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H (D) is the space of functions analytic on the open unit disk I

f € H(D) is univalent when it is one-to-one on D;

B={fe€HD):||[flls =sup.ep(l — [2")|f'(2)] < oo} is the Bloch space;

e For g in H(D), g € B iff dc € C and a univalent f such that g = clog f'.
Then ()
2
glg:csupl—z2 < 6|c|.
[l9ll = l¢| sup( H)|f,(z)\ ]

zelD

What can we say about a univalent f, the domain 2 = f(ID), or the boundary
curve 0€), given that log f" € X, for some Banach space X C B?

For f univalent, we say that 2 = f(D) is an X-domain whenever log f € X.

For example, if € is the inner domain of a (closed) Jordan curve 0€2:
e () is a By domain iff 02 is asymptotically conformal (Pommerenke, "78);
e (2isa VMOA domain iff 92 is asymptotically smooth (Pommerenke, '78);

o If 002 is rectifiable and || log f'||s is small enough, then §2 is a BMOA
domain iff 0f is a quasi-smooth (Lavrentiev) curve (Pommerenke, 77).



Other characterizations given in terms of the Schwarzian derivative S:

e () is a By domain iff (1 —|2|%)?Ss(2) — 0, as |z| — 1~ (Pommerenke, '78);
e ()is a BMOA domain iff (1 — |2]?)?|Sf(2)]?dA(z) is a Carleson measure
on D (Astala, Zinsmeister, '91).

Let f be (locally) univalent function in H(ID). Then

Pi(z) = (log f')(2) = ffcl((j)) ( pre-Schwarzian derivative),

% / % 2
Si(z) = Pi(z) — H(Pr(2))? = (1},((5))> —1 (?,éj;) (Schwarzian derivative).

Properties of Py and S:

e If f is univalent on ID, then
(L= [2[)[Py(2)] < 6 and (1 — |2]*)*|Ss(2)] < 6.

o If (1 —|23)|2Ps(2)] <1, 0r (1 —|2[*)?Ss(2)] <2, then f is univalent.

e The Schwarzian derivative is Mobius invariant , i.e. Sy,of = S, and

(1= 1211 fova(2)] = (1 = [a(2)]*)*ISp(¥a(2))],

for every Mobius transformation ,(2) = 7=, a € D.




Recall:

For s > 0, a positive measure p on D is an s — Carleson measure
whenever

sup [ 0L dun(z) < o

acD

or equivalently, whenever

sup M < 00,

con |I)°

where [ is a subarc of the unit circle with normalized length |1/,
and S(I) is a Carleson box determined by I, i.e.

z

S(I):{zéﬂ):l—mg\z]<1,‘z‘

eI}

For s > 0, a positive measure p on D is a vanishing s — Carleson measure
whenever

lim / (=) du(z) = 0,

la|—1

or equivalently, whenever

oy HS(D)

— 0.
-0 |I|°



For p > 1 and s > 0, the analytic Besov-type space B, s is defined by

Bys={f € HD): |fll5,, = Sup/ ()P A= 2 (1=|1ha(2)]*)°dA(2) < oo},

acD JD
where R
Yal2) = 1 —az
is a Mobius transformation related to the point a € D, and dA(z) = (1{11?2"22))2 18
a Mobius invariant measure on ID.
B, is a Banach space with a Mobius invariant seminorm || - || 5, ,. As shown

by Rubel and Timoney, every Mobius invariant function space must be included
in the Bloch space B.

The Besov-type spaces B, ¢ are contained in a more general class of so called
F), 4. spaces, introduced by R. Zhao.

Forp >0,s>0and ¢ > —2,

11, =50 [ 170 = 2P = ()AL

and

Fpgs =1 € HD) : || f|F,,, < oo}



For s > 0, let

F = {feHD hm/!f WL — 21 — [a(2) ) dA(z) = O}.

a1

and for s = 0, define F) o = F} 40.

olfg+s>—1andp > 1, then F),, is a nontrivial Banach space contained

in the Bloch-type space B* with o = 2, where

={f € HD),[[fl|s —itelp(l = [2[))*1f(2)] < oo}

Moreover, F), . C B," , where for a > 0

By ={f € HD): |1}m1(1 = [21))*1f (=) = 0}.

qt+2

oIfS>1theanq5—BP pqS—Bpandsofor8>1q+2—p,we

have that F),, s = B and FO = B,.

b.q,s

Hence, we will always assume that g+s > —1, 1 <p <oocand g+2 < pso
that F,, s C B, and will refer to this range of the parameters as the standard
range of p,q and s.

e forp>1 F,, 2s= D, and so I, , 29 = B, the analytic Besov space.

e When P = 2, FQ,O,S = QS. ThUS, F27071 = BMOA and F2070’1 =VMOA.



