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Abstract. In this paper we give a simple characterization of weighted Sobolev spaces (with piecewise
monotonous weights) such that the multiplication operator is bounded: it is bounded if and only if the
support of µ0 is large enough. We also prove some basic properties of the appropriate weighted Sobolev
spaces. To have bounded multiplication operator has important consequences in Approximation Theory: it
implies the uniform bound of the zeros of the corresponding Sobolev orthogonal polynomials, and this fact
allows to obtain the asymptotic behavior of Sobolev orthogonal polynomials.
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1. Introduction.

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics. In the classical books
[11], [13], we can find the point of view of Partial Differential Equations (see also [26] and [7]). We are inter-
ested in the relationship between this topic and Approximation Theory in general, and Sobolev Orthogonal
Polynomials in particular.

Sobolev orthogonal polynomials are becoming more and more interesting in recent years. In particular,
in [8] and [9], the authors showed that the expansions with Sobolev orthogonal polynomials can avoid the
Gibbs phenomenon which appears with classical orthogonal series in L2.

In [20], [21], [22], [23], [24] and [25] the authors solved the following specific problems:
1) Find hypotheses on general measures µ = (µ0, µ1, . . . , µk) in R, as general as possible, so that we can

define a Sobolev space W k,p(µ) whose elements are functions. These measures are called p-admissible.
2) If a Sobolev norm with general measures µ = (µ0, µ1, . . . , µk) in R is finite for any polynomial, what

is the completion, Pk,p(µ), of the space of polynomials with respect to the norm in W k,p(µ)? This problem
has been studied previously in some particular cases (see e.g. [4], [3], [5]).

We think that this definition of weighted Sobolev space W k,p(µ) with p-admissible measures is the best
context in order to develop our work. However, the definition of these spaces is large and technical, and we
have chosen in this work a definition of weighted Sobolev space inspired in the paper [12] by Kufner and
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Opic. Our definition generalizes the Kufner-Opic’s definition, keeping its simplicity and obtaining a wide
enough measure type as to include the usual examples in applications.

Our definition makes easy the reading of the paper to those people mainly interested in Sobolev orthogonal
polynomials. We think that this is a good choice although we must pay with some loss of generality.

One of the central problems in the theory of Sobolev orthogonal polynomials is to determine its asymptotic
behavior. In [14] the authors show how to obtain the n-th root asymptotic of Sobolev orthogonal polynomials
if the zeros of these polynomials are contained in a compact set of the complex plane. Although the uniform
bound of the zeros of orthogonal polynomials holds for every measure with compact support in the case
without derivatives (k = 0), it is an open problem to bound the zeros of Sobolev orthogonal polynomials. The
boundedness of the zeros is a consequence of the boundedness of the multiplication operator Mf(x) = x f(x)
in the corresponding space Pk,2(µ): in fact, the zeros of the Sobolev orthogonal polynomials are contained
in the disk {z : |z| ≤ ‖M‖} (see [15]).

In [21], [23] and [1], there are some answers to the question stated in [14] about some conditions for M
to be bounded.

The main aim of this paper is to find conditions (which should be very easy to check in practical cases)
implying the boundedness of these zeros, when the measures are supported in the real line. In particular,
Theorem 4.3 (the main result of this paper) states the following characterization: If dµj = wjdx and wj

is piecewise monotonous for 1 ≤ j ≤ k, then M is bounded if and only if the support of µ0 is big enough
(see the precise statement of Theorem 4.3). The hypothesis about the monotony of wj is a weak one, since
it is verified in almost every example (for instance, every Jacobi weights hold it). In order to work with
these Sobolev spaces we need to develop the theory of such spaces: its completeness (see Theorem 3.1) and
a strong version of the continuity of the evaluation operator (see Theorem 2.1), which can be viewed as an
embeding theorem in weighted Sobolev spaces.

The outline of the paper is as follows. In Section 2 we introduce the weighted Sobolev spaces and prove
some basic facts about them, which will be useful tools. In Section 3 we prove the completeness of the
Sobolev spaces. After developing the basic theory of the weighted Sobolev spaces, Section 4 contains the
results on the multiplication operator. There are some examples in Section 5.

Now we introduce the notation we use.
Notation. If A is a Borel set in R, χ

A
, |A|, ]A and A denote, respectively, the characteristic function, the

Lebesgue measure, the cardinal and the closure of A. By f (j) we mean the j-th distributional derivative of
f . P denotes the set of polynomials and Pn the set of polynomials of degree least or equal than n. ‖ · ‖Lp(A)

will denote the usual Lp-norm (without weights) on A. We say that an n-dimensional vector satisfies a
one-dimensional property if each coordinate satisfies this property.

2. Background and previous results on Sobolev spaces.

The main concepts that we need to understand the statement of our results are contained in the following
definitions.

Definition 2.1. Given 1 ≤ p < ∞ and a set A which is a union of intervals, we say that a weight w in A

belongs to Bp(A) if w−1 ∈ L
1/(p−1)
loc (A).

It is possible to construct a similar theory with p = ∞. We refer to [1], [17], [18] and [19] for the case
p = ∞.

Bp(R) contains, as a very particular case, the classical Ap(R) weights appearing in Harmonic Analysis (see
[16] or [6]). The classes Bp(Ω), with Ω ⊆ Rn, and Ap(Rn) (1 < p < ∞) have been used in other definitions
of weighted Sobolev spaces on Rn in [12] and [10] respectively.

In [12], Kufner and Opic define the following sets:
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Definition 2.2. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, . . . , µk) in R. For 0 ≤ j ≤ k
we define the open set

Ωj :=
{
x ∈ R : ∃ an open neighbourhood V of x with wj ∈ Bp(V )

}
,

where wj = dµj/dx.

Notice that we always have wj ∈ Bp(Ωj) for any 0 ≤ j ≤ k. In fact, Ωj is the largest open set U with
wj ∈ Bp(U). It is easy to check that if f (j) ∈ Lp(wj) with 0 ≤ j ≤ k, then f (j) ∈ L1

loc(Ωj):
Given any compact interval I ⊂ Ωj , by Hölder’s inequality∫

I

|f (j)| =
∥∥f (j)w

1/p
j w

−1/p
j

∥∥
L1(I)

≤
∥∥f (j)w

1/p
j

∥∥
Lp(I)

∥∥w
−1/p
j

∥∥
Lp/(p−1)(I)

=
∥∥f (j)

∥∥
Lp(I,wj)

∥∥w−1
j

∥∥1/p

L1/(p−1)(I)
< ∞ .

Therefore f (j−1) ∈ ACloc(Ωj) if 1 ≤ j ≤ k (f (j−1) is locally absolutely continuous in Ωj).
In fact, this argument proves the following:

Lemma 2.1. Let us consider 1 ≤ p < ∞ and a weight wj. The convergence in Lp(wj) implies the convergence
in L1

loc(Ωj). In fact, ∫

I

|f (j)| ≤
∥∥f (j)

∥∥
Lp(I,wj)

∥∥w−1
j

∥∥1/p

L1/(p−1)(I)
,

for every f (j) ∈ L1
loc(Ωj) and every compact interval I ⊂ Ωj.

Definition 2.3. Given 1 ≤ p < ∞, we say that a vectorial measure µ = (µ0, . . . , µk) belongs to the class Sp

if it is a measure in R verifying the following properties:
(i) We can make the decomposition dµ0 = d(µ0)s + w0dx (by Radon-Nikodym’s Theorem, we can make

this decomposition if µ0 is σ-finite).
(ii) dµj = wjdx and wj = 0 a.e. in R \ Ωj for 0 < j ≤ k.

Remarks.
1. Hypothesis “wj = 0 a.e. in R \Ωj for 0 < j ≤ k” is natural: if we do not require it, the corresponding

weighted Sobolev space is not a Banach space (see [12]). Furthermore, it is not easy to construct a weight
which does not satisfy this hypothesis.

