Strong continuity of composition semigroups in spaces of analytic functions

A. Siskakis

University of Thessaloniki
July 142011

Introduction

$\mathbb{D}=$ unit disc in \mathbb{C}.
Def. A semigroup is a family $\left\{\varphi_{t}\right\}_{t \geq 0}$ of analytic self-maps of \mathbb{D} such that.
(i) $\varphi_{0} \equiv z,($ identity on $\mathbb{D})$,
(ii) $\varphi_{t+s}=\varphi_{t} \circ \varphi_{s}$, for all $t, s \geq 0$,
(iii) $\varphi_{t} \rightarrow \varphi_{0}$ as $t \rightarrow 0$, uniformly on compact subsets of \mathbb{D}.

Generator of $\left\{\varphi_{t}\right\}$:

$$
\begin{aligned}
G(z) & =\lim _{t \rightarrow 0} \frac{\varphi_{t}(z)-z}{t}=\left.\frac{\partial \varphi_{t}(z)}{\partial t}\right|_{t=0} \\
& =(\bar{b} z-1)(z-b) F(z)
\end{aligned}
$$

$b \in \overline{\mathbb{D}}$, Denjoy-Wolff point of $\left\{\varphi_{t}\right\}$,
$\operatorname{Re} F(z) \geq 0$.

For such $\left\{\varphi_{t}\right\}$ let

$$
C_{t}(f)=f \circ \varphi_{t}, \quad f \text { analytic on } \mathbb{D} .
$$

$\left(X,\| \|_{X}\right)$ a Banach space of analytic functions. Assume

$$
C_{t}: X \rightarrow X
$$

are bounded operators for $t \geq 0$.

Strong continuity.

When is $\left\{C_{t}\right\}$ strongly continuous (s. c.) on X ?
Need

$$
\lim _{t \rightarrow 0}\left\|C_{t}(f)-f\right\|_{X}=0, \quad \text { each } f \in X
$$

To get s.c. we have to pass from

$$
\left(f \circ \varphi_{t}\right)(z) \rightarrow f(z), \quad z \in \mathbb{D}
$$

to convergence in $\|\| x$.

1. The easy cases.

Suppose polynomials are dense in X, and

$$
\sup _{0<t<\delta}\left\|C_{t}\right\|_{x \rightarrow X}=M<\infty, \quad \text { some } \delta>0
$$

then for a polynomial P and small t,

$$
\begin{aligned}
\left\|f \circ \varphi_{t}-f\right\| & \leq\left\|f \circ \varphi_{t}-P \circ \varphi_{t}\right\|+\left\|P \circ \varphi_{t}-P\right\|+\|P-f\| \\
& \leq\left(\left\|C_{t}\right\|+1\right)\|P-f\|+\left\|P \circ \varphi_{t}-P\right\|
\end{aligned}
$$

Thus
s. c. $\Leftrightarrow \lim _{t \rightarrow 0}\left\|P \circ \varphi_{t}-P\right\|=0$,

$$
\Leftrightarrow \lim _{t \rightarrow 0}\left\|\varphi_{t}(z)^{k}-z^{k}\right\|=0, \quad k=1,2, \cdots
$$

Suppose also each $m \in H^{\infty}$ acts as bounded multipliers of X of norm $\leq\|m\|_{\infty}$. Then

$$
\varphi_{t}(z)^{k}-z^{k}=\left(\varphi_{t}(z)-z\right) b_{t}(z)
$$

with $\left\|b_{t}\right\|_{\infty} \leq k$, so

$$
\text { s. c. } \Leftrightarrow \lim _{t \rightarrow 0}\left\|\varphi_{t}(z)-z\right\|=0
$$

Hardy spaces $H^{p},(1 \leq p<\infty)$, and Bergman spaces A_{α}^{p}, ($1 \leq p<\infty,-1<\alpha<\infty$), satisfy the above conditions, and $\left\|\varphi_{t}(z)-z\right\| \rightarrow 0$ is a consequence of Lebesgue dominated convergence.

Every $\left\{C_{t}\right\}$ is s. c. on H^{p} (Berkon - Porta), and on A_{α}^{p}.

