Topics in Complex Analysis and Operator Theory Proceedings of the Winter School held in Antequera, Málaga, Spain (February 5–9, 2006) Pages 149–152

BOUNDEDNESS OF THE BILINEAR HILBERT TRANSFORM ON BERGMAN SPACES

OSCAR BLASCO

1. The problem

Let $0 and <math>A^p(\mathbb{D})$ denote the Bergman space of analytic functions on the unit disc such that $||f||_{A^p} = (\int_{\mathbb{D}} |f(z)|^p dA(z))^{1/p} < \infty$. Consider the bilinear operator, defined on polynomials $f(z) = \sum_{n=0}^{N} a_n z^n$ and $g(z) = \sum_{n=0}^{M} b_n z^n$, by the formula

$$B(f,g)(z) = \sum_{n=0}^{N+M} (\sum_{k+j=n} a_k b_j sig(k-j)) z^n.$$

Problem. Find the values $0 < p_1, p_2, p_3 < \infty$ with $1/p_3 = 1/p_1 + 1/p_2$ for which B continuously extend to a bounded operator $A^{p_1}(\mathbb{D}) \times A^{p_2}(\mathbb{D}) \rightarrow A^{p_2}(\mathbb{D})$.

I know that the result holds true for $1 < p_1, p_2 < \infty$ and $p_3 > 2/3$ (see the proof below). This follows using the boundedness of the bilinear Hilbert transform on L^p -spaces, but I believe that a much simpler proof and covering even more cases should be found for Bergman spaces.

2. What I know

In the last decade and after the solution of the Calderón conjecture on the bilinear Hilbert transform by M. Lacey and C. Thiele (see [6,7]), multilinear

Key words and phrases. Bergman spaces, bilinear Hilbert transform.

O. BLASCO

operators have become a matter of great interest in Harmonic Analysis. The following result contains the work in the mentioned papers.

Theorem 2.1. Suppose that

(2.1) $1 < p_1, p_2 < \infty;$

(2.2)
$$\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3};$$

$$(2.3) \qquad \qquad \frac{2}{3} < p_3 < \infty.$$

Then for each $f \in L^{p_1}(\mathbb{R}) \cap L^2(\mathbb{R})$, and each $g \in L^{p_2}(\mathbb{R}) \cap L^2(\mathbb{R})$,

(2.4)
$$H(f,g)(x) \equiv \lim_{\varepsilon \to 0^+} \int_{|y| > \varepsilon} \frac{f(x+y)g(x-y)}{y} \, dy$$

exists for almost all $x \in \mathbb{R}$, and

(2.5)
$$\|H(f,g)\|_{L^{p_3}(\mathbb{R})} \leq B_{p_1,p_2} \|f\|_{L^{p_1}(\mathbb{R})} \|g\|_{L^{p_2}(\mathbb{R})},$$

where B_{p_1,p_2} is a constant depending only on p_1 and p_2 .

This result and other bilinear multipliers have been transferred to different settings by using different techniques. First, D. Fan and S. Sato (see [5]) used DeLeeuw approach to get the boundedness of the analogue to (2.4) in \mathbb{T} (see also [2,4] for further extensions). Later in [3] (see also [1]) another proof using the extension of Coiffman-Weiss transference method to the bilinear situation was achieved.

Note that another possible way to write (2.4) is:

(2.6)
$$H(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) sig(\xi - \eta) e^{ix(\xi + \eta)} d\xi d\eta$$

Now the transferred operator to $\mathbb T$ looks as follows: If f,g are trigonometric polynomials on $\mathbb T$ then

(2.7)
$$\tilde{B}(f,g)(\theta) = \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \hat{f}(n)\hat{g}(m)sig(n-m)e^{i\theta(n+m)},$$

or equivalently

(2.8)
$$\tilde{B}(f,g)(\theta) = \sum_{n \in \mathbb{Z}} (\sum_{j+k=n} \hat{f}(j)\hat{g}(k)sig(j-k))e^{in\theta}$$

150

and the previously mentioned transferred result establishes that

$$\tilde{B}: L^{p_1}(\mathbb{T}) \times L^{p_2}(\mathbb{T}) \to L^{p_3}(\mathbb{T})$$

whenever (2.1), (2.2) and (2.3) holds.