2. We just consider vectorial measures in Sp in the definition of the Sobolev.
3. The class Sp depends on p since the sets Ωj depend on p.

Definition 2.4. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, . . . , µk) in Sp. We define the
Sobolev space W k,p

ko (µ) as the space of equivalence classes of

V k,p
ko (µ) :=

{
f : R→ C /

∥∥f
∥∥

W k,p(µ)
:=

( k∑

j=0

∥∥f (j)
∥∥p

Lp(µj)

)1/p

< ∞ ,

and f (j) ∈ ACloc(Ωj+1 ∪ · · · ∪ Ωk) for 0 ≤ j < k
}

,

with respect to the seminorm ‖ · ‖W k,p(µ).

Let us notice that in [12], Kufner and Opic require the equalities Ω0 = Ω1 = · · · = Ωk in their definition.
Our definition is inspired in [12], is as simple, and allows to deal with a wider set of vectorial measures.

It is possible to define Sobolev spaces, which we call W k,p(µ), for a wider class of measures (see e.g. [20],
[21], [1]), but they need a big amount of technical background. For the sake of simplicity we have chosen the
current definition in this paper. Since there is just a way to define the Sobolev norm, we use the notation
‖ · ‖W k,p(µ) instead of ‖ · ‖W k,p

ko (µ).

Now, we are going to develop the basic results about these weighted Sobolev spaces.
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Since, for the sake of generality, we allow ‖ · ‖W k,p(µ) to be a seminorm, it is natural to introduce the
following concept.

Definition 2.5. Let us consider 1 ≤ p < ∞ and µ = (µ0, µ1, . . . , µk) a vectorial measure in Sp. Let us
define the space Kko(µ) as

Kko(µ) :=
{

g : Ω1 ∪ · · · ∪ Ωk −→ C/ g ∈ V k,p
ko

(
µ|Ω1∪···∪Ωk

)
, ‖g‖W k,p(µ|Ω1∪···∪Ωk

) = 0
}

.

Kko(µ) is the equivalence class of 0 in W k,p
ko (µ|Ω1∪···∪Ωk

). Therefore, ‖ · ‖W k,p(µ|Ω1∪···∪Ωk
) is a norm if and

only if Kko(µ) = 0. This concept plays an important role in the study of the multiplication operator in
Sobolev spaces (see Theorem 4.3 below).

Remark. Since the values of any f ∈ V k,p
ko (µ) in two different connected components of Ω1 ∪ · · · ∪ Ωk are

independent, it is direct to check that Kko(µ) = 0 if and only if Kko(µ|A) = 0 for every connected component
A of Ω1 ∪ · · · ∪Ωk. Furthermore, if we consider the functions in Kko(µ|A) defined as 0 in R \A, we have that

Kko(µ) =
⊕

i

Kko(µ|Ai
),

where {Ai}i are the connected components of Ω1 ∪ · · · ∪ Ωk.

Proposition 2.1. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp. If a
connected component A of Ω1 ∪ · · · ∪ Ωk intersects Ωi for some 0 ≤ i ≤ k, then every function f ∈ Kko(µ)
verifies f |A ∈ Pi−1.

Remark. We use the convention P−1 = 0.

Proof. Let us fix 0 ≤ j ≤ k and a function f ∈ Kko(µ). We prove first that f (j) = 0 a.e. in Ω0 ∪ · · · ∪ Ωj :
Let us consider a compact interval I ⊂ Ωi, with 0 ≤ i ≤ j. By Lemma 2.1,∫

I

|f (i)| ≤
∥∥f (i)

∥∥
Lp(I,wi)

∥∥w−1
i

∥∥1/p

L1/(p−1)(I)
= 0 ·

∥∥w−1
i

∥∥1/p

L1/(p−1)(I)
= 0 .

Hence, f (i) = 0 a.e. in Ωi and f (j) = 0 a.e. in Ωi. Consequently, f (j) = 0 a.e. in Ω0 ∪ · · · ∪ Ωj .
Furthermore, the restriction of f to some connected component of Ωi (0 ≤ i ≤ j) belongs to Pj−1 (recall

that f (i−1) ∈ ACloc(Ωi)).
We prove now that if the restriction of f to some open interval J ⊆ Ωm for some 0 ≤ m ≤ k belongs to

Pj−1, and H is an open interval H ⊆ Ωn for some 0 ≤ n ≤ k, with J ∩H 6= ∅, then f |H ∈ Pj−1 also:
Using the previous argument, we obtain that f |H ∈ Pn−1. Since, by hypothesis, f |J ∈ Pj−1, and J and

H are open intervals with J ∩H 6= ∅, then f |J∪H ∈ Pj−1 and f |H ∈ Pj−1.
If a connected component A of Ω1 ∪ · · · ∪ Ωk intersects Ωi for some 0 ≤ i ≤ k, let us fix x0 ∈ Ωi ∩ A.

Given x ∈ A, it is enough to prove that we can go from x0 to x by crossing just a finite number of open
intervals in some Ωm, with 0 < m ≤ k. (This also has sense for the case i = 0, since if x0 ∈ Ω0 ∩ A, then
there exists 0 < m ≤ k with x0 ∈ Ωm.)

Given x ∈ A, consider the compact interval Ix ⊆ A with endpoints x and x0. Since Ωm is an open set
for each m, it is a disjoint union of open intervals. Then A has an open covering of open intervals in some
Ωm, with 0 < m ≤ k. Since Ix is a compact subset of A there exists a finite subcovering of open intervals in
some Ωm, with 0 < m ≤ k. Then we can go from x0 to x by crossing just a finite number of open intervals
in some Ωm, with 0 < m ≤ k, and the proof is finished. ¤

Definition 2.6. Given 1 ≤ p < ∞, a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp and a connected compo-
nent A of Ω1 ∪ · · · ∪ Ωk, the defects of A are

d0(A) := defect0(A) := min
{
0 ≤ j ≤ k : Ωj ∩A 6= ∅}

,

d1(A) := defect1(A) := min
{
1 ≤ j ≤ k : Ωj ∩A 6= ∅}

.
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In general, it is easy to compute Kko(µ), as show the following results.

Proposition 2.2. Let us consider 1 ≤ p < ∞, a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp, and a
connected component A of Ω1 ∪ · · · ∪ Ωk. Then

Kko(µ|A) =
{

f ∈ Pd0(A)−1 :
∫

A

|f |p dµ0 = 0
}

=
{

f ∈ Pd1(A)−1 :
∫

A

|f |p dµ0 = 0
}

,

and
dimKko(µ|A) =

(
d0(A)− ] supp

(
µ0|A

))
+

=
(
d1(A)− ] supp

(
µ0|A

))
+

,

where, as usual, x+ := max{x, 0}.
Proof. Let us fix a connected component A of Ω1 ∪ · · · ∪ Ωk. We prove first the results with d0(A).

By definition of d0(A), we have that Ωd0(A) intersects A and Ωj = ∅ for any 0 ≤ j < d0(A) (if d0(A) > 0).
Then µj = 0 for any 0 < j < d0(A) (if d0(A) > 1). By Proposition 2.1 we obtain f |A ∈ Pd0(A)−1 (recall that
P−1 = 0), for every function f ∈ Kko(µ|A).

We have that

Kko(µ|A) =
{

f ∈ Pd0(A)−1 :
∫

A

|f |p dµ0 = 0
}

,

since µj = 0 for any 0 < j < d0(A), if d0(A) > 1 (conditions
∫

A
|f (j)|p dµj = 0 for d0(A) ≤ j ≤ k are not

relevant since we know that f |A ∈ Pd0(A)−1).
If d0(A) = 0, there is nothing to prove, since Kko(µ|A) ⊆ P−1 = 0 and ] supp

(
µ0|A

) ≥ 0.
If d0(A) > 0, then we denote r := ] supp

(
µ0|A

)
.

