Topics in Complex Analysis and Operator Theory

Proceedings of the Winter School held in Antequera, Málaga, Spain (February 5-9, 2006)
Pages 149-152

BOUNDEDNESS OF THE BILINEAR HILBERT TRANSFORM ON BERGMAN SPACES

OSCAR BLASCO

1. The problem

Let $0<p<\infty$ and $A^{p}(\mathbb{D})$ denote the Bergman space of analytic functions on the unit disc such that $\|f\|_{A^{p}}=\left(\int_{\mathbb{D}}|f(z)|^{p} d A(z)\right)^{1 / p}<\infty$. Consider the bilinear operator, defined on polynomials $f(z)=\sum_{n=0}^{N} a_{n} z^{n}$ and $g(z)=$ $\sum_{n=0}^{M} b_{n} z^{n}$, by the formula

$$
B(f, g)(z)=\sum_{n=0}^{N+M}\left(\sum_{k+j=n} a_{k} b_{j} \operatorname{sig}(k-j)\right) z^{n} .
$$

Problem. Find the values $0<p_{1}, p_{2}, p_{3}<\infty$ with $1 / p_{3}=1 / p_{1}+1 / p_{2}$ for which B continuously extend to a bounded operator $A^{p_{1}}(\mathbb{D}) \times A^{p_{2}}(\mathbb{D}) \rightarrow$ $A^{p_{2}}(\mathbb{D})$.

I know that the result holds true for $1<p_{1}, p_{2}<\infty$ and $p_{3}>2 / 3$ (see the proof below). This follows using the boundedness of the bilinear Hilbert transform on L^{p}-spaces, but I believe that a much simpler proof and covering even more cases should be found for Bergman spaces.

2. What I know

In the last decade and after the solution of the Calderón conjecture on the bilinear Hilbert transform by M. Lacey and C. Thiele (see [6,7]), multilinear

[^0]operators have become a matter of great interest in Harmonic Analysis. The following result contains the work in the mentioned papers.

Theorem 2.1. Suppose that

$$
\begin{gather*}
1<p_{1}, p_{2}<\infty \tag{2.1}\\
\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}} \tag{2.2}\\
\frac{2}{3}<p_{3}<\infty \tag{2.3}
\end{gather*}
$$

Then for each $f \in L^{p_{1}}(\mathbb{R}) \bigcap L^{2}(\mathbb{R})$, and each $g \in L^{p_{2}}(\mathbb{R}) \bigcap L^{2}(\mathbb{R})$,

$$
\begin{equation*}
H(f, g)(x) \equiv \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{f(x+y) g(x-y)}{y} d y \tag{2.4}
\end{equation*}
$$

exists for almost all $x \in \mathbb{R}$, and

$$
\begin{equation*}
\|H(f, g)\|_{L^{p_{3}(\mathbb{R})}} \leq B_{p_{1}, p_{2}}\|f\|_{L^{p_{1}}(\mathbb{R})}\|g\|_{L^{p_{2}}(\mathbb{R})} \tag{2.5}
\end{equation*}
$$

where $B_{p_{1}, p_{2}}$ is a constant depending only on p_{1} and p_{2}.
This result and other bilinear multipliers have been transferred to different settings by using different techniques. First, D. Fan and S. Sato (see [5]) used DeLeeuw approach to get the boundedness of the analogue to (2.4) in \mathbb{T} (see also [2,4] for further extensions). Later in [3] (see also [1]) another proof using the extension of Coiffman-Weiss transference method to the bilinear situation was achieved.

Note that another possible way to write (2.4) is:

$$
\begin{equation*}
H(f, g)(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) \operatorname{sig}(\xi-\eta) e^{i x(\xi+\eta)} d \xi d \eta \tag{2.6}
\end{equation*}
$$

Now the transferred operator to \mathbb{T} looks as follows: If f, g are trigonometric polynomials on \mathbb{T} then

$$
\begin{equation*}
\tilde{B}(f, g)(\theta)=\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \hat{f}(n) \hat{g}(m) \operatorname{sig}(n-m) e^{i \theta(n+m)} \tag{2.7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\tilde{B}(f, g)(\theta)=\sum_{n \in \mathbb{Z}}\left(\sum_{j+k=n} \hat{f}(j) \hat{g}(k) \operatorname{sig}(j-k)\right) e^{i n \theta} \tag{2.8}
\end{equation*}
$$

and the previously mentioned transferred result establishes that

$$
\tilde{B}: L^{p_{1}}(\mathbb{T}) \times L^{p_{2}}(\mathbb{T}) \rightarrow L^{p_{3}}(\mathbb{T})
$$

whenever (2.1), (2.2) and (2.3) holds.
Let us denote, for $0<p<\infty, H^{p}(\mathbb{T})$ the corresponding Hardy space. Using (2.8) and the just mentioned result one obtains the following corollary.

