Research Article

HPLC enantioseparation of alkaloid malacitanine using fluorimetric/polarimetric detection

This work reports two methods developed for the separation and determination of the enantiomers of the new alkaloid malacitanine (MLC) and the determination of the enantiomeric purity in mixtures. First, the isomers were separated using a Chirex 3020 (250 mm × 4.6 mm, 5 μm) chiral column with a mobile phase of cyclohexane–1,2-dichloroethane–ethanol–trifluoroacetic acid (64:30:6:0.6, v/v) at a flow rate of 1 mL/min and fluorimetric detection. Obtained retention times were 12.4 and 15.9 min (+ and −) with a resolution Rs of 1.13. Relative standard deviations (RSDs) were 2.5 and 2.4% at the 0.5-μg level (four determinations). Second, a nonenantioselective procedure for the determination of enantiomeric purity of MLC using a Lichrospher® Si-60 (250 mm × 5 mm, 5 μm) normal phase with a mobile phase of 100% ethanol at a flow rate of 0.9 mL/min coupled to two detectors in series, fluorimetric and polarimetric. RSD of 3.3% was obtained. Calculated enantiomeric purity by chiral chromatography gave 48.6% (−)-MLC in the near racemic product. Using polarimetric signal of the nonseparated enantiomers and comparing the slopes of the calibration curves (enantiomers) from the racemic product gave 47.8% (−)-MLC content. A study of accuracy of (−)-MLC gave recoveries from 98.3 to 100.7%.

Keywords: Alkaloids / Ceratocapnos heterocarpa / Chiral separation / Fluorimetric / Malacitaine / Polarimetric detection

DOI 10.1002/jssc.201200275

1 Introduction

Botanicals represent a formidable source of potential pharmaceutical and nutraceutical compounds because of the molecular diversity found in nature. Two main challenges can be faced in the analysis of phytochemicals: the lack of suitable standards, and the fact that many bioactive compounds are found at low levels in complex mixtures or plant extracts making detection and quantification very difficult. Frequently, natural products analysis suffers an additional difficulty; due to its inherent optical activity and since it is well known that a pair of enantiomers can display quite different activity and therapeutic and toxicological profiles, the analytical chemistry of these compounds is a promising research field strongly demanded by pharmaceutical companies.

Protoberberines represent a structural class of organic cations that have been mainly distributed in several plants and widely used in western natural medicine and traditional Chinese herbal medicine [1, 2]. Protoberberine alkaloids are reported to have anticancer [3–5], anti-infective [6, 7], antidiabetic [8], immunomodulatory [9, 10], and antimalarial activities [11, 12]. Most published papers have focused on the separation of chiral pharmaceutical products, obtained by organic synthesis, because the production and commercialization of enantiomerically pure drugs is a warranty of good pharmaceutical practices. Although, in several cases, significant differences between the pharmacology and toxicology of the individual enantiomers and the racemate have not been clearly demonstrated; in other instances, serious differences between them have been found. For example, it has been reported that l-tetrahydropalmatine has analgesic activity with a more potent tranquilizing effect than the d-isomer [13]. Recently, the antimalarial activity and structure–activity relationship of 22 protoberberines has been studied and discussed [7, 12]. No references to malacitanine (MLC) have been found until now.

(−)-MLC is an isoquinolinic alkaloid that can be extracted from Ceratocapnos heterocarpa, endemic plant found in south of Spain and north of Africa [14]. Together with heterocarpine is the unique tetrahydroprotoberberine containing a hydroxymethyl group at C-8.

MLC molecule has two chiral centers, C-8 and C-14, thus presenting two enantiomeric pairs. In this work, we used pure 8S,14S(−)-MLC (Fig. 1) and a nonracemic mixture of both enantiomers. The other enantiomeric pair (epimalach tinane) has not been used. Total synthesis has been performed by proton and C13 NMR. 8S,14S(−)-MLC has a specific rotation of [α]D = −87.3° (c = 0.05, methanol). MLC is
soluble in methanol and slightly soluble in ethanol. The ethanolic solution of MLC shows absorption spectrum maxima at λ_{max} (log ε) 205 (4.75) and 286 (3.56) nm and a shoulder at 228 (406) nm. This ethanolic solution shows intense fluorescence emission centered at 318 nm when excited at 285 nm. Figure 2 shows absorption (A), excitation (B), and emission (C) spectra of MLC.

