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Abstract—Significant throughput improvements can be ob-
tained in multiple-input multiple-output (MIMO) fading channels
by merging beamforming at the transmitter and maximal ratio
combining (MRC) at the receiver. In general, accurate channel
state information (CSI) is required to achieve these performance
gains. In this paper, we analyze the impact of channel prediction
error on the bit error rate (BER) of combined beamforming
and MRC in slow Rayleigh fading channels. Exact closed-form
BER expressions are obtained in terms of elementary functions.
Numerical results show that imperfect CSI causes little BER
degradation using channel prediction of moderate complexity.

Index Terms—Multiple input multiple output (MIMO) sys-
tems, beamforming, maximal ratio combining (MRC), imperfect
channel state information (ICSI), channel prediction, bit error
rate (BER).

I. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) systems

can considerably increase data rates through spatial
multiplexing and significantly improve robustness and cover-
age through beamforming and diversity combining [1]. The
capacity and performance of MIMO systems with multi-
plexing, beamforming and diversity depends on the avail-
ability and accuracy of the channel state information (CSI)
at both the transmitter and receiver. The impact of imper-
fect CSI has been the subject of much recent investigation
(see e.g. the special issues [2] and [3]).

This paper focuses on the impact of imperfect CSI on
MIMO beamforming, which has been recently addressed in
[4], [5], [6], [7]. In particular, [7] determined the pdf, cdf,
and moment-generating function (MGF) of the output SNR
in transmit beamforming under imperfect CSI. The system
model assumed in [7] considers the same CSI to perform
both beamforming at the transmitter and MRC at the receiver.
However, in this paper we focus on a different system model
which considers a more accurate CSI for MRC than for
beamforming, as was also considered in [4], [5], [6]. These
papers investigated the impact of imperfect CSI on transmit
beamforming combined with MRC at the receiver and adaptive
modulation. These works do not attempt to obtain exact
closed-form BER expressions but rather use approximations,
typically based on exponential bounds (e.g. [8, eq. 17]).
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In contrast, our analysis focuses on obtaining exact BER
expressions.

The BER for transmit beamforming will depend on the
effective channel gain. If the CSI available to perform beam-
forming at the transmitter is different from the CSI to perform
MRC at the receiver, the pdf of the effective channel gain
can seldom be obtained in closed-form. In fact, the well-
known pdf/MGF approach [9] cannot be extended to combined
beamforming and MRC analyzed in this paper, and thus
alternative analysis techniques are needed.

Under imperfect CSI caused by channel prediction errors,
we obtain exact closed-form BER expressions for transmit
beamforming using a different approach. Specifically, for a
system with fixed power and M-QAM constellation, we com-
pute the exact BER by first calculating the conditional BER,
conditioned on the predicted channel, using Proakis’ analysis
of complex Gaussian quadratic forms [10, Appendix B][11]
and then averaging the conditional BER over the distribution
of the predicted channel.

The remainder of this paper is organized as follows.
Section II describes the system model. In Section III the BER
expressions are derived. Section IV presents numerical results
which exploit the analytical expressions derived in previous
sections. Finally, conclusions are provided in Section V.

II. SYSTEM MODEL

The system model for MIMO beamforming with MRC
is briefly described in this section. Further details on the
adopted system model can be found in [4]. We consider Nt
transmit antennas and Ny receive antennas, and the channel
is modeled by an Np x Np complex matrix H, so that each
entry H; ; is the channel coefficient between the jth transmit
and the ith receive antennae. These channel coefficients exhibit
frequency-flat slowly time-varying fading. The entries H; ; are
assumed independent identically-distributed (i.i.d) complex
circularly symmetric normal random variables (RVs), with
zero-mean and unity-variance, i.e. H; ; ~ CN(0,1). Noise
is modeled by an additive Ngr-dimensional vector n, whose
entries ny are i.i.d. complex circularly symmetric normal RVs
~ CN (0, Ng). The received signal can be expressed as

y = Hw + n, (D)

where y is the received Ny dimensional complex vector and
w is the transmitted Nt dimensional complex vector.