Characterizations of X-domains in terms of Carleson measure conditions
involving the Schwarzian derivative:

o ( Astala, Zinsmeister, '91) BMOA domains.
Pau, Peldez '09) Qs domains.

°(
o ( Pérez-Gonzalez, Rattya, '09) B, domains and @), ¢ domains.
(

e (Galanopolous, Girela, Hernandez, '11) B, (general) domains.

We have the following characterization of F), , ; domains:

Theorem 1. Let f be univalent on D, 1 < p < 00, —2 < q¢ < o0,
0<s<ooand g+ s> —1. Let 2 = f(D), and let 952 be a Jordan curve.
It ¢ +2=p, then Qis a F,, ; domain if and only if

ditfpas(2) = [Sp(2)|P(1 — [2[)PT 1T dA(z)
is an s-Carleson measure.

If g+2 < p, then Qis a F}, , ; domain if and only if log f' € By and dpif,4.5(2)
is an s-Carleson measure.

Theorem 2. Let f be univalent on D, 1 < p < 00, —2 < q¢ < o0,
0<s<ooand g+ s> —1. Let Q = f(D), and let 052 be a Jordan curve.

Ifq+2 <p, then Qis a ng’s domain if and only if

ditfpas(2) = Sp(2) (1 = |2 H77*dA(z)

is a vanishing s-Carleson measure.



A bit on the techniques and ideas of the proof:

Lemma 1. [Rattya, ’03] Let p,q and s be constants in the standard
range, let n € NJorn=0and ¢+s—p> —1, and let h € H(ID). Then the
following are equivalent:

(i) h is a function in F, .
(i) A (2)[P(1 — |2|?) (P~ DPHa+sd A(2) is an s-Carleson measure.

(1) supyep fi (A (P(L = [22) =D+t () dA(z) < oo.

Lemma 2. Let p,q and s be constants in the standard range.
If log f' € F, 5, then

diifpqs(z) = |Sp(2)[P(1 = |2]?)PHI7dA(2)
is an s-Carleson measure.

Proof. Recall:
Pr(z) = (log f')(2); Sy(2) = Pj(z) — 5(Py(2))% [|log f'lls < 6.
By Lemma 1, log f' € F), s iff |Pr(2)|P(1 — |2]?)?"*dA(2) is s-Carleson
measure iff [P(2)[P(1 — |2[*)P*4"*d A(z) is s-Carleson measure.
Moreover, for p > 1,
[Sp(2)P(1 = |2t <

— S 1 S
2P = [P + Sl og S Pr()I" (1 — |27



Lemma 3. Let p, g and s be constants in the standard range. Let f be such
that €2 = f(ID) is a Jordan domain, and such that log f € By. Then if

ditgpas(2) = |Sp(2)[(1 = [2[)P T dA(2)
is an s-Carleson measure, we have that |Pr(2)|P(1 — |z|*)7"5d A(z) is also an
s-Carleson measure.

Proof. Since 2 = f(D) is a Jordan domain and log f" is in By, we have that
0f) is asymptotically conformal. Hence, Ve > 0, dr. > 0 such that whenever
2| > 7., we have that (1 — |2|?)|Ps(2)] < e.

Using small enough ¢, the proof follows by showing that 3C(e), Cy(g) > 0
such that

/D PYUIP(L = |2l ()P dA(z) <
Ci(e) / 1S(2)P(1 — [Pl (2)*dA(z) + Cale).
[]

The proof of Theorem 1. for the range of the parameters p, q, s where either
g+ 2 < p, or where ¢ + 2 = p and s = 0, thus covering the Bloch-type spaces
B*, 0 < a <1 and the Besov spaces B,,p > 1 follows directly from the given
lemmas, since these spaces are all included in the little Bloch space B.
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The remaining range ¢ +2 = p and 0 < s < 1, covers the case of the Mobius
invariant Besov-type spaces B .

The corresponding part of the proof of Theorem 1. uses the decomposition
of the unit disk into dyadic Carleson squares, and on further estimates and
comparisons of the pre-Schwarzian and the Schwarzian derivatives behaviour
over the special Carlesons squares.