Corollary 2.2. If (2.1), (2.2) and (2.3) holds then $\tilde{B}: H^{p_{1}}(\mathbb{T}) \times H^{p_{2}}(\mathbb{T}) \rightarrow$ $H^{p_{3}}(\mathbb{T})$ is bounded and

$$
\begin{equation*}
\|\tilde{B}(f, g)\|_{H^{p_{3}}(\mathbb{T})} \leq A_{p_{1}, p_{2}}\|f\|_{H^{p_{1}}(\mathbb{T})}\|g\|_{H^{p_{2}}(\mathbb{T})} \tag{2.9}
\end{equation*}
$$

where $A_{p_{1}, p_{2}}$ is a constant depending only on p_{1} and p_{2}.
Corollary 2.3. If $(2.1),(2.2)$ and (2.3) holds then $B: A^{p_{1}}(\mathbb{D}) \times A^{p_{2}}(\mathbb{D}) \rightarrow$ $A^{p_{3}}(\mathbb{D})$ is bounded and

$$
\begin{equation*}
\|B(f, g)\|_{A^{p_{3}}(\mathbb{D})} \leq A_{p_{1}, p_{2}}\|f\|_{A^{p_{1}}(\mathbb{D})}\|g\|_{A^{p_{2}}(\mathbb{D})} \tag{2.10}
\end{equation*}
$$

where $A_{p_{1}, p_{2}}$ is a constant depending only on p_{1} and p_{2}.
Proof. Let f, g be analytic polynomials and denote by $f_{r}\left(e^{i \theta}\right)=f\left(r e^{i \theta}\right)$. It is elementary to see that

$$
B(f, g)\left(r e^{i \theta}\right)=\tilde{B}\left(f_{r}, g_{r}\right)(\theta)
$$

Therefore

$$
\begin{aligned}
\|B(f, g)\|_{A^{p_{3}(\mathbb{D})}}^{p_{3}} & \leq C \int_{0}^{1}\left\|\tilde{B}\left(f_{r}, g_{r}\right)\right\|_{L^{p_{3}}(\mathbb{T})}^{p_{3}} d r \\
& \leq C \int_{0}^{1}\left\|f_{r}\right\|_{L^{p_{1}}(\mathbb{T})}^{p_{3}}\left\|g_{r}\right\|_{L^{p_{2}}(\mathbb{T})}^{p_{3}} d r \\
& \leq C\left(\int_{0}^{1}\left\|f_{r}\right\|_{L^{p_{1}}(\mathbb{T})}^{p_{1}} d r\right)^{p_{3} / p_{1}}\left(\int_{0}^{1}\left\|\tilde{g}_{r}\right\|_{L^{p_{2}(\mathbb{T})}}^{p_{2}} d r\right)^{p_{3} / p_{2}} \\
& \leq C\|f\|_{A^{p_{1}(\mathbb{D})}}^{p_{3}}\|g\|_{A^{p_{2}(\mathbb{D})}}^{p_{3}}
\end{aligned}
$$

References

[1] E. Berkson, O. Blasco, M. Carro, and A. Gillespie, Discretization and transference of bisublinear maximal functions, J. Fourier Anal. and Appl., to appear.
[2] O. Blasco, Bilinear multipliers and transference, Int. J. Math. Sci. 2005 (2005), no. 4, 545-554.
[3] O. Blasco, M. Carro, and A. Gillespie, Bilinear Hilbert transform on measure spaces, J. Fourier Anal. and Appl. 11 (2005), 459-470.
[4] O. Blasco and F. Villarroya, Transference of bilinear multipliers on Lorentz spaces, Illinois J. Math. 47 (2003), no. 4, 1327-1343.
[5] D. Fan and S. Sato, Transference of certain multilinear multipliers operators, J. Austral. Math. Soc. 70 (2001), 37-55.
[6] M. Lacey and Thiele C., L^{p} bounds on the bilinear Hilbert transform for $2<p<\infty$, Ann. Math. 146 (1997), 693-724.
[7] M. Lacey and C. Thiele, On Calderón's conjecture, Ann. Math. 149 (1999), no. 2, 475-496.
O. Blasco: Departamento de Análisis Matemático, Universidad de Valencia

E-mail address: oscar.blasco@uv.es

[^0]: Key words and phrases. Bergman spaces, bilinear Hilbert transform.

