine mapping with $a \neq 0$ and |b/a| < 1 (sense preserving), then $S_{L \circ f} = S_f$.
- If S_f is harmonic, then S_f is analytic.

- 4 同 🕨 - 4 目 🕨 - 4 目

- $S_f \equiv 0$ iff f is a Möbius harmonic mapping.
- S_f is analytic iff $f = h + \alpha \overline{h}$, where $|\alpha| < 1$.
- Let φ be analytic function, then $S_{f \circ \varphi}(z) = S_f(\varphi(z))(\varphi'(z))^2 + S\varphi(z).$
- Let $L(z) = az + b\overline{z} + c$ an affine mapping with $a \neq 0$ and |b/a| < 1 (sense preserving), then $S_{L \circ f} = S_f$.
- If S_f is harmonic, then S_f is analytic.

- $S_f \equiv 0$ iff f is a Möbius harmonic mapping.
- S_f is analytic iff $f = h + \alpha \overline{h}$, where $|\alpha| < 1$.
- Let φ be analytic function, then $S_{f \circ \varphi}(z) = S_f(\varphi(z))(\varphi'(z))^2 + S\varphi(z).$
- Let $L(z) = az + b\overline{z} + c$ an affine mapping with $a \neq 0$ and |b/a| < 1 (sense preserving), then $S_{L \circ f} = S_f$.
- If S_f is harmonic, then S_f is analytic.

< ロ > < 同 > < 三 > < 三

- $S_f \equiv 0$ iff f is a Möbius harmonic mapping.
- S_f is analytic iff $f = h + \alpha \overline{h}$, where $|\alpha| < 1$.
- Let φ be analytic function, then $S_{f \circ \varphi}(z) = S_f(\varphi(z))(\varphi'(z))^2 + S\varphi(z).$
- Let $L(z) = az + b\overline{z} + c$ an affine mapping with $a \neq 0$ and |b/a| < 1 (sense preserving), then $S_{L \circ f} = S_f$.
- If S_f is harmonic, then S_f is analytic.

- 4 同 🕨 - 4 目 🕨 - 4 目

- $S_f \equiv 0$ iff f is a Möbius harmonic mapping.
- S_f is analytic iff $f = h + \alpha \overline{h}$, where $|\alpha| < 1$.
- Let φ be analytic function, then $S_{f \circ \varphi}(z) = S_f(\varphi(z))(\varphi'(z))^2 + S\varphi(z).$
- Let $L(z) = az + b\overline{z} + c$ an affine mapping with $a \neq 0$ and |b/a| < 1 (sense preserving), then $S_{L \circ f} = S_f$.
- If S_f is harmonic, then S_f is analytic.

Results

Theorem

Let f and F be a sense preserving harmonic mappings with complex dilatations ω_f and ω_F respectively. Then

•
$$S_f = S_F$$
 iff $J_f = cJ_F$, for some constant c .

•
$$S_f = S_F$$
 iff $\frac{|\omega'_f|}{(1-|\omega_f|^2)} = |c| \frac{|\omega'_F|}{(1-|\omega_F|^2)}$, for some constant c .

□ > < = > <

-

Results

Theorem

Let f and F be a sense preserving harmonic mappings with complex dilatations ω_f and ω_F respectively. Then

•
$$S_f = S_F$$
 iff $J_f = cJ_F$, for some constant c .

•
$$S_f = S_F$$
 iff $\frac{|\omega'_f|}{(1-|\omega_f|^2)} = |c| \frac{|\omega'_F|}{(1-|\omega_F|^2)}$, for some constant c .

□ > < = > <

Backgrounds Definition of the Schwarzian derivative for harmonic mappings Some Results and open problems

Results

Theorem

Let $f = h + \overline{g}$ be a sense preserving harmonic mapping define in \mathbb{D} , then $||S_f|| < \infty$ iff $||Sh|| < \infty$.

Convex mappings

Let $f = h + \overline{g}$ be a sense preserving convex harmonic mapping $(f(\mathbb{D}) \text{ is convex})$, then $||S_f|| < 6$.

Theorem

There exists a constant *C* such that $||S_f|| < C$ for all sense preserving univalent harmonic mappings.

Backgrounds Definition of the Schwarzian derivative for harmonic mappings Some Results and open problems

Results

Theorem

Let $f = h + \overline{g}$ be a sense preserving harmonic mapping define in \mathbb{D} , then $||S_f|| < \infty$ iff $||Sh|| < \infty$.

Convex mappings

Let $f = h + \overline{g}$ be a sense preserving convex harmonic mapping $(f(\mathbb{D}) \text{ is convex})$, then $||S_f|| < 6$.

Theorem

There exists a constant C such that $\|S_f\| < C$ for all sense preserving univalent harmonic mappings.

Backgrounds Definition of the Schwarzian derivative for harmonic mappings Some Results and open problems

Results

Theorem

Let $f = h + \overline{g}$ be a sense preserving harmonic mapping define in \mathbb{D} , then $||S_f|| < \infty$ iff $||Sh|| < \infty$.

Convex mappings

Let $f = h + \overline{g}$ be a sense preserving convex harmonic mapping $(f(\mathbb{D}) \text{ is convex})$, then $||S_f|| < 6$.

Theorem

There exists a constant C such that $||S_f|| < C$ for all sense preserving univalent harmonic mappings.

• Given S_f , can we recovered the function f?

- There exists a constant C such that $||S_f|| < C$ implies that f is univalent ?
- Find a sharp bound of the ||S_f|| for all univalent mappings. We conjectured that the bound is 19/2.

- Given S_f , can we recovered the function f?
- There exists a constant C such that $\|S_f\| < C$ implies that f is univalent ?
- Find a sharp bound of the ||S_f|| for all univalent mappings. We conjectured that the bound is 19/2.

- Given S_f , can we recovered the function f?
- There exists a constant C such that $\|S_f\| < C$ implies that f is univalent ?
- Find a sharp bound of the ||S_f|| for all univalent mappings. We conjectured that the bound is 19/2.

- Given S_f , can we recovered the function f?
- There exists a constant C such that $\|S_f\| < C$ implies that f is univalent ?
- Find a sharp bound of the ||S_f|| for all univalent mappings. We conjectured that the bound is 19/2.