2. Dirichlet spaces.

Every $\left\{C_{t}\right\}$ is s. c. on \mathcal{D}.
\mathcal{D} is a member of $\mathcal{D}_{\alpha},-1<\alpha<\infty$,

$$
\|f\|_{\mathcal{D}_{\alpha}}^{2}=|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d x d y<\infty
$$

$\mathcal{D}_{0}=\mathcal{D}$
$\mathcal{D}_{1}=H^{2}$
$\mathcal{D}_{\alpha}=$ a Bergman space for $\alpha>1$
Every $\left\{C_{t}\right\}$ is s. c. on \mathcal{D}_{α} for $0<\alpha<1$ (P. Galanopoulos)
3. $X=H^{\infty}$ or $X=\mathcal{B}$, the Bloch space.

Both H^{∞} and \mathcal{B},

- are Grothendieck spaces: every weak* convergent $\left(x_{n}\right) \subset X^{*}$ is also weakly convergent in X^{*}.
- have the Dunford-Pettis property: given any sequences

$$
\left(x_{n}\right) \subset X, \quad\left(x_{n}^{*}\right) \subset X^{*},
$$

weakly convergent to zero, then $\left\langle x_{n}, x_{n}^{*}\right\rangle \rightarrow 0$.
By a theorem of H . Lotz, if X is such a space and $\left\{T_{t}\right\}$ any semigroup on X,
$\left\{T_{t}\right\}$ is s. c. $\Rightarrow\left\{T_{t}\right\}$ is uniformly continuous.
In particular any s. c. $\left\{C_{t}\right\}$ has a bounded generator

$$
\Gamma(f)=G f^{\prime}
$$

and it follows that $\left\{C_{t}\right\}$ is trivial.
There are no nontrivial s. c. $\left\{C_{t}\right\}$ on H^{∞} or on \mathcal{B}.
4. $X=V M O A$ or $X=\mathcal{B}_{0}$, the little Bloch.

- Polynomials are dense in X
- $\sup _{0<t<\delta}\left\|C_{t}\right\|_{X \rightarrow X}<\infty$,
thus for s. c. it suffices

$$
\lim _{t \rightarrow 0}\left\|f \circ \varphi_{t}-f\right\|_{x}=0, \quad f \text { polynomial. }
$$

But then

$$
f \circ \varphi_{t}-f \in \mathcal{D} \subset V M O A \subset \mathcal{B}_{0}
$$

and

$$
\left\|f \circ \varphi_{t}-f\right\|_{\mathcal{B}} \leq C_{1}\left\|f \circ \varphi_{t}-f\right\|_{*} \leq C_{2}\left\|f \circ \varphi_{t}-f\right\|_{\mathcal{D}}
$$

Every $\left\{C_{t}\right\}$ is s. c. on VMOA and on \mathcal{B}_{0}.
5. Some other Mobius invariant spaces.

Consider the Q_{p} spaces. Let $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}$.

$$
\begin{aligned}
& f \in Q_{p} \Leftrightarrow \sup _{a \in \mathbb{D}}\left\|f \circ \phi_{a}-f(a)\right\|_{\mathcal{D}_{p}}<\infty, \\
& f \in Q_{p, 0} \Leftrightarrow \lim _{|a| \rightarrow 1}\left\|f \circ \phi_{a}-f(a)\right\|_{\mathcal{D}_{p}} \rightarrow 0 .
\end{aligned}
$$

We have

$$
\begin{gathered}
Q_{1}=B M O A, \quad Q_{1,0}=V M O A \\
Q_{p}=\mathcal{B}, \quad \text { and } \quad Q_{p, 0}=\mathcal{B}_{0}, \quad \text { for } p>1
\end{gathered}
$$

and

$$
\mathcal{D} \subset\left(Q_{r, 0}, Q_{r}\right) \subset\left(Q_{s, 0}, Q_{s}\right) \subset\left(\mathcal{B}_{0}, \mathcal{B}\right)
$$

for $0<r<s<\infty$, with a norm domination inequality.
The argument used for $V M O A, \mathcal{B}_{0}$, implies:
Every $\left\{C_{t}\right\}$ is s. c. on each $Q_{p, 0}, p>0$. (K. Wirths - J. Xiao)
6. The disc Algebra $A(\mathbb{D})$.

Theorem. If $\left\{C_{t}\right\}$ "has the right" to be s. c. then it is s. c.
"has the right" means: $\varphi_{t} \in A(\mathbb{D})$, for all $t \geq 0$,
The proof is nontrivial, involves the Caratheodory extension theorem for conformal maps - prime ends.