These techniques have been used before in the characterizations of X-domains
in terms of Carleson measure conditions involving the Schwarzian derivative,
such as for example in the Astala, Zinsmeister characterization of BMOA do-
mains, or in the proof of the recent result of Pau and Pelaez in the characteri-
zation of the ()5 domains.
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One of the interesting questions, that has been considered in a number of
cases is when is the Jordan curve 0fQ rectifiable.

Note that even when 0f) is asymptotically conformal, it still does not have to
be rectifiable.

o If 2 = f(ID) is a quasidisk, then OS2 is rectifiable iff
Jo I (2)[IS5(2)]*(1 = |2[*)?dA(2) < oo (Bishop-Jones, '94).

e If log f’ is in the space F207071 = VMOA, then 0 is rectifiable
(Pommerenke, "78).

Since the Besov spaces B),,1 < p < 0o and the spaces (50,0 < s < 1 are
all contained in VMOA, if log f’ is in any of these spaces, then 9Q2 must also
be rectifiable.

We have the following result related to rectifiability of the boundary Jordan
curve, which includes the cases mentioned above.

Theorem 3. Let f be univalent on D, let QQ = f(ID) and let 952 be a Jordan
curve.Let p, g and s be in the standard range and let either 0 < s < 1,ors =1
and ¢ +2 < p. Iflog f’ € ng,s, then f" € H" for all r > 0, which further
more implies that the Jordan curve 0f) is rectifiable.

Question: If s =1, ¢+2=p,p > 2 logf € Fﬁq’s and €2 = f(D) is a
Jordan domain, is OS2 rectifiable?
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Recall that if, for example, log f" belongs to By, then 0€) is asymptotically
conformal and so, f has a quasiconformal extension to the complex plane.

The case when f has a quasiconformal extension is of particular interest in
Teichmiiller theory. For example, if S = {log " : f univalent on D} and

T(1) = {log f" : f has quasiconformal extension to C},
then T'(1) is the interior of .S in the Bloch norm.

If Sgroa = {log f' . f univalent on D, log f' € BMOA}, then the interior
of Spyoa in the BMOA norm is Sgaoa NT(1). Also, there is a descriptions
of the connected components of Sgyoa NT(1) (Astala, Zinsmeister, '91).

We have given Schwarzian derivative characterizations of the spaces
Sx = {log f: f univalent on D, log f' € X},

where X is either an F), , ,, or FIS) .. Space, contained in the Bloch space.

If further more F), ;s C By, or F}), , € By, we have that Sy NT'(1) = Sx.

Thus, the main interest are the leftover options, i.e. the cases when X is one
of the spaces B, 5,1 < p < 00,0 < s < 1.There are many interesting questions
related to the topological structure of these types of general Teichmiiller spaces.

e [s it always true that Sp, , N T'(1) is the interior of Sp , in the B, ; norm,
and what is their closure in the B, ; norm, or in the Bloch norm?

e Are there specific descriptions of some of the connected components of
Sp,, NT(1), in terms of special conditions imposed on f7
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The restriction on the parameters p, q, s in the standard range excludes the
minimal Mobius invariant space By, defined by

Bi={f € HO): flls, = [ £ ()IdA() < o0}

Note that in the spirit of Lemma 1, the space B; can be regarded as on of the
F), .5 spaces, where we taken =2, p=1, s =0 and ¢ = —1.

Similar characterization of By domains still holds. One direction of the result,
for not necessarily Jordan domains, appears also in (Galanopolous, Girela,
Hernandez, '11).

Proposition 1. For f univalent on D and Q2 = f(D) a Jordan domain,
log " is in By if and only if Sy belongs to the Bergman space A', where

Al = {he HD): Al = /D h(2)|dA(2) < oo},

Proof. 1f Sy is in A', i.e |S¢(2)|dA(2) is a finite measure, then

1SH(2)](1 = |2|*)*> = 0 as |z| — 1, and so log f" € By. Similarly to the proof
of Lemma 3, this time with s = 0, we get that if Sy is in A', then PJ’C is also in
Ay, But P = (log f')", and so log f" is in By.

For the converse, if log f’ is in By, then log f’ is also in the Dirichlet space
By, since By C By. This implies that (log f’)’ = Py is in the Bergman space
A? which is equivalent to PJ? belonging to A'. Since P} = (log f)” belongs to
Al and Sy = PJC — %PJ?, we get that Sy also belongs to A'. ]
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