The enantiomeric form found in the nature is (−)-MLC in several papaveraceas such as <i>C. heterocarpa</i>. Biological/pharmacological effects have not been studied until now, however, it is probable that these effects are similar as in other protoberberines (antioxidant, anticolinergic, antisecrent, astringent, and antimicrobial agents).

In the present paper, we proposed a chromatographic method for the separation and determination of the enantiomers of MLC based on the use of a chiral column Chirex 3020 (250 mm × 4.6 mm, 5 μm) from Phenomenex (Torrance, CA, USA). Mobile phase was cyclohexane–1,2-dichloroethane–ethanol–trifluoroacetic acid (TFA) (64:30:6:0.6, v/v) at a flow rate of 1 mL/min. No previous analytical methods have been found for the determination of MLC and its enantiomers.

In addition, a procedure for the determination of enantiomeric purity using a conventional chromatographic column Si-60 (250 mm × 4 mm, 5 μm) from Merck (Darmstadt, Germany) in normal phase (100% ethanol) at a flow rate of 0.9 mL/min coupled to a polarimetric detector (Applied Chromatography Systems Limited) placed in series with the fluorimetric detector gives additional information to determine enantiomeric purity, because the absorbance or fluorescence signal is proportional to the total amount of stereoisomer present, while the polarimetric detector signal is dependent on the ratio of enantiomers present [15–17]. This methodology, based on the use of a combined signal from a generic detector (UV) and a chiroptic detector (O.R.) has been used previously in the enantiomeric ratio determination of several compounds [18–21].

2 Experimental

2.1 Chemicals and reagents

(S)-(−)-MLC and racemic (±)-MLC were isolated from the plant (<i>C. heterocarpa</i>) by extraction with methanol and subsequently separated by liquid chromatography column and preparative thin-layer chromatography [14]. The racemic was synthesized [22] (joined with (±)-epimalacitanine) of which was separated by preparative thin-layer chromatography reacting glycolaldehyde norcrasilofoline with 2.5 M hydrochloric acid medium.

2.2 Instrumentation

Measurements were performed with a Merck-Hitachi (Darmstadt, Germany) liquid chromatograph consisting of an L-6200 pump, an AS-4000 autosampler, an L-4250 UV-visible detector, an F-1080 fluorescence detector, and a D-6000 interface. Instrument parameters were controlled by Hitachi-Merck HM software.

A ChiraMonitor 2000 optical rotation (OR) detector (Applied Chromatography Systems Limited) placed in series after above-mentioned detectors. This detector was equipped with a collimated laser diode providing up to 30 mW of light at 830 nm, and a flow cell of 0.48 dm path length, 73 μL volume.

Data acquisition and transformation were accomplished by the Pico ADC-142 (Picotechnology Ltd., Cambridge, UK), which is an analog-to-digital converter with two input ranges. The instrumental parameters were controlled by Picolog software and the calculation of the areas (negative and positive peaks) with Microsoft Origin 7.5.

2.3 Chromatographic conditions

Enantiomeric separation was accomplished using a chiral chromatographic column (Chirex 3020, Phenomenex) consisting of (S)-tert-leucine and R-1-(o-naphthyl)ethylamine in normal-phase conditions. Several percentages of tertiary mixture were assayed and Rs values calculated from chromatographic data. The obtained data show that a percentage of 64% n-hexane, 30% dichloroethane, 6% ethanol, and 0.6% TFA gives the best resolution at a flow rate of 1 mL/min, with 1-μL injection.