Further,
$\left\{C_{t}\right\}$ s. c. $\Leftrightarrow \partial_{\infty} \Omega$ is locally connected,
$\Omega=h(\mathbb{D})$, and h the Königs map of φ_{t}, i.e.

$$
\begin{array}{cl}
h\left(\varphi_{t}(z)\right)=e^{c t} h(z), & \text { if } \quad b \in \mathbb{D} \\
h\left(\varphi_{t}(z)\right)=h(z)+t, & \text { if } \quad b \in \partial \mathbb{D}
\end{array}
$$

(M. Contreras - S. Diaz-Madrigal)

7. Hardy space on the upper half-plane.

$f: \mathbb{U} \rightarrow \mathbb{C}$ is in $H^{p}(\mathbb{U})$ if

$$
\|f\|_{p}^{p}=\sup _{y>0} \int_{-\infty}^{\infty}|f(x+i y)|^{p} d x<\infty .
$$

In analogy to \mathbb{D} consider semigroups $\left\{\psi_{t}\right\}$ in \mathbb{U} and the induced $\left\{C_{t}\right\}$.

Theorem Let $1 \leq p<\infty$. If $\left\{C_{t}\right\}$ consists of bounded operators on $H^{p}(\mathbb{U})$ then $\left\{C_{t}\right\}$ is s. c. on $H^{p}(\mathbb{U})$.

If C_{t} is bounded for some $t \neq 0$, then bounded for all t. (A. Arvanitidis)
8. $\mathbf{X}=$ BMOA. Sarason (1975) proved:

If $f \in B M O A$ then these are equivalent:
(a) $f \in V M O A$.
(b) $\lim _{t \rightarrow 0}\left\|f\left(e^{i t} z\right)-f(z)\right\|_{*}=0$.
(c) $\lim _{t \rightarrow 0}\left\|f\left(e^{-t} z\right)-f(z)\right\|_{*}=0$.

As a consequence,
$\varphi_{t}(z)=e^{i t} z, \varphi_{t}(z)=e^{-t} z$ induce a $\left\{C_{t}\right\}$ which is not s. c. on BMOA.
$\left\{C_{t}\right\}$ not s. c. on any X with

$$
V M O A \varsubsetneqq X \subset B M O A
$$

For more general $\left\{\varphi_{t}\right\}$?
Ex. 1. Take

$$
\varphi_{t}(z)=e^{-t} z+1-e^{-t}
$$

and

$$
f(z)=\log \left(\frac{1}{1-z}\right) \in B M O A \backslash V M O A
$$

Then

$$
\lim _{t \rightarrow 0}\left\|f \circ \varphi_{t}-f\right\|_{*}=\ldots=\lim _{t \rightarrow 0} t=0
$$

thus $\left\{\varphi_{t}\right\}$ induces a s. c. $\left\{C_{t}\right\}$ on

$$
V=\operatorname{span}\{V M O A, \log (1 /(1-z))\}
$$

Ex. 2. Take a starlike univalent

$$
h: \mathbb{D} \rightarrow \mathbb{C}, \quad h(0)=0
$$

such that $h \in B M O A \backslash V M O A$, and let

$$
\varphi_{t}(z)=h^{-1}\left(e^{-t} h(z)\right)
$$

If $k \geq 1$ and $h^{k} \in B M O A$, then

$$
\lim _{t \rightarrow 0}\left\|\left(h \circ \varphi_{t}\right)^{k}-h^{k}\right\|_{*}=\lim _{t \rightarrow 0}\left|e^{-k t}-1\right|\left\|h^{k}\right\|_{*}=0
$$

so again $\left\{C_{t}\right\}$ is s. c. on the larger space

$$
V=\operatorname{span}\left\{V M O A, h, h^{2}, \cdots h^{k}\right\}
$$

Def. Given a $\left\{\varphi_{t}\right\}$ write

$$
\left[\varphi_{t}, B M O A\right]
$$

for the maximal closed subspace of $B M O A$ such that $\left\{\varphi_{t}\right\}$ induces a s. c. $\left\{C_{t}\right\}$ on it.

