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Definition

Let f : Ω ⊆ C→ C be a locally univalent analytic mapping
(f ′ 6= 0) and Ω simply connected domian, the Schwarzian
derivative is defined as

Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2 .

This operator characterizes the Möbius transformations: Sf ≡ 0 if
and only if f = T , where T is a Möbius transformation given by

T (z) =
az + b

cz + d
, ad − bc 6= 0.
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Properties

If f = h ◦ g it follows that

Sf = (Sh ◦ g)(g ′)2 + Sg .

This implies that Sf (a)(1− |a|2)2 = S(f ◦ φa)(0), where

φa(z) =
a− z

1− az
.

Then, the norm of the schwarzian derivative of f : D→ C is define
by:

‖Sf ‖ = sup
z∈D

(1− |z |2)2|Sf (z)|
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Theorem (Nehari)

Let f : D→ C be a locally univalent mapping. If ‖Sf ‖ ≤ 2 then f
is univalent in D.

Theorem (Krauss)

Let f : D→ C be a univalent mapping, then If ‖Sf ‖ ≤ 6.

Moreover, if f (D) is a convex domain, then ‖Sf ‖ ≤ 2.

This inequalities are sharp.
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Prescribing the Schwarzian derivative

Given Sf = 2p, then f = u/v such that u and v are linearly
independent solutions of

u′′ + pu = 0 .

Lemma: f is univalent iff the equation u′′+ pu = 0 is disconjugate.

Remark: This is one of the way to prove the Nehari’s theorem.
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Best Möbius approximation

(Tamanoi, Math Ann. 1996)
Given f we want to find a möbius T such that ad − bc 6= 0(= 1)
and f (0) = T (0), f ′(0) = T ′(0), f ′′(0) = T ′′(0).

This produce a function F = T−1 ◦ f which satisfies that

F (z) = (z − w) + Sf (w)(z − w)3 + · · ·+ Sn(w)(z − w)n ,
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Harmonic mappings

A complex-value harmonic mapping is define as f = u + iv where
4u = 4v = 0.

In a simply connected domain f has the representation f = h + g ,
where h and g are analytic. This representation is unique up to an
additive constant.

f is locally univalent and sense preserving wherever
Jf = |h′|2 − |g ′|2 > 0 (this implies that h′ 6= 0).

The complex dilatation of f is given by ω = g ′/h′. In this talk we
consider |ω| < 1 (sense preserving mappings).
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Formula and Properties

The möbius harmonic mappings are define as:

M = T + αT ,

where T (z) = az+b
cz+d with ad − bc 6= 0 .

Using the Tamanoi’s ideas in the harmonic case, in order to find a
M such that T (0) = h(0), T ′(0) = h′(0),
Mz(0) = αT ′(0) = g ′(0), T ′′(0) = h′′(0), we obtain that the
analogous of the schwarzian derivative is given by:

Definition

Let f = h + g be a sense preserving harmonic mapping with
complex dilatation ω, we define the Schwarzian derivative as:

Sf = Sh +
ω

1− |ω|2

(
ω′

h′′

h′
− ω′′

)
− 3

2

(
ω′ω

1− |ω|2

)2

.
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Properties

Sf ≡ 0 iff f is a Möbius harmonic mapping.

Sf is analytic iff f = h + αh, where |α| < 1.

Let ϕ be analytic function, then
Sf ◦ϕ(z) = Sf (ϕ(z))(ϕ′(z))2 + Sϕ(z).

Let L(z) = az + bz + c an affine mapping with a 6= 0 and
|b/a| < 1 (sense preserving), then SL◦f = Sf .

If Sf is harmonic, then Sf is analytic.
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Results

Theorem

Let f and F be a sense preserving harmonic mappings with
complex dilatations ωf and ωF respectivelly. Then

Sf = SF iff Jf = cJF , for some constant c .

Sf = SF iff
|ω′f |

(1− |ωf |2)
= |c |

|ω′F |
(1− |ωF |2)

, for some constant

c.
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Results

Theorem

Let f = h + g be a sense preserving harmonic mapping define in D,
then ‖Sf ‖ <∞ iff ‖Sh‖ <∞.

Convex mappings

Let f = h + g be a sense preserving convex harmonic mapping
(f (D) is convex), then ‖Sf ‖ < 6.

Theorem

There exists a constant C such that ‖Sf ‖ < C for all sense
preserving univalent harmonic mappings.
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Some open problems

Given Sf , can we recovered the function f ?

There exists a constant C such that ‖Sf ‖ < C implies that f
is univalent ?

Find a sharp bound of the ‖Sf ‖ for all univalent mappings.
We conjectured that the bound is 19/2.
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