Nonenantioselective chromatographic conditions were selected to obtain a good separation between injection and analyte peaks. A Si-60 (250 mm × 4 mm, 5 μm) column was used as stationary phase, 100% ethanol as mobile phase, and 0.9 mL/min flow rate.
Figure 2. Absorption (A), excitation (B), and emission (C) spectra of (−)-MLC. [MLC] = 36 μg/mL in ethanol.

2.4 Standard solutions

Stock standard solutions of (S)-(−)-MLC (1600 mg/L) and (±)-MLC (1600 mg/L) were prepared by dissolving the compounds in ethanol. Dilutions were in the appropriate mobile phase. The solvents used as mobile phase were gradient grade from Lichrosolv Merck (methanol, ethanol, 1,2-dichloroethane, TFA, and cyclohexane). All these solvents were filtered through 0.2-μm nylon membrane and then degassed for 1 h in ultrasonic bath before using.

3 Results and discussion

3.1 Enantioselective HPLC

3.1.1 Mobile-phase effect on retention and stereoselectivity

As expected, large contents on hexane promote higher retention time and polar alcohols give short retention time. However, the solubility of the analyte in cyclohexane is higher and this solvent was preferred as a mobile phase in spite of their high viscosity. The use of ethanol as a modifier appeared to be better to obtain short retention times than 2-propanol. To improve selectivity, the addition of 1,2-dichloroethane has proved to be effective, and TFA gives best chromatographic profiles. Finally, the mobile phase giving best separation of both enantiomers was cyclohexane-1,2-dichloroethane-ethanol-TFA (32:15:3:0.3; v/v) at a flow rate of 1 mL/min.

Preliminary experiences show that neither chiral stationary phase Chiradex, Merck (β-cyclodextrine inclusion mechanism) nor Chiraspher, Merck (Pirkle type) gave good separation of MLC enantiomers.

Using a chiral column Chirex 3020 and the mobile phase above cited, separation at baseline of both enantiomers can be obtained in a short total time. Figure 3A shows the fluorimetric chromatogram of the near racemic mixture of both enantiomers and Fig. 3B shows the chromatographic profile of the enantiomer (−)-MLC. As can be seen, retention time of 12.4 and 15.9 min was obtained for (+)-MLC and (−)-MLC, respectively. From these data and using the equation $R_s = \frac{2t_1}{w_1 + w_2}$, a resolution R_s value of 1.13 and a value of $\alpha = 1.4$ were obtained. Once separated the enantiomers, the method validation was established. Linearity was assessed with four series at six concentrations levels and the correlation coefficients were calculated in order to prove the linearity of the calibration curves. To evaluate the intraday precision, three control samples at the 500 ng/mL level (fluorescence detector) (150 g/mL in O.R.) were injected. Statistical tests were performed at a level of confidence of 95% ($P = 0.05$). The limits of detection and quantitation were considered to be the concentrations that produced signal-to-noise ratios of 3 and 10, respectively. In Table 1, the obtained results are ordered. The enantiomeric purity determination was carried out using the expression:

$$\%S(−)−MLC = \left[\frac{m_S}{m_S + m_R} \right]100$$

where m_S and m_R are the values of the slopes of the calibration curve for each enantiomer [23, 24]. From these data, the enantiomeric purity of the sample used was found to be 48.60% (−)-MLC.
methodology or appropriate chiral column that separates the enantiomers, and in these cases the use of chiral detection by circular dichroism (CD) or OR, whose response is specific for compounds exhibiting optical activity, can solve the problem. In this case, we used a column Si-60 (250 mm × 5 mm, 5 μm) and 100% ethanol mobile phase at a flow rate of 0.9 mL/min. The choice of the mobile phase was advised by the better solubility in ethanol. The Si-60 column gives results with a narrow elution peak than with a reverse-phase column.