If r = ∞, then Kko(µ|A) = 0 and d0(A) ≤ k; hence, there is nothing to prove.
If r < ∞, then µ0|A = c1δx1 + · · · + crδxr , with ci > 0 and xi ∈ A. Therefore, any f ∈ Kko(µ|A) can be

written as
f(x) = αd0(A)x

d0(A)−1 + · · ·+ α2x + α1,

with the restrictions

0 = f(xi) = αd0(A)x
d0(A)−1
i + · · ·+ α2xi + α1, 1 ≤ i ≤ r.

This is a homogeneous linear system of r equations with the d0(A) unknowns αd0(A), . . . , α2, α1.
If d0(A) ≤ r < ∞, then Kko(µ|A) = 0 and (d0(A)− r)+ = 0.
If r < d0(A), then the r equations are linearly independent and dimKko(µ|A) = d0(A)−r = (d0(A)−r)+.

We prove now the results with d1(A).
If Ω0∩A = ∅, then d0(A) = d1(A) and there is nothing to prove. If Ω0∩A 6= ∅, then d0(A) = 0 < d1(A),

but in this case ] supp
(
µ0|A

)
= ∞; consequently, Kko(µ|A) = 0 and 0 =

(
d0(A) − ] supp

(
µ0|A

))
+

=(
d1(A)− ] supp

(
µ0|A

))
+
. ¤

Corollary 2.1. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp. Then the
following conditions are equivalents:

(A) Kko(µ) = 0.
(B) ] supp

(
µ0|A

) ≥ d0(A) for every connected component A of Ω1 ∪ · · · ∪ Ωk.
(C) ] supp

(
µ0|A

) ≥ d1(A) for every connected component A of Ω1 ∪ · · · ∪ Ωk.

Proof. By the Remark after Definition 2.5, Kko(µ) = 0 if and only if Kko(µ|A) = 0 for every connected
component A of Ω1 ∪ · · · ∪ Ωk. Then we just need to apply Proposition 2.2. ¤

We need two technical results from [20]:
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Lemma A. ([20, Theorem 4.1]) Let us consider 1 ≤ p < ∞ and a measure µ0 on [a, b] such that supp µ0

has at least k points. Let wk be a weight in Bp([a, b]). Then there exists a positive constant c such that

c

k−1∑

j=0

‖f (j)‖L∞([a,b]) ≤ ‖f‖Lp([a,b],µ0) + ‖f (k)‖Lp([a,b],wk), for all f with f (k−1) ∈ AC([a, b]).

Lemma B. ([20, Lemma 4.2]) Let us suppose that 1 ≤ p < ∞ and w = (w0, . . . , wk) is a vectorial weight in
Sp. If I is a compact interval contained in Ωj+1 ∪ · · · ∪ Ωk for some 0 ≤ j < k, and I ∩ Ω0 ∪ · · · ∪ Ωj 6= ∅,
then there exists a positive constant c such that

c ‖f (j)‖L∞(I) ≤ ‖f‖W k,p(w), for every f ∈ V k,p
ko (w).

We introduce now a technical concept which we need in order to state Theorem 2.1.
Given 1 ≤ p < ∞, a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp, 0 ≤ j < k and b ∈ R, we say that

b− ∈ Ω(j) (respectively, b+ ∈ Ω(j)), if there exist ε > 0 and j < i ≤ k with wi ∈ Bp([b− ε, b]) (respectively,
wi ∈ Bp([b, b + ε])). Also, we say that b ∈ Ω(j) if b− ∈ Ω(j) and b+ ∈ Ω(j).

Remark. Let us notice that if b− ∈ Ω(j), then b− ∈ Ω(i) for each 0 ≤ i ≤ j. Hence, Ωj+1 ∪ · · · ∪Ωk ⊆ Ω(j).
Furthermore, Ω(j) ⊆ Ωj+1 ∪ · · · ∪ Ωk, and if I is a compact interval contained in Ω(j), then Ω(j) \ (

Ωj+1 ∪
· · · ∪ Ωk

)
is a finite set.

When we use this definition we think of a point {b} as the union of two half-points {b+} and {b−}. With
this convention, each one of the following sets

(a, b) ∪ (b, c) ∪ {b+} =(a, b) ∪ [b+, c) 6= (a, c) ,

(a, b) ∪ (b, c) ∪ {b−} =(a, b−] ∪ (b, c) 6= (a, c) ,

has two connected components, and the set (a, b) ∪ (b, c) ∪ {b−} ∪ {b+} = (a, b) ∪ (b, c) ∪ {b} = (a, c) is
connected.

We just use this convention in order to study the sets of absolute continuity of functions: we want that
if f ∈ AC(A) and f ∈ AC(B), where A and B are union of intervals, then f ∈ AC(A ∪ B). With the
usual definition of absolute continuity in an interval, if f ∈ AC([a, b)) ∩ AC([b, c]) then we do not have
f ∈ AC([a, c]). Of course, we have f ∈ AC([a, c]) if and only if f ∈ AC([a, b−]) ∩ AC([b+, c]), where, by
definition, AC([b+, c]) = AC([b, c]) and AC([a, b−]) = AC([a, b]). This idea can be formalized with a suitable
topological space.

The following Theorem is a basic tool in the theory of weighted Sobolev spaces and, in particular, in the
study of the multiplication operator (see the proofs of Theorems 3.1 and 4.3). It allows us to control the
L∞-norm (in appropriate sets) of a function and its derivatives in terms of its Sobolev norm (it is also a
version of an embeding theorem in weighted Sobolev spaces). Furthermore, it is important by itself, since it
answers to the following main question: when the evaluation functional of f (or f (j)) in a point is a bounded
operator in W k,p

ko (µ)?

Theorem 2.1. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp. Let Kj

be a finite union of compact intervals contained in Ω(j), for 0 ≤ j < k. Then there exists a positive
constant c1 = c1(µ,K0, . . . ,Kk−1) such that for any f ∈ V k,p

ko (µ) there exists f0 ∈ V k,p
ko (µ), independent of

K0, . . . ,Kk−1 and c1, with

‖f0 − f‖W k,p(µ) = 0 ,

k−1∑

j=0

‖f (j)
0 ‖L∞(Kj) +

k−1∑

j=0

‖f (j+1)
0 ‖L1(Kj) ≤ c1 ‖f0‖W k,p(µ) = c1 ‖f‖W k,p(µ) .
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Furthermore, if g0, f0 are these representatives of g, f respectively, we have for the same constant c1

k−1∑

j=0

‖g(j)
0 − f

(j)
0 ‖L∞(Kj) +

k−1∑

j=0

‖g(j+1)
0 − f

(j+1)
0 ‖L1(Kj) ≤ c1 ‖g − f‖W k,p(µ) .

Besides, if Kko(µ) = 0, then there exists a positive constant c2 = c2(µ,K0, . . . ,Kk−1) such that
k−1∑

j=0

‖f (j)‖L∞(Kj) +
k−1∑

j=0

‖f (j+1)‖L1(Kj) ≤ c2 ‖f‖W k,p(µ),

for every f ∈ V k,p
ko (µ). In particular, if b− ∈ Ω(j) or b+ ∈ Ω(j), we have respectively,

|f (j)(b−)| ≤ c2 ‖f‖W k,p(µ), |f (j)(b+)| ≤ c2 ‖f‖W k,p(µ),

for every f ∈ V k,p
ko (µ).

Remark. If (a, b) is a connected component of Ω1 ∪ · · · ∪ Ωk, and b− ∈ Ω(j), then there exists the limit
f (j)(b−) for every f ∈ V k,p

ko (µ), since there exist ε > 0 and j < i ≤ k with f (i−1) ∈ AC([b− ε, b]). A similar
remark holds for b+.