In our receiver model, as in [4], [5], [6], we assume an
imperfect channel prediction to obtain the predicted beam-
steering vector which must be fed back to the transmitter. The
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predicted channel H can be expressed as follows
H=H-Z=, with
{ H;; iid. RVs ~ CN(0,1—¥) 2
Elvj

iid. RVs ~ CN(0,x) ’
where E is the prediction error matrix and y the mean square
error. We assume the entries of the predicted channel matrix
H, ; and the entries of the prediction error matrix =; ; are
orthogonal. As in [4], our analysis adopts a slowly time-
varying channel model in which the channel response remains
invariant along the frame interval.

Using the predicted channel H, the optimal beam-steering
vector v is the Np-dimensional eigenvector corresponding
to the largest eigenvalue A of matrix H"H [12], which is
given by A = v"'H™HY. On each frame, the receiver feeds
vector v back to the transmitter to perform beamforming,
so that the transmitted vector becomes w = vz, where z
is the complex transmitted symbol. The effective channel
is an Ng-dimensional vector defined as h 2 HvV and the
predicted effective channel is the vector h 2 Hv, whose
square Euclidean norm is ||h|[> = \. The effective channel can
also be expressed as h SHY = (H+ Z)¥ = h+¥, where ¥
is a complex normal Ngr-dimension vector whose entries Uy,
assuming that v is a unitary vector, are i.i.d. RVs ~ CN(0, x)
[13, p. 26].

At the receiver, the effective channel vector h = HvV is
assumed perfectly estimated to perform MRC. This assump-
tion is reasonable since the received signals can be stored
so that non-causal channel estimation (smoothing) with high
accuracy can be performed [14]. The symbol r which results
from applying MRC to received vector y is given by

r2 hty =2+, with n/ 2 Llj_ ¥)"n
2 b
|[h| b+ |2

where n' is the resultant noise after MRC. As the entries
of noise vector n are ii.d circularly symmetric Gaussian
variables and h and n are mutually independent, it is straight-
forward to show that n’ is circularly symmetric too.

N €))

III. BER ANALYSIS

One approach to calculate the BER from (3) could be to
average the conditional BER over the effective SISO channel
gain ||h||?. Unfortunately, the pdf of the effective SISO
channel gain is unknown to the best of the authors’ knowledge.
For this reason we use an alternative analysis method. First,
we compute the BER conditioned on the predicted effective
channel vector h, using the Proakis’ analysis of Gaussian
quadratic forms [10, Appendix B][11]. As is shown in this
section, this conditional BER expression only depends on
A = ||h|[?, whose pdf is directly related to the well-known
pdf of A.

The BER analysis presented in this section considers
L-PAM or square M-QAM (M = L?) with independent bit-
mapping for in-phase and quadrature components, e.g, Gray
mapping. Under these assumptions and reminding that the
resultant noise n’ is circularly symmetric, the BER can be
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expressed, in a similar way to [15][16], as

BER = iw(n)f(n), “4)

where Z(n) are called components of error probabil-
ity (CEP) and the w(n) are coefficients dependent on
the constellation mapping. The CEPs are defined as
Z(n) =Pr{R{n'} > (2n — 1)d}, where d is the minimum
distance between the symbol and the decision boundary and
can be expressed as a function of the constellation energy E
asd =,/ JSI]”: = for M-QAM constellation and d = i%’f 5
L-PAM constellation. The coefficients w(n) can be obtained
using the method described in [16] or directly computed for
Gray mapping as in [15].

In Section III-A we derive the CEP conditioned on the
predicted effective channel vector h. In Section III-B, using
the previous results, we obtain both the conditional BER and
the BER averaged over A

for

A. Conditional CEP

In this section we derive, for our system model, the CEP
conditioned on a predicted channel state (CCEP), that can be
expressed as

T(n;h) = Pr {?R{n'} > (2n — 1)d| ﬁ} . )

In order to obtain the CCEP we use Proakis’ analysis of
complex Gaussian quadratic forms [10, Appendix B], more
specifically, we adopt the compact expressions presented in
[11] and restated in Table I.

According to our system model, when the symbol z = s
is transmitted, each entry of the received signal y; and each
entry of the effective channel hy, are

Y = his + g = (hi + p)s + ng, (6)
hi = hi, + Uy, (N

where both y, and hj are complex normal variables condi-
tioned on the predicted effective ﬁk Note that flk is assumed
orthogonal to the channel error ¥y, (e.g. hy, is predicted using
a FIR Wiener filter) and therefore, the probability distribution
of Uy, is independent of the hy, value. Defining the sum of
quadratic forms D = SN x71Qx;, where

0 —1/2
k= [ %Z ] Q= { —1/2 R{s}+ (2n —1)d ©
we have
Pr{D < 0} =
Pr{—R{h™y} + (R{s} + (2n — 1)d)|h||* <0 | h} = (9)
Pr{R{n'} > (2n —1)d| h} = Z(n; h).