Several samples containing 160 μg in an injection volume of 100 μL were injected in the chromatograph. Samples were prepared from standard R-(−)-MLC (1600 mg/L) and standard racemic (±)-MLC (1600 mg/L). Each sample was prepared by mixing different aliquots in the volume of both solutions. The result is a mixture containing a fix concentration of 1600 mg/L of MLC with different enantiomeric proportion. All measurements were performed by triplicate. Figure 4 shows the polarimetric profile of a blank, 100, 93.3, 87.1, 81.3, and 72.8% (−)-MLC (from upper to lower). As can be seen, a false-positive signal appears before the true polarimetric signal (negative) corresponding to the excess of (−)-MLC. This false-positive signal is due to the so-called

3.2 Nonenantioselective HPLC: polarimetric detection

The best option to establish a method for the determination of the enantiomers of a mixture, or proportion in the mixture (enantionic purity), is the enantioseparation by a suitable chromatographic procedure and comparison with standard pure enantiomers. However, sometimes there is no

![Figure 3](link-to-figure)

Figure 3. (A) Mixture of (+)-MLC and (−)-MLC chromatogram (flow rate 1 mL/min, fluorimetric detection, and sample concentration 16.00 mg/L, therefore, injection mass 0.160 g). Retention times 12.4 and 15.9 min for (+)-MLC and (−)-MLC, respectively. (B) (−)-MLC chromatogram (injection mass 0.40 g).

Table 1. Analytical performances

<table>
<thead>
<tr>
<th>Detector</th>
<th>Enantiomer</th>
<th>Range (ng)</th>
<th>RSD (%)</th>
<th>L_D (ng)</th>
<th>L_Q (ng)</th>
<th>R^2</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>(−)</td>
<td>217–1000</td>
<td>2.9</td>
<td>65.38</td>
<td>217.9</td>
<td>0.9993</td>
<td>0.0515</td>
<td>4.48</td>
</tr>
<tr>
<td>OR</td>
<td>(+)</td>
<td>61–1000</td>
<td>2.5</td>
<td>18.41</td>
<td>61.3</td>
<td>0.9992</td>
<td>0.0572</td>
<td>2.10</td>
</tr>
<tr>
<td>FL</td>
<td>(−)</td>
<td>115–1600 × 10^3</td>
<td>3.3</td>
<td>35 × 10^{-3}</td>
<td>115 × 10^{-3}</td>
<td>0.9956</td>
<td>−0.0297</td>
<td>1.40</td>
</tr>
</tbody>
</table>

![Figure 4](link-to-figure)

Figure 4. Polarimetric chromatograms. Polarimetric profile of several mixtures of MLC containing a fix total concentration and different percentages of enantiomers: blank, 100, 93.3, 87.1, 81.3, and 72.8% (−)-MLC (from upper to lower). Injected volume 100 μL, total injected mass 160 μg.
refractive index artefact (RIA) [25], because no separation was associated with the polarimetric signal. Obtained polarimetric signals are noisiest because sensitivity of polarimetry, as dispersive phenomena, is reduced. However, this method can be useful when no separation can be obtained and an indicative report is needed.

From these data, the plot of polarimetric signal/fluorimetric signal (peak area) against % (−)-MLC [26] gives a linear fit of $P = 1.4 - 0.03x$ ($x = \% (−)$-MLC) with a correlation coefficient of $−0.998$. Figure 5 shows that the crossing zero abscissa axis occurs at 47.8% (−)-MLC, in good concordance with that obtained by the fluorimetric/chromatographic method. If a true racemic mixture of MLC was used as a standard, crossing of fittest curve with abscissa axis would be at 0.0%.

4 Recovery assay

To determine the accuracy of the developed methods, a recovery assay at 80, 85, and 90% levels of (−)-MLC was performed.

For the analytical recovery assay study, three different quantities (μg) of (−)-MLC and (±)-MLC were injected in the chromatograph and submitted to the chiral method. The sum of (−)-MLC and (±)-MLC was 160 μg in a total volume of 100 mL. Each sample was prepared by mixing different aliquots of both solutions to obtain a final percentage of 80, 90, and 95% of (−)-MLC. The spiked samples were analyzed in triplicate and the obtained results are ordered in Table 2. Recovery assay shows that the accuracy of the method is excellent because recoveries are within 109–92% with standard deviation below 5%.

