Improving 3D Scan Matching Time of the Coarse Binary Cubes Method with Fast Spatial Subsampling

Jesús Morales, Jorge L. Martínez, Anthony Mandow, Antonio J. Reina, Javier Serón and Alfonso García-Cerezo

Departamento de Ingeniería de Sistemas y Automática
Universidad de Málaga, Spain
Outline

1. INTRODUCTION
2. THE COARSE BINARY CUBES (CBC) METHOD
3. SUBSAMPLING STRATEGY
4. EXPERIMENTAL RESULTS
5. CONCLUSIONS
1. INTRODUCTION

- **3D Point Cloud Matching** is a basic operation in mobile robotics for localization and mapping.
- All scan directions and depths of a scan may contain relevant data. Farther regions have lower sampling densities.
- The search for scene matching is performed around an initial odometric estimation.
1. INTRODUCTION

• **Aim of this work**: to speed up 3D point cloud matching without losing accuracy with the Coarse Binary Cubes (CBC) method by applying an effective subsampling procedure.

• **Subsampling methods**: can be broadly classified as *range-independent* when a pre-computed mask is applied to the scan, and *range-dependent* when a representative set of points from the scan is selected (Mandow *et al.*, 2010).
2. THE CBC METHOD

- Which is the spatial transformation
 \[T = [x_0, y_0, z_0, \alpha, \beta, \gamma] \]
 to project the second scan into the first scan that maximizes the number \(J \) of coincident occupied cubes of edge length \(E \)?
2. THE CBC METHOD

Example of a CBC match with $E = 0.3$ m
2. THE CBC METHOD

- **Objective function** $J(T)$ can be evaluated:
 - without using any 3D data structure,
 - in $O(n)$ time, where n is the number of points.

- The search for T is performed by evaluating different solutions with a variation of the Nelder-Mead method.

- CBC is a compelling alternative to Iterative Closest Points (ICP) and Normal Distribution Transform (NDT) for scene registration (Martínez *et al.*, 2012).
3. SUBSAMPLING STRATEGY

- **Data structures to evaluate** $J(T)$:
 - I represents the integer index of the cube where a scan point is located.
 - V is a binary vector indexed by I whose ones correspond to occupied cubes and its zeroes to empty cubes.
 - L is an unsorted integer list that contains the indices I of the occupied cubes.

- **New subsampling stage:**
 - reduces the number of points to be projected and the computation of their corresponding indices I for every prospective T.

IECON 2013, Vienna
3. SUBSAMPLING STRATEGY

- **Octree Cube Centers**: it divides recursively occupied cubes into 8 octants until a minimal octant size E_s is achieved starting from the cube that contains the whole scan (Nüchter, 2009).

 - This is an effective strategy that is closely related with the uniform spatial representation implicitly used by CBC.
3. SUBSAMPLING STRATEGY

• Implementation with CBC data structures:
 - V^s is created as a zero binary vector and the list of integers L^s is empty.

 - The integer index I of each point of the second scan is computed.

 - If $V^s(I) = 0$ then $V^s(I)$ is set to 1, and I is inserted into L^s. Otherwise, no action is taken.

 - Finally, the coordinates of the centers of the occupied cubes is extracted from L^s. The subsampled set of points coincides with octree cube centers.
4. EXPERIMENTAL RESULTS

The mobile robot Quadriga:
- 4-wheel skid-steer vehicle (Morales et al., 2010),
- 0.82 m height,
- powered with batteries.

The Velodyne HDL-32 device:
- 32 laser beams,
- ranges from 1 m to 100 m,
- scanning time of 0.1 s,
- 360° x 41° field of view,
- 0.16° x 1.33° resolution.
4. EXPERIMENTAL RESULTS

The outdoor environment

robot position

Point cloud of a scan

IECON 2013, Vienna
4. EXPERIMENTAL RESULTS

• Subsampling times:

<table>
<thead>
<tr>
<th>E^s (m)</th>
<th>Octree (ms)</th>
<th>V^s & L^s (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>0.2</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

• Registration times:

- The gain with respect to the non-subsampled case increases linearly with E^s.

![Graph showing the gain with respect to E^s](image)
4. EXPERIMENTAL RESULTS

• Registration accuracy:
 - A relation E/E_s around 4 provides almost the same number of occupied cubes.
 - Accuracy only degrades when E/E_s approaches 1.
 - A relation E/E_s around 3 provides a compromise between accuracy and computation time.