Let us denote, for $0 , <math>H^p(\mathbb{T})$ the corresponding Hardy space. Using (2.8) and the just mentioned result one obtains the following corollary.

Corollary 2.2. If (2.1), (2.2) and (2.3) holds then $\tilde{B} : H^{p_1}(\mathbb{T}) \times H^{p_2}(\mathbb{T}) \to H^{p_3}(\mathbb{T})$ is bounded and

(2.9)
$$\left\| \tilde{B}(f,g) \right\|_{H^{p_3}(\mathbb{T})} \le A_{p_1,p_2} \left\| f \right\|_{H^{p_1}(\mathbb{T})} \left\| g \right\|_{H^{p_2}(\mathbb{T})},$$

where A_{p_1,p_2} is a constant depending only on p_1 and p_2 .

Corollary 2.3. If (2.1), (2.2) and (2.3) holds then $B : A^{p_1}(\mathbb{D}) \times A^{p_2}(\mathbb{D}) \to A^{p_3}(\mathbb{D})$ is bounded and

(2.10)
$$||B(f,g)||_{A^{p_3}(\mathbb{D})} \le A_{p_1,p_2} ||f||_{A^{p_1}(\mathbb{D})} ||g||_{A^{p_2}(\mathbb{D})},$$

where A_{p_1,p_2} is a constant depending only on p_1 and p_2 .

Proof. Let f, g be analytic polynomials and denote by $f_r(e^{i\theta}) = f(re^{i\theta})$. It is elementary to see that

$$B(f,g)(re^{i\theta}) = \tilde{B}(f_r,g_r)(\theta).$$

Therefore

$$\begin{split} \|B(f,g)\|_{A^{p_3}(\mathbb{D})}^{p_3} &\leq C \int_0^1 \|\tilde{B}(f_r,g_r)\|_{L^{p_3}(\mathbb{T})}^{p_3} dr \\ &\leq C \int_0^1 \|f_r\|_{L^{p_1}(\mathbb{T})}^{p_3} \|g_r\|_{L^{p_2}(\mathbb{T})}^{p_3} dr \\ &\leq C (\int_0^1 \|f_r\|_{L^{p_1}(\mathbb{T})}^{p_1} dr)^{p_3/p_1} (\int_0^1 \|\tilde{g}_r\|_{L^{p_2}(\mathbb{T})}^{p_2} dr)^{p_3/p_2} \\ &\leq C \|f\|_{A^{p_1}(\mathbb{D})}^{p_3} \|g\|_{A^{p_2}(\mathbb{D})}^{p_3}. \end{split}$$

References

- E. Berkson, O. Blasco, M. Carro, and A. Gillespie, *Discretization and transference of bisublinear maximal functions*, J. Fourier Anal. and Appl., to appear.
- [2] O. Blasco, Bilinear multipliers and transference, Int. J. Math. Sci. 2005 (2005), no. 4, 545–554.

O. BLASCO

- [3] O. Blasco, M. Carro, and A. Gillespie, *Bilinear Hilbert transform on measure spaces*, J. Fourier Anal. and Appl. **11** (2005), 459–470.
- [4] O. Blasco and F. Villarroya, Transference of bilinear multipliers on Lorentz spaces, Illinois J. Math. 47 (2003), no. 4, 1327–1343.
- [5] D. Fan and S. Sato, Transference of certain multilinear multipliers operators, J. Austral. Math. Soc. 70 (2001), 37–55.
- [6] M. Lacey and Thiele C., L^p bounds on the bilinear Hilbert transform for 2 Ann. Math. 146 (1997), 693–724.
- [7] M. Lacey and C. Thiele, On Calderón's conjecture, Ann. Math. 149 (1999), no. 2, 475–496.

O. Blasco: Departamento de Análisis Matemático, Universidad de Valencia *E-mail address*: oscar.blasco@uv.es

152