5 Conclusions

The new isoquinolinic alkaloid MLC was analyzed, previous chiral HPLC separation with a resolution of 1.13, and enantiomeric excess of mixtures of both enantiomers determined. A second nonenantioselective method with polarimetric detection, for the determination of enantiomeric excess of mixtures, was proposed.

The enantioselective chromatographic method of this new alkaloid is fast (10 min), selective (R_s 1.13), precise (RSD 2.5%), and exact (recovery values between 98 and 101%). Thus, it is advisable for phytochemical enantiomeric analysis and to assess enantiomeric excess in enantioselective synthesis. The nonenantioselective method shows good analytical specifications and in addition is very simple, therefore, can be useful as first analysis results in organic synthesis.

Results obtained show that the methods developed in this study might be applied for the wide application in separation and determination of enantiomeric excess of the components of mixtures of enantiomers.

The authors have declared no conflict of interest.

6 References

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
Dear Author

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publication.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Description</th>
<th>Author Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Author: Please check the acronym “O.R.” as the same has been used for the term “optical rotation” in this paper.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Author: Please check the heading “Experimental” for correctness.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Author: The term “S-(−)-MLC” has been changed to “(S)-(−)-MLC” in sentence “S-(−)-MLC was isolated from the plant . . .” Please check.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>Author: Please check whether the edits retain intended sense in the sentence “In Table 1, the”</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>Author: The word “cicular dichroism” has been replaced with “circular dichroism” in sentence beginning with “However, sometimes there is no methodology or appropriate chiral column” Please check.</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>Author: Please define “RFI.”</td>
<td></td>
</tr>
</tbody>
</table>
Using eAnnotation Tools for Electronic Proof Correction

Required software to eAnnotate PDFs: Adobe Acrobat Professional or Acrobat Reader (version 8.0 or above). (Note that this document uses screenshots from Acrobat Reader 9. For screenshots from Acrobat Reader X, a separate document is available on the journal e-proofing site.) The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/reader/

Once you have Acrobat Reader 8, or higher, open on your PC you should see the Commenting Toolbar:

****(If the above toolbar does not appear automatically go to Tools>Comment & Markup>Show Comment & Markup Toolbar)****

1. Replacement Text Tool — For replacing text.
 Strikes a line through text and opens up a replacement text box.

 ![Replacement Text Tool](image)
 How to use it:
 1. Highlight a word or sentence
 2. Select “Replace Selected Text” from the Text Edits fly down button
 3. Type replacement text in blue box

2. Cross-out Text Tool — For deleting text.
 Strikes a red line through selected text.

 ![Cross-out Text Tool](image)
 How to use it:
 1. Highlight a word or sentence
 2. Select “Cross-Out Text for Deletion” from the Text Edits fly down button

3. Highlight Tool — For highlighting a selection to be changed to bold or italic.
 Highlights text in yellow and opens up a text box.

 ![Highlight Tool](image)
 How to use it:
 1. Highlight desired text
 2. Select “Add Note To Selected Text” from the Text Edits fly down button
 3. Type a note detailing required change in the yellow box

4. Note Tool — For making notes at specific points in the text
 Marks a point on the paper where a note or question needs to be addressed.

 ![Note Tool](image)
 How to use it:
 1. Select the Sticky Note icon from the commenting toolbar
 2. Click where the yellow speech bubble symbol needs to appear and a yellow text box will appear
 3. Type comment into the yellow text box

Abstract

It is frequently claimed that the human mind is organized in a modularly, to the claim that many aspects of human language, unfolded in a series of points: (1) feature and geometric cues, although struggle to explain variable phenomena. (3)
5. Drawing Markup Tools — For circling parts of figures or spaces that require changes
These tools allow you to draw circles, lines and comment on these marks.

How to use it:
1. Click on one of shape icons in the Commenting Toolbar
2. Draw the selected shape with the cursor
3. Once finished, move the cursor over the shape until an arrowhead appears and double click
4. Type the details of the required change in the red box

6. Attach File Tool — For inserting large amounts of text or replacement figures as a file.
Inserts symbols and speech bubble where a file has been inserted.