Top view of a CBC alignment without subsampling
5. CONCLUSIONS

• CBC efficiency has been improved by selecting a subsampling method to obtain a reduced and representative set of points.

• Octree cube centers have been computed with efficient one-dimensional data structures and the relation with the size of the CBC cubes has been studied.

• Experimental results have been obtained with a multi-beam 3D laser scanner mounted on the Quadriga mobile robot.

• Work in progress: to combine subsampling with the parallel execution of CBC via multi-core and multi-threaded processors (Martínez et al., 2013).
Thank you!

www.isa.uma.es
4. EXPERIMENTAL RESULTS

Effect of E^s on registration with $E= 0.9$ m

<table>
<thead>
<tr>
<th>E^s (m)</th>
<th>m</th>
<th>r (%)</th>
<th>$J(T_{gt})$</th>
<th>$J(T)$</th>
<th>D_s (m)</th>
<th>D_α (°)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>65843</td>
<td>100.0</td>
<td>1583</td>
<td>1613</td>
<td>0.072</td>
<td>0.230</td>
<td>2.127</td>
</tr>
<tr>
<td>0.200</td>
<td>16960</td>
<td>25.8</td>
<td>1566</td>
<td>1615</td>
<td>0.091</td>
<td>0.069</td>
<td>0.585</td>
</tr>
<tr>
<td>0.212</td>
<td>16161</td>
<td>24.5</td>
<td>1578</td>
<td>1595</td>
<td>0.074</td>
<td>0.114</td>
<td>0.558</td>
</tr>
<tr>
<td>0.225</td>
<td>15462</td>
<td>23.5</td>
<td>1566</td>
<td>1598</td>
<td>0.062</td>
<td>0.080</td>
<td>0.543</td>
</tr>
<tr>
<td>0.240</td>
<td>14527</td>
<td>22.1</td>
<td>1558</td>
<td>1570</td>
<td>0.112</td>
<td>0.139</td>
<td>0.493</td>
</tr>
<tr>
<td>0.257</td>
<td>13676</td>
<td>20.8</td>
<td>1555</td>
<td>1588</td>
<td>0.069</td>
<td>0.125</td>
<td>0.460</td>
</tr>
<tr>
<td>0.277</td>
<td>12819</td>
<td>19.5</td>
<td>1548</td>
<td>1582</td>
<td>0.143</td>
<td>0.068</td>
<td>0.441</td>
</tr>
<tr>
<td>0.300</td>
<td>11878</td>
<td>18.0</td>
<td>1551</td>
<td>1571</td>
<td>0.066</td>
<td>0.175</td>
<td>0.405</td>
</tr>
<tr>
<td>0.327</td>
<td>11015</td>
<td>16.7</td>
<td>1553</td>
<td>1583</td>
<td>0.062</td>
<td>0.093</td>
<td>0.380</td>
</tr>
<tr>
<td>0.360</td>
<td>10117</td>
<td>15.4</td>
<td>1534</td>
<td>1554</td>
<td>0.105</td>
<td>0.189</td>
<td>0.352</td>
</tr>
<tr>
<td>0.400</td>
<td>9079</td>
<td>13.8</td>
<td>1497</td>
<td>1525</td>
<td>0.096</td>
<td>0.125</td>
<td>0.320</td>
</tr>
<tr>
<td>0.450</td>
<td>8156</td>
<td>12.4</td>
<td>1506</td>
<td>1526</td>
<td>0.059</td>
<td>0.093</td>
<td>0.288</td>
</tr>
<tr>
<td>0.514</td>
<td>7038</td>
<td>10.7</td>
<td>1456</td>
<td>1463</td>
<td>0.052</td>
<td>0.141</td>
<td>0.257</td>
</tr>
<tr>
<td>0.600</td>
<td>6059</td>
<td>9.2</td>
<td>1399</td>
<td>1421</td>
<td>0.064</td>
<td>0.252</td>
<td>0.227</td>
</tr>
<tr>
<td>0.720</td>
<td>4935</td>
<td>7.5</td>
<td>1334</td>
<td>1358</td>
<td>0.149</td>
<td>0.139</td>
<td>0.192</td>
</tr>
<tr>
<td>0.900</td>
<td>3873</td>
<td>5.9</td>
<td>1238</td>
<td>1302</td>
<td>0.243</td>
<td>0.308</td>
<td>0.149</td>
</tr>
</tbody>
</table>