Proof. By the Remark after Definition 2.5, without loss of generality we can assume that Ω1 ∪ · · · ∪ Ωk is
connected. We can assume also that Ωk 6= ∅, since in other case we can consider max{1 ≤ j ≤ k : Ωj 6= ∅}
instead of k.

Since Kj is a finite union of compact intervals, without loss of generality we can assume that Kj is a
single compact interval.

We prove first the inequalities concerning the L∞-norm, with the following additional hypothesis: Kj is
a compact interval contained in Ωj+1 ∪ · · · ∪ Ωk (which is a subset of Ω(j)), for 0 ≤ j < k.

Let us define k1 := d1(Ω1 ∪ · · · ∪Ωk). Let us fix k1 ≤ j < k. Since Ω1 ∪ · · · ∪Ωk is connected, we can find
a compact interval Ij such that Kj ⊆ Ij ⊂ Ωj+1 ∪ · · · ∪ Ωk and Ij ∩ (Ω0 ∪ · · · ∪ Ωj) 6= ∅. By Lemma B we
deduce that there exists a constant c3 with

(1)
k−1∑

j=k1

‖f (j)‖L∞(Kj) ≤
k−1∑

j=k1

‖f (j)‖L∞(Ij) ≤ c3‖f‖W k,p(µ) ,

for every f ∈ V k,p
ko (µ).

Since k1 > 0, then Ωk1 ∪ · · · ∪ Ωk = Ω1 ∪ · · · ∪ Ωk. Furthermore, if k1 > 1, then Ω1 ∪ · · · ∪ Ωk1−1 = ∅.
If Kko(µ) = 0, then Corollary 2.1 gives ] supp

(
µ0|Ω1∪···∪Ωk

) ≥ k1. Without loss of generality we can
assume that K0 = K1 = · · · = Kk1−1 ⊂ Ωk1 ∪ · · · ∪ Ωk and ] supp

(
µ0|K0

) ≥ k1, since in other case we can
enlarge Kj (j = 0, 1, . . . , k1 − 1).

Since K0 is a compact interval contained in Ωk1 ∪
(
Ωk1+1 ∪ · · · ∪ Ωk

)
, then there are a finite number

of compact intervals J1, . . . , Jm1 ⊂ Ωk1 , J1, . . . , Jm2 ⊂ Ωk1+1 ∪ · · · ∪ Ωk, with J1 ∪ · · · ∪ Jm1 ∪ J1 ∪ · · · ∪
Jm2 = K0. Let us define w′k1

:= wk1 + χ∪iJi ; it belongs to Bp(K0) since wk1 ∈ Bp

(
J1 ∪ · · · ∪ Jm1

)
and

1 ∈ Bp

(
J1 ∪ · · · ∪ Jm2

)
.

By (1) we have that

(2) ‖f (k1)‖Lp(w′k1
|K0 ) ≤ c4

(‖f (k1)‖Lp(wk1 |K0 ) + ‖f (k1)‖L∞(∪iJi)

) ≤ c5‖f‖W k,p(µ) ,

for every f ∈ V k,p
ko (µ), since J1, . . . , Jm2 ⊂ Ωk1+1 ∪ · · · ∪ Ωk.

Since ] supp
(
µ0|K0

) ≥ k1 and w′k1
∈ Bp(K0), Lemma A and (2) give that

k1−1∑

j=0

‖f (j)‖L∞(K0) ≤ c6

(‖f‖Lp(µ0|K0 ) + ‖f (k1)‖Lp(w′k1
|K0 )

) ≤ c7‖f‖W k,p(µ) ,
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for every f ∈ V k,p
ko (µ). Therefore,

k−1∑

j=0

‖f (j)‖L∞(Kj) ≤ (c3 + c7)‖f‖W k,p(µ) ,

for every f ∈ V k,p
ko (µ).

If Kko(µ) 6= 0, let us define r := ] supp
(
µ0|Ω1∪···∪Ωk

)
. By Proposition 2.2, dimKko(µ) = k1 − r > 0.

Then without loss of generality we can assume that K0 = K1 = · · · = Kk1−1 ⊂ Ωk1 ∪ · · · ∪ Ωk and
supp

(
µ0|Ω1∪···∪Ωk

) ⊂ K0.
Then µ0|A = b1δx1 +· · ·+brδxr

, with bi > 0 and xi ∈ Ω1∪· · ·∪Ωk. By Proposition 2.2, any f ∈ Kko(µ) = 0
can be written as

f(x) = αk1x
k1−1 + · · ·+ α2x + α2 ,

with the restrictions

0 = f(xi) = αk1x
k1−1
i + · · ·+ α2xi + α1 , 1 ≤ i ≤ r .

This is a homogeneous linear system of r equations with the k1 unknowns αk1 , . . . , α2, α1, and dimKko(µ) =
k1 − r. Let us choose points y1, . . . , yk1−r ∈ Ω1 ∪ · · · ∪ Ωk with xi 6= yj for every i, j.

Fix f ∈ V k,p
ko (µ). We define qf = 0 in R \ (

Ω1 ∪ · · · ∪Ωk

)
and qf |Ω1∪···∪Ωk

∈ Pk1−1 ∩Kko(µ) as the unique
polynomial in Pk1−1 verifying qf (xi) = 0 for every 1 ≤ i ≤ r and qf (yi) = f(yi) for every 1 ≤ i ≤ k1 − r.

The function f0 := f − qf satisfies ‖f0 − f‖W k,p(µ) = ‖qf‖W k,p(µ) = 0. If we define a vectorial measure
µ∗ in Sp by µ∗0 = µ0 + δy1 + · · ·+ δyk1−r

, and w∗j = wj for 1 ≤ j ≤ k, then Kko(µ∗) = 0, by Proposition 2.2,
since ] supp

(
µ∗0|Ω1∪···∪Ωk

)
= k1. Consequently,

k−1∑

j=0

‖f (j)
0 ‖L∞(Kj) ≤ c8‖f0‖W k,p(µ∗) = c8‖f0‖W k,p(µ) = c8‖f‖W k,p(µ) ,

since f0(yi) = 0 for every 1 ≤ i ≤ k1 − r.
We have the same inequality for g0 − f0 instead of f0, since qg−f = qg − qf .

Then, we have proved the inequalities concerning the L∞-norm, if Kj is a finite union of compact intervals
contained in Ωj+1 ∪ · · · ∪ Ωk, for 0 ≤ j < k. We finish now the proof just in the case Kko(µ) = 0, since the
other case is similar (using the same measure µ∗ and the function f0 = f − qf ).

By the Remark after Lemma B, we have that if Kj ⊆ Ω(j), then Kj \
(
Ωj+1 ∪ · · · ∪ Ωk

)
is a finite set.

Hence, without loss of generality we can assume that Kj = [a, b] ⊆ Ω(j), with (a, b) ⊆ Ωj+1 ∪ · · · ∪ Ωk.
In order to finish the proof of the L∞-inequalities, it is enough to show that if a /∈ Ωj+1 ∪ · · · ∪ Ωk, then

‖f (j)‖L∞([a,a+ε]) ≤ c ‖f‖W k,p(µ) ,

for every f ∈ V k,p
ko (µ), since the case b /∈ Ωj+1 ∪ · · · ∪ Ωk is similar.