In Table I we present the expressions to obtain this probability.
Using the quadratic form matrix Q, the mean vector my and
the covariance matrix R of vector xj, we can calculate the
parameters a, b, n and C; necessary to obtain this probability.
From (6) and (7), we obtain the mean and the covariance
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TABLE I
PROBABILITY COMPUTATION OF THE GAUSSIAN QUADRATIC FORM.

FUNCTIONS AND PARAMETERS DEFINITIONS
L
D > X?ka
k=1
my E{Xk}
R E{(xk —mk)(x?: —m?)}
{6:} oz L r(RQ) + 1/ (4 r(RQ))” — det(RQ)
[
n 52
a 252 Zk 1mk [Q — 61R } )
(61 — 82)?
) 261 (SF—ym}! [Q — 2R my)
(61 — 82)?
-1+ 2L1Z(2Lk_1)77k» =0
(1+mn) k=0
Ci(a,b,n) 1 L-1-1/ o] _ 1 N N
> - 4 nk_(_) L1k 140
(L+n)*" " = k a b ’
PROBABILITY EXPRESSION
L—1
Pr{D < 0} Qi(a,6) + 3 Cia,b,m) Li(ab) exp {_%(az N bz)}
1=0
matrix of the vector x; as as
2 2
m, — { hus ] . R- { parl i_NO XS (10) Z(n;h) = Z(n; ) = Qu( an\/_ A, by, \/_
hi Xs X Nr—1

Using Table 1 expressmns equatlons (8) and (10), and
taking into account Zk | |hg|? = ), the constants a, b and 7
are given by

a= an\/i, with
.

b= b,VA, with

. \/1+25nw+2mn&x (kn7x +1)
" 2 (knyx + 1) x

N =1 =14 2k9x + 2\/nn?x (kn¥x + 1),

14 26,7X — 2¢/6n X (KnyX + 1)
2 (knx +1) x

b

(11)

)

where the average SNR is defined as 7 2 £ and the constant

02 32((2;;}1) for M-QAM and &, 2 3823 for L-PAM.

Note that, after some algebra manipulations, it can be shown
that n,, = b, /an.

Substituting the parameters a, b, and Cj in the expression
of P{D < 0} that appears in Table I, the CCEP is expressed

12)

Z Cl an>

where Q1 is the Marcum-Q function, and I; is the [-th order
modified Bessel function of the first kind.

In the absence of channel prediction error, i.e. ¥y = 0, the
resultant noise after MRC n/, whose expression is given in (3),
is a Gaussian variable conditioned on h whose variance is
No/ . Thus, the calculation of CCEP is equivalent to the BER
calculation for a standard Gaussian noise channel, resulting in

I(n; ) = Q (\/M)

where Q is the Gaussian Q-function.

A
) L (anbp ) exp [—g(a +2) |,

13)

B. Conditional and average BER expressions

The CCEP calculated in the previous section allows us to
obtain the conditional BER (CBER). This probability repre-
sents the BER conditioned on the predicted effective channel
gain ), i.e, the BER under imperfect channel state information
(CSI). Introducing (12) in (4) yields

Z

CBER(\ (14)
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L—1 Ny (NodNi—2k)k
wn Bk
pER-Y>. >
kr+1
n=1 k=1 r= N2 1
rl Z 2k a? P m+2 m+2 1 9 4a2b?
- _n_ LR /= = _
krtl Sn k S,k Sn.k 2 72 277 §2 L
m=0 ™ (17)
Ngr—1 /

L oo (m+l m+1+1.1.4a%bi N
T+m® '\ 2 T2 T2

" —1 r+1
)T
wn,k—kl m

oI (—r, —r+1l+1;

>

=0

(r+0! 1 fwpp—1 1/2 Wn i+ 1 T><
(anbn) T 1 \wp e+ 1 2

The BER is obtained by averaging the CBER over the pre-
dicted eigenvalue A as

BER = Z / (n; \p(A)dA.

