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BOUNDEDNESS OF THE BILINEAR HILBERT
TRANSFORM ON BERGMAN SPACES

OSCAR BLASCO

1. The problem

Let 0 < p < ∞ and Ap(D) denote the Bergman space of analytic functions
on the unit disc such that ‖f‖Ap = (

∫
D |f(z)|pdA(z))1/p < ∞. Consider the

bilinear operator, defined on polynomials f(z) =
∑N

n=0 anzn and g(z) =∑M
n=0 bnzn, by the formula

B(f, g)(z) =
N+M∑

n=0

(
∑

k+j=n

akbjsig(k − j))zn.

Problem. Find the values 0 < p1, p2, p3 < ∞ with 1/p3 = 1/p1 + 1/p2

for which B continuously extend to a bounded operator Ap1(D)×Ap2(D) →
Ap2(D) .

I know that the result holds true for 1 < p1, p2 < ∞ and p3 > 2/3 (see the
proof below) . This follows using the boundedness of the bilinear Hilbert
transform on Lp-spaces, but I believe that a much simpler proof and covering
even more cases should be found for Bergman spaces.

2. What I know

In the last decade and after the solution of the Calderón conjecture on the
bilinear Hilbert transform by M. Lacey and C. Thiele (see [6,7]), multilinear
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operators have become a matter of great interest in Harmonic Analysis. The
following result contains the work in the mentioned papers.

Theorem 2.1. Suppose that

(2.1) 1 < p1, p2 < ∞;

(2.2)
1
p1

+
1
p2

=
1
p3

;

(2.3)
2
3

< p3 < ∞.

Then for each f ∈ Lp1 (R)
⋂

L2 (R), and each g ∈ Lp2 (R)
⋂

L2 (R),

(2.4) H (f, g) (x) ≡ lim
ε→0+

∫

|y|>ε

f (x + y) g (x− y)
y

dy

exists for almost all x ∈ R, and

(2.5) ‖H (f, g)‖Lp3 (R) ≤ Bp1,p2 ‖f‖Lp1 (R) ‖g‖Lp2 (R) ,

where Bp1,p2 is a constant depending only on p1 and p2.

This result and other bilinear multipliers have been transferred to different
settings by using different techniques. First, D. Fan and S. Sato (see [5])
used DeLeeuw approach to get the boundedness of the analogue to (2.4) in T
(see also [2,4] for further extensions). Later in [3] (see also [1]) another proof
using the extension of Coiffman-Weiss transference method to the bilinear
situation was achieved.

Note that another possible way to write (2.4) is:

(2.6) H (f, g) (x) =
∫

R

∫

R
f̂(ξ)ĝ(η)sig(ξ − η)eix(ξ+η) dξdη

Now the transferred operator to T looks as follows: If f, g are trigono-
metric polynomials on T then

(2.7) B̃ (f, g) (θ) =
∑

n∈Z

∑

m∈Z
f̂(n)ĝ(m)sig(n−m)eiθ(n+m),

or equivalently

(2.8) B̃ (f, g) (θ) =
∑

n∈Z
(

∑

j+k=n

f̂(j)ĝ(k)sig(j − k))einθ
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and the previously mentioned transferred result establishes that

B̃ : Lp1(T)× Lp2(T) → Lp3(T)

whenever (2.1), (2.2) and (2.3) holds.
Let us denote, for 0 < p < ∞, Hp(T) the corresponding Hardy space.

Using (2.8) and the just mentioned result one obtains the following corollary.

Corollary 2.2. If (2.1), (2.2) and (2.3) holds then B̃ : Hp1(T)×Hp2(T) →
Hp3(T) is bounded and

(2.9)
∥∥∥B̃ (f, g)

∥∥∥
Hp3 (T)

≤ Ap1,p2 ‖f‖Hp1 (T) ‖g‖Hp2 (T) ,

where Ap1,p2 is a constant depending only on p1 and p2.

Corollary 2.3. If (2.1), (2.2) and (2.3) holds then B : Ap1(D)×Ap2(D) →
Ap3(D) is bounded and

(2.10) ‖B (f, g)‖Ap3(D) ≤ Ap1,p2 ‖f‖Ap1 (D) ‖g‖Ap2(D) ,

where Ap1,p2 is a constant depending only on p1 and p2.

Proof. Let f, g be analytic polynomials and denote by fr(eiθ) = f(reiθ). It
is elementary to see that

B(f, g)(reiθ) = B̃(fr, gr)(θ).

Therefore

‖B(f, g)‖p3

Ap3 (D) ≤ C

∫ 1

0
‖B̃(fr, gr)‖p3

Lp3(T)dr

≤ C

∫ 1

0
‖fr‖p3

Lp1 (T)‖gr‖p3

Lp2 (T)dr

≤ C(
∫ 1

0
‖fr‖p1

Lp1(T)dr)p3/p1(
∫ 1

0
‖g̃r‖p2

Lp2 (T)dr)p3/p2

≤ C ‖f‖p3

Ap1 (D) ‖g‖p3

Ap2 (D) .

¤
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