Since a+ ∈ Ω(j), there exist ε > 0 and j < i ≤ k with wi ∈ Bp([a, a + 2ε]) (then (a, a + 2ε) ⊆ Ωi).
Therefore,

f (j)(x) = f (j)(a+ε)+f (j+1)(a+ε)(x−a−ε)+· · ·+f (i−1)(a+ε)
(x− a− ε)i−j−1

(i− j − 1)!
+

∫ x

a+ε

f (i)(t)
(x− t)i−j−1

(i− j − 1)!
dt ,

for every x ∈ [a, a + 2ε]. Lemma 2.1 gives

∣∣∣
∫ x

a+ε

f (i)(t)
(x− t)i−j−1

(i− j − 1)!
dt

∣∣∣ ≤ c9

∥∥f (i)
∥∥

L1([a,a+2ε])
≤ c9

∥∥f (i)
∥∥

Lp([a,a+2ε],wi)

∥∥w−1
i

∥∥1/p

L1/(p−1)([a,a+2ε])

≤ c10‖f‖W k,p(µ) ,
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and then
∣∣f (j)(x)

∣∣ ≤ ∣∣f (j)(a + ε)
∣∣ + ε

∣∣f (j+1)(a + ε)
∣∣ + · · ·+ εi−j−1

(i− j − 1)!

∣∣f (i−1)(a + ε)
∣∣ + c10‖f‖W k,p(µ)

≤ c11

i−1∑

m=j

∣∣f (m)(a + ε)
∣∣ + c10

∥∥f
∥∥

W k,p(µ)
.

Since a + ε ∈ Ωi, then a + ε ∈ Ωm+1 ∪ · · · ∪ Ωk for every m < i, and the proved part of this Theorem gives

∥∥f (j)
∥∥

L∞([a,a+2ε])
≤ c11

i−1∑

m=j

∣∣f (m)(a + ε)
∣∣ + c10

∥∥f
∥∥

W k,p(µ)
≤ c12

∥∥f
∥∥

W k,p(µ)
.

We prove now the L1-inequalities. For each 0 ≤ j < k, we can write Kj = Kj+1
j ∪ · · · ∪Kk

j , where Ki
j is

a finite union of compact intervals with wi ∈ Bp(Ki
j). Let us define w′j+1 := wj+1 + χ

K
j+2
j

∪···∪Kk
j

; it belongs

to Bp(Kj) since wj+1 ∈ Bp

(
Kj+1

j

)
and 1 ∈ Bp

(
Kj+2

j ∪ · · · ∪Kk
j

)
. By Lemma 2.1,

∥∥f (j+1)
∥∥

L1(Kj)
≤ c13

∥∥f (j+1)
∥∥

Lp(Kj ,w′j+1)
≤ c14

∥∥f (j+1)
∥∥

Lp(wj+1)
+ c14

∥∥f (j+1)
∥∥

L∞(Kj+2
j ∪···∪Kk

j )
.

Since Kj+2
j ∪ · · · ∪Kk

j ⊆ Ω(j + 1), the proved part of this Theorem gives
∥∥f (j+1)

∥∥
L∞(Kj+2

j ∪···∪Kk
j )
≤ c15

∥∥f
∥∥

W k,p(µ)
,

and consequently ∥∥f (j+1)
∥∥

L1(Kj)
≤ c16

∥∥f
∥∥

W k,p(µ)
,

for every f ∈ V k,p
ko (µ). ¤

3. Completeness of the Sobolev space.

The following Theorem is a central fact in the theory of Sobolev spaces.

Theorem 3.1. Given 1 ≤ p < ∞ and a vectorial measure µ = (µ0, . . . , µk) in Sp, the Sobolev space W k,p
ko (µ)

is a Banach space.

Proof. Given a Cauchy sequence {fn}n in W k,p
ko (µ), for each 0 ≤ j ≤ k, {f (j)

n }n is a Cauchy sequence in
Lp(µj), and then {f (j)

n }n converges to some gj in Lp(µj).
First of all, let us show that gj can be extended to a function in C(Ω(j)) (if 0 ≤ j < k) and in L1

loc(Ω(j−1))
(if 0 < j ≤ k).

If 0 ≤ j < k, let us consider any compact interval K ⊆ Ω(j). Theorem 2.1 gives that there exists a
representative (independent of K) of the class of fn ∈ W k,p

ko (µ) (which we also denote by fn) and a positive
constant c such that for every n,m ∈ N

‖f (j)
n − f (j)

m ‖L∞(K) ≤ c

k∑

i=0

‖f (i)
n − f (i)

m ‖Lp(µi) .

Then {f (j)
n }n is a Cauchy sequence in

(
C(K), ‖ · ‖L∞(K)

)
, and there exists a function hj ∈ C(K) such that

{f (j)
n }n converges to hj in L∞(K).
Consequently,

‖f (j)
n − hj‖L∞(K) ≤ c

k∑

i=0

‖f (i)
n − gi‖Lp(µi) .
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Since we can take as K any compact interval contained in Ω(j), we obtain that the function hj can be
extended to Ω(j) and we have in fact hj ∈ C(Ω(j)). It is obvious that gj = hj in Ω(j) (except for at most
a set of zero µj-measure), since f

(j)
n converges to gj in the norm of Lp(µj) and to hj uniformly on each

compact interval K ⊆ Ω(j). Therefore, without loss of generality we can assume that gj ∈ C(Ω(j)).
If 0 < j ≤ k, let us consider any compact interval J ⊆ Ω(j − 1). Now Theorem 2.1 gives

‖f (j)
n − f (j)

m ‖L1(J) ≤ c

k∑

i=0

‖f (i)
n − f (i)

m ‖Lp(µi) .

Then {f (j)
n }n is a Cauchy sequence in L1(J), and there exists a function uj ∈ L1(J) such that {f (j)

n }n

converges to uj in L1(J).
Consequently,

‖f (j)
n − uj‖L1(J) ≤ c

k∑

i=0

‖f (i)
n − gi‖Lp(µi) .

Since we can take as J any compact interval contained in Ω(j − 1), we obtain that the function uj can be
extended to Ω(j − 1) and we have in fact uj ∈ L1

loc(Ω(j − 1)). It is obvious that gj = uj in Ω(j) (except for
at most a set of zero Lebesgue measure), since f

(j)
n converges to uj in L1

loc(Ω(j)) ⊆ L1
loc(Ω(j − 1)) and to gj

locally uniformly in Ω(j). We just need to show uj = gj in Ωj \ Ω(j) (recall that by hypothesis wj = 0 a.e.
in R \ Ωj), but this is immediate since the convergence in Lp(wj) implies the convergence in L1

loc(Ωj) (see
Lemma 2.1). Therefore, gj ∈ L1

loc(Ω(j − 1)).
In fact, we have seen that {f (j)

n } converges to gj in L∞loc(Ω(j)) (if 0 ≤ j < k) and in L1
loc(Ω(j − 1)) (if

0 < j ≤ k).
Let us see now that g′j = gj+1 in the interior of Ω(j) for 0 ≤ j < k. Let us consider a connected component

I of int(Ω(j)). Given ϕ ∈ C∞c (I), let us consider the convex hull K of supp ϕ. We have that K is a compact
interval contained in I ⊆ Ω(j). The uniform convergence of {f (j)

n } in K and the L1 convergence of {f (j+1)
n }

in K gives that ∫

K

ϕ′ gj = lim
n→∞

∫

K

ϕ′ f (j)
n = − lim

n→∞

∫

K

ϕf (j+1)
n = −

∫

K

ϕgj+1 .

Consequently, g′j = gj+1 in int(Ω(j)). Then, gj+1 = g
(j+1)
0 in int(Ω(j)) and g

(j)
0 ∈ ACloc(int(Ω(j))) for

0 ≤ j < k. In particular, g
(j)
0 ∈ ACloc(Ωj+1 ∪ · · · ∪Ωk), and g0 ∈ V k,p

ko (µ). Consequently, {fn}n converges to
g0 in W k,p

ko (µ). ¤

4. Results on the multiplication operator.

In order to clarify the proof of Theorem 4.3 (the main result of this section), we have proved some technical
results on weighted Sobolev spaces in the previous sections: Propositions 2.1 and 2.2, Corollary 2.1, and
Theorems 2.1 and 3.1. We also need to prove two more previous results: Theorem 4.2 and Lemma 4.2.