Using the fact that the pdf of the largest eigenvalue of
complex Wishart matrices can be expressed as a weighted sum
of elementary Gamma pdfs [17], the pdf of A is given by

(15)

N2+N] 2/{7)/{78 S\T _kj\
k,r (1

)+ € T—x )’

(16)
where Ny 2 min{Np, Nz}, No 2 max{Np, Nz} and
the coefficients By, ,. are easily deducted from the expression
[17, eq.10].

Substituting equations (12) and (16) in (15), using
the expression [18, eq.8.772-3] and the integrals given in
[18, eq.8.914-1] and [19], we can obtain, after some algebraic
manipulation, the closed-form BER expression (17) at the top
of the page, where 2 F is the Gauss hypergeometric function,

2y —1/2
Spk = a2 + b2 + 2k and wy, = 1—4;”’ ) . Note
that function 2 F} in (17) can be expressed as a finite sum of
elementary functions for the values of its arguments, although
it is not shown here for compactness reasons.

For the perfect CSI case, substituting expression (13) and
(16) in (15) the BER under perfect CSI is obtained as

L—1 Ny (N2+N1—2k)k

BER=Y > Y

’I’lelT‘szl

CEES () () |

where we use the fact that the required integral over A is
formally identical to [9, Eq. 5.18].

Ny

ZZ

leN2

w(n) By, 1!
Qkr+1 x

IV. NUMERICAL RESULTS

The numerical results are obtained from analytical expres-
sions and simulations assuming a prediction subsystem similar
to that described in [4]. We consider Jakes’ model for the
channel time-correlation and Wienner filtering to predict the
CSI. The numerical values for the system parameters are:
carrier frequency f. =3 GHz, mobile speed v=36 km/h, feed-
back delay 7=1.28 ms and frame interval 7'=0.64 ms, which

— PCsl
—.= F=16

102 & Simulation | ]
o _
w 103}
oM

10}

10°

MIMO 2x2
10 ' ' : >
0 5 10 15 _ 20 25
Average SNR 7
Fig. 1. BER as a function of average SNR 7 for different constellations

under perfect CSI (PCSI) and imperfect prediction (F'=16 taps).

e.g. could correspond to a system with a symbol frequency
fs=100 kHz and 64 symbols per frame.

Figure 1 shows the BER for a 2x2 MIMO system as a
function of the average SNR 7 for some L-PAM and M-QAM
constellations in two cases: perfect CSI using equation (18)
and imperfect CSI using (17) with a 16-tap FIR Wiener
prediction filter. In the last case, we assume channel estimation
based on pilot symbol assisted modulation (PSAM) and the
mean square error x is computed as described in [4, section
II-B]. As a double check, simulation results for the imperfect
CSI case are also superimposed in the figure. There is an
unavoidable channel prediction error floor independent of the
number of filter taps and, thus, the BER for perfect CSI
cannot be achieved. Note that at around BER ~ 1073 the
relative SNR losses due to the channel prediction error for
the considered system parameters are about 2.5 dB for BPSK,
1.5 dB for 4-QAM and less than 1 dB for 16-QAM.

In Figure 2 the influence of antenna configuration on
the BER is depicted for 16-QAM. Obviously in the SISO
case the channel prediction error does not affect the BER
performance. Moreover, the 2x4 and 4x2 MIMO systems show
the same BER for perfect CSI. This is because, if perfect
CSI is assumed, the BER performance for different antenna
configurations only depends on the pdf of A, which is the
same for the 2x4 and 4x2 MIMO systems. However, for the
imperfect CSI case the BER performance is better for 2x4
MIMO systems.
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Fig. 2. BER as a function of average SNR 7% for different antenna
configurations under perfect CSI (PCSI) and imperfect prediction (F'=16 taps).

V. CONCLUSIONS

Exact closed-form BER expressions for MIMO beam-
forming with MRC systems under channel prediction errors
have been derived. These results allow us to analyze the
performance of L-PAM and square M-QAM using practical
estimation methods under Rayleigh fading. The system perfor-
mance has been analyzed for different scenarios with different
values of the mobile speed, number of prediction filter taps,
adaptation delay, number of transmitter and receiver antennas,
constellation size and average SNR. Our results indicate that
practical constraints imposed by channel prediction do not
significantly degrade BER performance.
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