Topics in Complex Analysis and Operator Theory

Proceedings of the Winter School held in Antequera, Málaga, Spain (February 5-9, 2006)
Pages 159-160

EIGENVALUES AND EIGENFUNCTIONS OF THE LIMIT q-BERNSTEIN OPERATOR

SOFIYA OSTROVSKA

The Bernstein operator maps $f \in C[0,1]$ to its Bernstein polynomial $B_{n} f$. The eigenvalues and eigenfunctions of the Bernstein operator on $C[0,1]$ have been described in [1], where the authors also demonstrated various applications of their results. Similar description has been obtained for the q-Bernstein polynomials in [3].

The study of q-Bernstein polynomials in the case $0<q<1$ leads to the definition of the limit q-Bernstein operator, see $[2,8]$. Various properties of this operator have been studied in $[5,7]$. A survey of results on the q Bernstein polynomials and the limit q-Bernstein operator are given in $[4,6]$.

Let $0<q<1$. We denote by $\psi(z)$ the entire function:

$$
\psi(z):=\prod_{j=0}^{\infty}\left(1-q^{j} z\right) .
$$

Definition. Let $0<q<1$. The limit q-Bernstein operator on $C[0,1]$ is given by:

$$
B_{\infty, q}: f \mapsto B_{\infty, q} f,
$$

where

$$
\left(B_{\infty, q} f\right)(x)= \begin{cases}\psi(x) \sum_{k=0}^{\infty} \frac{f\left(1-q^{k}\right) x^{k}}{(1-q) \ldots\left(1-q^{k}\right)}, & x \in[0,1), \\ f(1), & x=1 .\end{cases}
$$

Problem. Find all $f \in C[0,1]$ so that

$$
B_{\infty, q} f=\lambda f, \quad \lambda \in \mathbf{C} \backslash\{0\} .
$$

Conjecture. If $B_{\infty, q} f=\lambda f, \lambda \neq 0$, then f is a polynomial and $\lambda \in$ $\left\{q^{m(m-1) / 2}\right\}_{m=0}^{\infty}$.

Remark. The conjecture has been proved under some additional conditions on the smoothness of f at 1 (for example, for $f \in \operatorname{Lip} \alpha$) in [5, Corollary 5.6].

References

[1] S. Cooper and S. Waldron, The Eigenstructure of the Bernstein Operator, J. Approx. Theory 105 (2000), 133-165.
[2] A. Il'inskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002), 100-112.
[3] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2003), 232-255.
[4] , On the q-Bernstein polynomials, Advanced Studies in Contemporary Mathematics 11 (2005), no. 2, 193-204.
[5] , On the improvement of analytic properties under the limit q-Bernstein operator, J. Approx. Theory 138 (2006), 37-53.
[6] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, 2003.
[7] V.S. Videnskii, On some classes of q-parametric positive operators, Operator Theory, Advances and Applications 158 (2005), 213-222.
[8] H. Wang, Korovkin-type theorem and application, J. Approx. Theory 132 (2005), no. 2, 258-264.
S. Ostrovska: Atilim University, Department of Mathematics, 06836 Incek, Ankara, TURKEY

E-mail address: ostrovskasofiya@yahoo.com