We begin with some previous concepts.
Recall that when every polynomial has finite W k,p(µ)-norm, we denote by Pk,p(µ) the completion of P

with that norm. Since our aim is to bound the multiplication operator in Pk,p(µ), in this section we just
consider measures such that every polynomial has finite Sobolev norm. Hence, for any 0 ≤ j ≤ k,

µj(R)1/p =
∥∥1

∥∥
Lp(µj)

≤
∥∥xj/j!

∥∥
W k,p(µ)

< ∞ ,

and consequently, µ is finite.
M. Castro and A. Durán [2] proved that if the multiplication operator is bounded in Pk,p(µ) then the

support of µ is compact. Then, we just need to consider finite vectorial measures with compact support.
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First of all, some remarks about the definition of the multiplication operator. We start with a definition
which has sense for arbitrary vectorial measures (they do not need to belong to Sp).

Definition 4.1. If µ = (µ0, µ1, . . . , µk) is a vectorial measure in R, we say that the multiplication operator is
well defined in Pk,p(µ) if given any sequence {sn} of polynomials converging to 0 in the W k,p(µ)-norm, then
{xsn} also converges to 0 in the W k,p(µ)-norm. In this case, if {qn} ∈ Pk,p(µ), we define M({qn}) := {xqn}.
If we choose another Cauchy sequence {rn} representing the same element in Pk,p(µ) (i.e. {qn−rn} converges
to 0 in the W k,p(µ)-norm), then {xqn} and {xrn} represent the same element in Pk,p(µ) (since {x(qn− rn)}
converges to 0 in the W k,p(µ)-norm).

We can also think of another definition which is natural as the previous one (if µ ∈ Sp):

Definition 4.2. If µ = (µ0, µ1, . . . , µk) is a vectorial measure in Sp, we say that the multiplication operator
is well defined in W k,p

ko (µ) if given any function h ∈ V k,p
ko (µ) with ‖h‖W k,p(µ) = 0, we have ‖xh‖W k,p(µ) = 0.

In this case, if [f ] is an equivalence class in W k,p
ko (µ), we define M([f ]) := [xf ]. If we choose another

representative g of [f ] (i.e. ‖f − g‖W k,p(µ) = 0) we have [xf ] = [xg], since ‖x(f − g)‖W k,p(µ) = 0.

Although both definitions are natural, it is possible for a vectorial measure µ = (µ0, µ1, . . . , µk) ∈ Sp with
W k,p

ko (µ) = Pk,p(µ), that M is well defined in W k,p
ko (µ) and not well defined in Pk,p(µ) (see the example after

Theorem 4.2). The following elementary lemma gives an unexpected characterization of the spaces Pk,p(µ)
with M well defined in them.

Lemma 4.1. ([1, Lemma 8.1]) Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a vectorial measure in R.
The following facts are equivalent:

(1) The multiplication operator is well defined in Pk,p(µ).
(2) The multiplication operator is bounded in Pk,p(µ).
(3) There exists a positive constant c such that

‖xq‖W k,p(µ) ≤ c ‖q‖W k,p(µ) , for every q ∈ P .

Definition 4.3. A vectorial measure µ = (µ0, . . . , µk) in R is extended sequentially dominated (and we
write µ ∈ ESD) if there exists a positive constant c such that µj+1 ≤ c µj for 0 ≤ j < k.

This kind of measures plays a main role in the study of the multiplication operator:

Theorem 4.1. ([1, Theorem 8.1]) Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite vectorial measure
in R with compact support. Then, the multiplication operator is bounded in Pk,p(µ) if and only if there exists
a vectorial measure µ′ ∈ ESD such that the Sobolev norms in W k,p(µ) and W k,p(µ′) are comparable on P.
Furthermore, we can choose µ′ = (µ′0, . . . , µ

′
k) with µ′j := µj + µj+1 + · · ·+ µk for 0 ≤ j ≤ k.

Although this result characterizes the measures with M bounded, it is convenient to obtain more practical
criteria in order to guarantee the boundedness of M. This is the goal of Theorem 4.3.

Let us notice that the multiplication operator M is bounded in W k,p
ko (µ) if and only if there exists a

positive constant c such that
‖xf‖W k,p(µj) ≤ c ‖f‖W k,p(µ) ,

for every f ∈ V k,p
ko (µ). Consequently, if M is bounded in W k,p

ko (µ) and P ⊆ W k,p
ko (µ), then it is bounded in

Pk,p(µ), since W k,p
ko (µ) is a complete space by Theorem 3.1.

The following result characterizes when M is a well defined operator in W k,p
ko (µ).

Theorem 4.2. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp. Then the
multiplication operator M is well defined in W k,p

ko (µ) if and only if Kko(µ) = 0.
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Proof. Let us suppose first that Kko(µ) = 0 and let us consider f ∈ V k,p
ko (µ) with ‖f‖W k,p(µ) = 0. On the

one hand, f ∈ Kko(µ) = 0 implies that f |Ω1∪···∪Ωk
≡ 0, and so ‖xf‖W k,p(µ|Ω1∪···∪Ωk

) = 0. On the other hand,
we also have ‖f‖Lp(µ0) = 0, and so f(x) = 0 for µ0-almost every x ∈ R. Then xf(x) = 0 for µ0-almost every
x ∈ R and ‖xf‖Lp(µ0) = 0. Let us observe that µj is concentrated in Ωj ⊆ Ω1 ∪ · · · ∪ Ωk for 1 ≤ j ≤ k. We
deduce from these facts that

‖xf‖p
W k,p(µ)

≤ ‖xf‖p
Lp(µ0)

+ ‖xf‖p
W k,p(µ|Ω1∪···∪Ωk

)
= 0 ,

and therefore the multiplication operator is well defined in W k,p
ko (µ).

On the converse, let us suppose that Kko(µ) 6= 0, and let us consider f ∈ Kko(µ) \ {0}; then f ∈ V k,p
ko (µ)

and ‖f‖W k,p(µ|Ω1∪···∪Ωk
) = 0, but f is not identically zero in Ω1 ∪ · · · ∪ Ωk. We know that there exists an

interval I0 ⊆ Ω1∪ · · ·∪Ωk such that f |I0 6= 0 (since f ∈ ACloc(Ω1∪ · · ·∪Ωk)), and therefore there is another
interval I1 ⊆ I0 such that I1 ⊆ Ωi for some 1 ≤ i ≤ k and f |I1 6= 0. If g belongs to Kko(µ), Proposition 2.1
gives g|I1 ∈ Pi−1. If deg q denotes the degree of the polynomial q, let us choose now h ∈ Kko(µ) such that
deg h|I1 ≥ deg g|I1 for all g ∈ Kko(µ) (we have deg h|I1 ≥ 0 since the function f is not identically zero in I1);
we define h = 0 in R \ (

Ω1 ∪ · · · ∪ Ωk

)
, and then ‖h‖W k,p(µ) = 0. Since deg xh|I1 >deg h|I1 , we deduce that

xh /∈ Kko(µ) and ‖xh‖W k,p(µ) > 0; hence, M is not well defined in W k,p
ko (µ). ¤

Remark. Let us notice that when W k,p
ko (µ) and Pk,p(µ) are the same, we have two different definitions of

the well defined character of M.