Thus

$$
V M O A \subseteq\left[\varphi_{t}, B M O A\right] \subseteq B M O A
$$

for every $\left\{\varphi_{t}\right\}$, and,

- for some $\left\{\varphi_{t}\right\}, \quad V M O A \varsubsetneqq\left[\varphi_{t}, B M O A\right]$.
- for other $\left\{\varphi_{t}\right\}, V M O A=\left[\varphi_{t}, B M O A\right]$.
Q. For which $\left\{\varphi_{t}\right\}$ is $V M O A=\left[\varphi_{t}, B M O A\right]$?

Conditions under which $V M O A=\left[\varphi_{t}, B M O A\right]$.
Recall, the generator of $\left\{\varphi_{t}\right\}$ has the form

$$
G(z)=(\bar{b} z-1)(z-b) F(z)
$$

where $b \in \overline{\mathbb{D}}$ and $\operatorname{Re} F(z) \geq 0$. Now

$$
|F(z)| \geq C \frac{1-|z|}{1+|z|}, \quad|z| \rightarrow 1
$$

so if the DW point $b \in \mathbb{D}$,

$$
\frac{1-|z|}{G(z)}=O(1), \quad|z| \rightarrow 1
$$

Theorem. Let G be the generator of $\left\{\varphi_{t}\right\}$. If for some $0<\alpha<1$,
we have

$$
\frac{(1-|z|)^{\alpha}}{G(z)}=O(1), \quad|z| \rightarrow 1
$$

then $V M O A=\left[\varphi_{t}, B M O A\right]$.

Thus in addition to

$$
\varphi_{t}(z)=e^{-t} z, \quad \varphi_{t}(z)=e^{i t} z
$$

there are plenty of $\left\{\varphi_{t}\right\}$ for which $V M O A=\left[\varphi_{t}, B M O A\right]$.
For example if $\left\{\varphi_{t}\right\}$ has generator

$$
G(z)=-z(1-z)^{\alpha}, \quad 0<\alpha<1
$$

then $V M O A=\left[\varphi_{t}, B M O A\right]$. Many other can be constructed.
Necessary condition:
Theorem. If $b \in \mathbb{D}$ and if $V M O A=\left[\varphi_{t}, B M O A\right]$, then

$$
\lim _{|z| \rightarrow 1} \frac{1-|z|}{G(z)}=0
$$

(Blasco, Contreras, Diaz-Madrigal, Martinez, S.)

A characterization of $V M O A=\left[\varphi_{t}, B M O A\right]$.
Consider a $\left\{C_{t}\right\}$ on BMOA.
Each φ_{t} is univalent so C_{t} maps VMOA into itself. Thus

$$
S_{t}=\left.C_{t}\right|_{V M O A}
$$

is s. c. on VMOA. Because of the duality

$$
V M O A^{* *}=B M O A,
$$

we find

$$
S_{t}^{* *}=C_{t} .
$$

Let Γ be the infinitesimal generator of $\left\{S_{t}\right\}$,

$$
\Gamma(f)(z)=G(z) f^{\prime}(z)
$$

unbounded on VMOA.

For $\lambda \in \rho(\Gamma)$ we consider the resolvent operator

$$
R(\lambda, \Gamma): V M O A \rightarrow V M O A
$$

Some arguments from the general theory of semigroups and the VMOA-BMOA duality give:

Theorem. The following are equivalent
(i) $V M O A=\left[\varphi_{t}, B M O A\right]$.
(ii) $R(\lambda, \Gamma)^{* *}(B M O A) \subset V M O A$, (i.e. $R(\lambda, \Gamma)$ is weakly compact on VMOA).

A more concrete characterization

One description of $\left[\varphi_{t}, B M O A\right]$ is,

$$
\left[\varphi_{t}, B M O A\right]=\overline{\left\{f \in B M O A: G f^{\prime} \in B M O A\right\}}
$$