One can think that, in a similar way to Lemma 4.1, the multiplication operator M is well defined in
W k,p

ko (µ) if and only if it is bounded in W k,p
ko (µ). However, this is not true, as shows the following:

Example. Let us consider the absolutely continuous finite vectorial measure µ = (µ0, µ1) given by w0(x) :=∑
n≥1

1
n χIn

and w1(x) :=
∑

n≥1 χIn
, where In := [2−2n−1, 2−2n]. It is easy to see that Kko(µ) = 0; then M

is well defined in W 1,p
ko (µ) by Theorem 4.2. We show now that M is not bounded in W 1,p

ko (µ): Let us consider

fn ∈ C∞c ((2−2n−3/2, 2−2n+1/2)) with fn = 1 in In; then ‖fn‖W 1,p(µ) = ‖1‖Lp(In,w0) =
(

1
n 2−2n−1

)1/p and

‖xfn‖W 1,p(µ) ≥ ‖1‖Lp(In,w1) =
(
2−2n−1

)1/p. Consequently, ‖M‖ ≥ n1/p for every n ≥ 1, and M is not
bounded in W 1,p

ko (µ). It is not difficult to prove that W 1,p
ko (µ) = P1,p(µ), and then M is not bounded in

P1,p(µ). Consequently, M is well defined in W 1,p
ko (µ) and it is not well defined in P1,p(µ) by Lemma 4.1.

Lemma 4.2. Let us consider 1 ≤ p < ∞ and a vectorial measure µ = (µ0, µ1, . . . , µk) in Sp with compact
support. Then, the multiplication operator M is bounded in W k,p

ko (µ) if and only if there exists a positive
constant c such that

‖f (j−1)‖Lp(µj) ≤ c ‖f‖W k,p(µ) ,

for every 1 ≤ j ≤ k and f ∈ V k,p
ko (µ).

Proof. If M is bounded in W k,p
ko (µ), we have that

‖(xf)(j)‖Lp(µj) ≤ ‖M‖‖f‖W k,p(µ) ,

for every 1 ≤ j ≤ k and f ∈ V k,p
ko (µ). Since

‖(xf)(j)‖Lp(µj) = ‖xf (j) + jf (j−1)‖Lp(µj) ≥ ‖f (j−1)‖Lp(µj) −K ‖f (j)‖Lp(µj) ,

with K := max{|x| : x ∈ ∪k
j=0suppµj}, we have

‖f (j−1)‖Lp(µj) ≤ K ‖f (j)‖Lp(µj) + ‖M‖‖f‖W k,p(µ) ≤ (K + ‖M‖) ‖f‖W k,p(µ) ,

for every 1 ≤ j ≤ k and f ∈ V k,p
ko (µ).

We now prove the converse implication. Notice that

‖(xf)(j)‖Lp(µj) = ‖xf (j) + jf (j−1)‖Lp(µj) ≤ j ‖f (j−1)‖Lp(µj) + K ‖f (j)‖Lp(µj) ,
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with K as before, for every 1 ≤ j ≤ k and f ∈ V k,p
ko (µ). Then

‖(xf)(j)‖p
Lp(µj)

≤ 2p−1
(
jp‖f (j−1)‖p

Lp(µj)
+ Kp‖f (j)‖p

Lp(µj)

)

≤ 2p−1
(
jpcp‖f‖p

W k,p(µ)
+ Kp‖f (j)‖p

Lp(µj)

)
,

for every 0 ≤ j ≤ k and f ∈ V k,p
ko (µ) (if j = 0 the inequality is trivial). Consequently, since

∑k
j=0 jp ≤ kp+1,

‖xf‖p
W k,p(µ)

≤ 2p−1
(
kp+1cp‖f‖p

W k,p(µ)
+ Kp‖f‖p

W k,p(µ)

)

and
‖xf‖W k,p(µ) ≤ 2(p−1)/p

(
kp+1cp + Kp

)1/p‖f‖W k,p(µ) ,

for every f ∈ V k,p
ko (µ). Hence, M is bounded in W k,p

ko (µ). ¤

In order to state the main result of this section we need two definitions.

Definition 4.4. A function u in a compact interval [α, β] is piecewise monotonous if there exist points
b1 = α < b2 < · · · < bm−1 < bm = β such that u is a monotonous function in [bi, bi+1] for each 1 ≤ i < m.

Definition 4.5. We say that two functions u, v are comparable on the set F ⊆ R if there are positive
constants c1, c2 such that c1v(x) ≤ u(x) ≤ c2v(x) for almost every x ∈ F .

Theorem 4.3. Let us consider 1 ≤ p < ∞ and a finite vectorial measure µ = (µ0, µ1, . . . , µk) in a compact
interval [α, β], such that dµj = wjdx and wj is comparable to a piecewise monotonous function for any
1 ≤ j ≤ k. Then µ ∈ Sp, and the following conditions are equivalents:

(A) The multiplication operator M is bounded in W k,p
ko (µ).

(B) Kko(µ) = 0.
(C) ] supp

(
µ0|A

) ≥ d0(A) for every connected component A of Ω1 ∪ · · · ∪ Ωk.
(D) ] supp

(
µ0|A

) ≥ d1(A) for every connected component A of Ω1 ∪ · · · ∪ Ωk.

Remarks.
1. Let us notice that when Theorem 4.3 holds, it implies that M is bounded in Pk,p(µ).
2. By monotonous we mean non-strictly monotonous; hence, it is possible to have wj = 0 in some interval.
3. The partition in intervals can be different for each wj .

Proof. Since µ0 is finite, Radon-Nikodym’s Theorem gives that dµ0 = d(µ0)s +w0dx; then, in order to prove
that µ ∈ Sp, it suffices to show that if wj is comparable to a monotonous function u in [a, b], then u = 0 a.e.
in [a, b] \Ωj . If u = 0 in [a, b], then wj = 0 a.e. in [a, b], and there is nothing to prove. Then, we can assume
that u(x) > 0 for some x ∈ [a, b].

By symmetry, we can assume that u is a non-decreasing function in [a, b]. Let us define a0 := inf{x ∈
[a, b] : u(x) > 0}. Consequently, u = 0 in [a, a0), since u is a non-decreasing function.

If a0 = b, then u = 0 in [a, b) and w = 0 a.e. in [a, b].
If a0 ∈ [a, b), then (a0, b) ⊆ Ωj : Given any 0 < ε < b−a0, then u(x) ≥ u(a0+ε) > 0 for every x ∈ [a0+ε, b],

and hence
∫ b

a0+ε
w
−1/(p−1)
j < ∞ and wj ∈ Bp([a0 +ε, b]) for every 0 < ε < b−a0. Consequently, (a0, b) ⊆ Ωj .

Since u = 0 in [a, a0), we deduce that wj = 0 a.e. in [a, b] \ Ωj . Therefore, µ ∈ Sp.
We prove now the equivalence of the two first conditions. The other conditions are equivalent to (B) by

Corollary 2.1.
If M is bounded in W k,p

ko (µ), then it is well defined in W k,p
ko (µ): if ‖f‖W k,p(µ) = 0, then ‖xf‖W k,p(µ) = 0,

since ‖xf‖W k,p(µ) ≤ ‖M‖‖f‖W k,p(µ) = 0. By Theorem 4.2 we deduce that Kko(µ) = 0.
Let us assume now that Kko(µ) = 0.
For each 1 ≤ j ≤ k, there exist points bj

1 = α < bj
2 < · · · < bj

mj−1 < bj
mj = β such that wj is comparable

to a monotonous function in [bj
i , b

j
i+1] for each 1 ≤ i < mj . Splitting in two subintervals some intervals if
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it is necessary, without loss of generality we can assume also that in each interval [bj
i , b

j
i+1], we have either

wj = 0 a.e. or wj > 0 a.e.
We consider the points a1 = α < a2 < · · · < an−1 < an = β, which are the ordered points in the set

{bj
i}1≤i<mj , 1≤j≤k. Consequently, for any fixed 1 ≤ i < n and 1 ≤ j ≤ k, wj is comparable to a monotonous

function in [ai, ai+1] and we have either wj = 0 a.e. or wj > 0 a.e. in [ai, ai+1].
By Lemma 4.2, we just need to show that there exists a positive constant c such that

‖f (j−1)‖Lp([ai,ai+1],wj) ≤ c ‖f‖W k,p(µ) ,

for every 1 ≤ i < n, 1 ≤ j ≤ k and f ∈ V k,p
ko (µ).