Now, heuristically,
$\left\{f \in B M O A: G f^{\prime} \in B M O A\right\}=\left\{f \in B M O A: G f^{\prime}=m \in B M O A\right\}$ and

$$
\begin{aligned}
& G f^{\prime}=m \Leftrightarrow f(z)=\int^{z} m(\zeta) \frac{1}{G(\zeta)} d \zeta \\
& \Leftrightarrow f(z)=\int^{z} m(\zeta) g^{\prime}(\zeta) d \zeta
\end{aligned}
$$

where $g(z)=\int^{z} \frac{1}{G(\zeta)} d \zeta$,

This brings into the picture the operator

$$
T_{g}(f)(z)=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) d \zeta
$$

for a specific symbol g, and then

$$
\left[\varphi_{t}, B M O A\right]=\overline{B M O A \cap T_{g}(B M O A)}
$$

In particular if

$$
T_{g}(B M O A) \subset V M O A
$$

then

$$
\left[\varphi_{t}, B M O A\right]=V M O A
$$

For T_{g} we know:
it is bounded on $\mathrm{BMOA} \Leftrightarrow$ it is bounded on $\mathrm{VMOA} \Leftrightarrow$

$$
\begin{equation*}
\sup _{I \in \partial \mathbb{D}}\left\{\frac{\left(\log \frac{2}{|I|}\right)^{2}}{|I|} \int_{R(I)}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d m(z)\right\}<\infty \tag{C1}
\end{equation*}
$$

And
it is compact on $\mathrm{BMOA} \Leftrightarrow$ it is compact on $\mathrm{VMOA} \Leftrightarrow$

$$
\begin{equation*}
\lim _{|| | \rightarrow 0}\{\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\}=0 \tag{C2}
\end{equation*}
$$

Furthermore,
Theorem. Suppose T_{g} is bounded on BMOA, then,

$$
T_{g}(B M O A) \subset V M O A \Leftrightarrow T_{g} \text { is compact }
$$

Correct symbol for T_{g} :
Def. Given a $\left\{\varphi_{t}\right\}$ with generator G and DW point b,

$$
\begin{aligned}
& \text { If } \quad b \in \mathbb{D} \quad \text { let } g(z)=g_{\varphi}(z)=\int_{b}^{z} \frac{\zeta-b}{G(\zeta)} d \zeta \\
& \text { If } \quad b \in \partial \mathbb{D} \quad \text { let } g(z)=g_{\varphi}(z)=\int_{0}^{z} \frac{1}{G(\zeta)} d \zeta
\end{aligned}
$$

Theorem. Given a $\left\{\varphi_{t}\right\}$, let $g=g_{\varphi}$ as above, and assume g satisfies (C1). Then

$$
\begin{aligned}
{\left[\varphi_{t}, B M O A\right]=V M O A } & \Leftrightarrow T_{g}(B M O A) \subset V M O A \\
& \Leftrightarrow T_{g} \text { is compact } \\
& \Leftrightarrow g \text { satisfies }(\mathrm{C} 2)
\end{aligned}
$$

Remark: there are $\left\{\varphi_{t}\right\}$ for which g does not satisfy (C1), i.e. T_{g} is not bounded on BMOA.

Bloch space.

In a similar way we have

- $\left[\varphi_{t}, \mathcal{B}\right]=\mathcal{B}_{0} \Leftrightarrow R(\lambda, \Gamma)^{* *}(\mathcal{B}) \subset \mathcal{B}_{0}$
- Suppose $g=g_{\varphi}$ satisfies

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right) \log \left(\frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<\infty \tag{C1-B}
\end{equation*}
$$

Then $\left[\varphi_{t}, \mathcal{B}\right]=\mathcal{B}_{0}$ if and only if

$$
\begin{equation*}
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right) \log \left(\frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|=0 \tag{C2-B}
\end{equation*}
$$

(Blasco, Contreras, Diaz-Madrigal, Martinez, Papadimitrakis, S.)

some questions

1. Are there $\left\{\varphi_{t}\right\}$ for which $\left[\varphi_{t}, B M O A\right]=B M O A$?
2. Are there $\left\{\varphi_{t}\right\}$ with DW point $b \in \partial \mathbb{D}$ such that $\left[\varphi_{t}, B M O A\right]=V M O A$?
3. For which $\left\{\varphi_{t}\right\}$ is $\left[\varphi_{t}, Q_{p}\right]=Q_{p, 0}$?
4. Are there $\left\{\varphi_{t}\right\}$ for which $\left[\varphi_{t}, Q_{p}\right]=Q_{p}$
5. T_{g} weakly compact on $Q_{p, 0} \Leftrightarrow T_{g}$ compact?

Being the last speaker,
I would like to thank Daniel and all organizers
for an excellent meeting
and express the hope that the next meeting
will be as good as this one.