Let us fix 1 ≤ i < n.
If wj = 0 a.e. in [ai, ai+1] for some 1 ≤ j ≤ k, then we have

‖f (j−1)‖Lp([ai,ai+1],wj) = 0 ≤ c ‖f‖W k,p(µ) ,

for every positive constant c.
Fix 1 ≤ j ≤ k with wj comparable to a non-decreasing function in [ai, ai+1] and wj > 0 a.e. in [ai, ai+1].
Without loss of generality we can assume that wj is a non-decreasing function in [ai, ai+1]. Then, we have

wj > 0 in (ai, ai+1].
Let us notice that, applying Minkowski’s integral inequality, if 1 < p < ∞,

∥∥∥
∫ ai+1

x

f (j)
∥∥∥

Lp([ai,ai+1],wj)
=

( ∫ ai+1

ai

∣∣∣
∫ ai+1

ai

χ[x,ai+1](t) f (j)(t) dt
∣∣∣
p

wj(x) dx
)1/p

≤
∫ ai+1

ai

(∫ ai+1

ai

χ[ai,t](x)
∣∣f (j)(t)

∣∣pwj(x) dx
)1/p

dt

=
∫ ai+1

ai

∣∣f (j)(t)
∣∣
( ∫ t

ai

wj(x) dx
)1/p

dt

≤
∫ ai+1

ai

∣∣f (j)(t)
∣∣ wj(t)1/p (t− ai)1/p dt

≤
( ∫ ai+1

ai

∣∣f (j)(t)
∣∣pwj(t) dt

)1/p( ∫ ai+1

ai

(t− ai)1/(p−1) dt
)(p−1)/p

=
(p− 1

p

)(p−1)/p

(ai+1 − ai)
∥∥f (j)

∥∥
Lp([ai,ai+1],wj)

.

Since F (x) = xx ≤ 1 for every x ∈ (0, 1], we obtain
∥∥∥

∫ ai+1

x

f (j)
∥∥∥

Lp([ai,ai+1],wj)
≤ (ai+1 − ai)

∥∥f (j)
∥∥

Lp([ai,ai+1],wj)
.

If p = 1, with a similar argument, we also obtain
∥∥∥

∫ ai+1

x

f (j)
∥∥∥

L1([ai,ai+1],wj)
≤

∫ ai+1

ai

∣∣f (j)(t)
∣∣ wj(t) (t− ai) dt

≤ (ai+1 − ai)
∥∥f (j)

∥∥
L1([ai,ai+1],wj)

.

Then, for any 1 ≤ p < ∞,
∥∥f (j−1)(a−i+1)− f (j−1)

∥∥
Lp([ai,ai+1],wj)

≤ (ai+1 − ai)
∥∥f (j)

∥∥
Lp([ai,ai+1],wj)

,

c1

∥∥f (j−1)
∥∥

Lp([ai,ai+1],wj)
≤

∥∥f (j)
∥∥

Lp([ai,ai+1],wj)
+

∣∣f (j−1)(a−i+1)
∣∣ .

Since wj is a non-decreasing function in [ai, ai+1] and wj > 0 in (ai, ai+1], we have that wj ≥ c > 0 in
[a′i+1, ai+1] for any fixed a′i+1 ∈ (ai, ai+1), and consequently wj ∈ Bp([a′i+1, ai+1]) for any a′i+1 ∈ (ai, ai+1).



A SIMPLE CHARACTERIZATION OF WEIGHTED SOBOLEV SPACES WITH BOUNDED MULTIPLICATION OPERATOR15

Hence, a−i+1 ∈ Ω(j − 1). Since Kko(µ) = 0, Theorem 2.1 gives
∣∣f (j−1)(a−i+1)

∣∣ ≤ c2

∥∥f
∥∥

W k,p(µ)
,

and we conclude ∥∥f (j−1)
∥∥

Lp([ai,ai+1],wj)
≤ c3

∥∥f
∥∥

W k,p(µ)
.

If we fix 0 < j ≤ k with wj comparable to a non-increasing function in [ai, ai+1] and wj > 0 a.e. in [ai, ai+1],
we obtain a similar inequality. Consequently,∥∥f (j−1)

∥∥
Lp([ai,ai+1],wj)

≤ c4

∥∥f
∥∥

W k,p(µ)
,

for every 1 ≤ i < n, 1 ≤ j ≤ k and f ∈ V k,p
ko (µ).

Hence, Lemma 4.2 finishes this implication. ¤

Remarks.
1. The conclusion of Theorem 4.3 also holds without the hypothesis suppµ0 ⊆ [α, β]; we just need

suppµj ⊆ [α, β] for 1 ≤ j ≤ k (as shows the proof of Theorem 4.3).
2. Let us notice that the equivalence of (B), (C) and (D), and (A) implies (B) holds even if we remove

the hypotheses on µ (as shows the proof of Theorem 4.3).
3. If we remove the hypotheses on µ, (B) does not imply (A), as the example after Theorem 4.2 shows.

5. Examples.

We present in this section some examples which show the scope of application of Theorem 4.3.

1. Let us choose any finite measure µ0 with compact support. For each 1 ≤ j ≤ k, let us consider

wj(x) := uj(x)
∣∣x− aj1

∣∣αj1
∣∣x− aj2

∣∣αj2 · · ·
∣∣x− ajnj

∣∣αjnj χJj
(x) ,

with aj1 < aj2 < · · · < ajnj , αj1, αj2, . . . αjnj > −1, Jj a finite union of compact intervals (we allows Jj = ∅,
and then wj := 0), and uj , u

−1
j ∈ L∞(Jj). Then, µ = (µ0, . . . , µk) verifies the hypothesis of Theorem 4.3.

In order to apply Theorem 4.3, let us notice that aji ∈ Ωj if and only if aji belongs to the interior of Jj

and |x − aji|−αji ∈ L1/(p−1)([aji − ε, aji + ε]) for some ε > 0. The latter condition is equivalent either to
−1 < αji < p− 1 (if p > 1) or to −1 < αji ≤ 0 (if p = 1).

2. The last example can be widely generalized. Let us consider the functions defined inductively by
l1(x) := log(1/x), ln(x) := log(ln−1(x)), and Ln(x) := max{1, ln(x)}.

We can substitute each |x− aji|−αji by |x− aji|−αji multiplied or divided by any finite number of factors
Lnjim(|x− aji|)βjim .

3. We can consider the first example with k = 1, i.e., µ0 has compact support,

w1(x) := u(x)
∣∣x− a1

∣∣α1
∣∣x− a2

∣∣α2 · · ·
∣∣x− an

∣∣αn
χJ (x) ,

with a1 < a2 < · · · < an, α1, α2, . . . αn > −1, J a finite union of compact intervals, and u, u−1 ∈ L∞(J).
We know that ai ∈ Ω1 if and only if ai belongs to the interior of J and we have either to −1 < αi < p − 1
(if p > 1) or to −1 < αi ≤ 0 (if p = 1).

Then the multiplication operator M is bounded in W 1,p
ko (µ) if and only if µ0(A) > 0 for every connected

component A of Ω1.

4. Finally, let us consider the case of Jacobi weights for the derivatives: Let us choose any finite measure
µ0 with compact support. For each 1 ≤ j ≤ k, let us consider

wj(x) := cj(1 + x)αj (1− x)βj χ(−1,1)(x) ,

with αj , βj > −1, and cj verifies either cj = 1 or cj = 0.
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Then the multiplication operator M is bounded in W k,p
ko (µ) if and only if

] supp
(
µ0|(−1,1)

) ≥ min{1 ≤ j ≤ k : cj = 1} .
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