How to use it:
1. Right click on the Commenting Toolbar
2. Select “Attach a File as a Comment”
3. Click on paperclip icon that appears in the Commenting Toolbar
4. Click where you want to insert the attachment
5. Select the saved file from your PC or network
6. Select type of icon to appear (paperclip, graph, attachment or tag) and close

7. Approved Tool (Stamp) — For approving a proof if no corrections are required.

How to use it:
1. Click on the Stamp Tool in the toolbar
2. Select the Approved rubber stamp from the ‘standard business’ selection
3. Click on the text where you want to rubber stamp to appear (usually first page)

Help
For further information on how to annotate proofs click on the Help button to activate a list of instructions:
Reprints / Issues / PDF

You also have the opportunity to order issues, reprints and a high quality PDF of your article at the rates quoted on the next page. After publication the prices of reprints are substantially higher. For overseas orders please note that you will receive your issues/reprints by airmail. An extra charge will be levied to cover the higher postal rates. If you prefer to receive them by surface mail please sign below.

Please send and bill me for
☐ reprints by
☐ surface mail

Please send and bill me for
☐ entire issues by
☐ surface mail

Please send and bill me for
☐ a PDF file (high resolution).

E-mail address ____________________________

Special Offer
If you order 200 or more reprints you will get a high resolution PDF for half price!

☐ reprints and
☐ a high resolution PDF file

Please note: Authors are not permitted to present a PDF file containing the printed version of the paper on the web.

Mail reprints and/or issues to (P.O. boxes not accepted)

Send bill to

For Institutions/Companies in the EU only

VAT number: ____________________________

Tax-free accounting for reprints/issues/PDF/page charges or color figures can only be processed if the VAT number of the institution/company is supplied. In order to prevent delays please provide your VAT number on this form.

Terms of payment:
☐ Please send an invoice ☐ Cheque is enclosed
☐ Please charge my credit card

Card no. ____________________________
Expiry date ________/_____ Security Code _______

Date, signature __________________________

Mail bill and journal to

Signature ____________________________

Date ____________________________

Stay informed!

Get the latest Table of Contents delivered directly to your desktop — FREE!
Simply go to the journal’s homepage and select ‘Set E-mail Alert’ and we’ll let you know each time an issue is published.

OnlineOpen

OnlineOpen is available to authors who wish to make their article available to non-subscribers on publication, or whose funding agency requires grantees to archive the final version of their article, e.g. the Wellcome Trust and the other UKPMC Funders. For more information on this service, see

http://www3.interscience.wiley.com/authorsresources/funded_access.html
Price List for Reprints (2012)

The prices listed below are valid only for orders received in the course of 2012 and before the proofs pass for press. Minimum order is 50 copies. Delivery time will be approximately 3 weeks after the date of publication. The production of reprints after a journal has been published is considerably more expensive since it requires extra operations on the publisher’s and printer’s side. Therefore, authors are requested to order reprints early and in sufficient numbers.

If more than 500 copies are ordered, special prices are available upon request.

Single issues are available to authors at a reduced price.

The prices include mailing and handling charges (with the exception of the additional costs incurred for airmail delivery). All Wiley-VCH prices are exclusive of VAT.

Reprints and issues are shipped by surface. If you are interested in receiving them by airmail mail please indicate this on the accompanying order form; however, please be aware that the cost incurred are considerably higher (surcharge Euro 25.00).

<table>
<thead>
<tr>
<th>Sonderdrucke/Reprints</th>
<th>50 Expl./copies</th>
<th>100 Expl./copies</th>
<th>150 Expl./copies</th>
<th>200 Expl./copies</th>
<th>300 Expl./copies</th>
<th>500 Expl./copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umfang (Seiten)</td>
<td>Preis bei Abnahme von/Price for orders of (in Euro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (pages)</td>
<td>1– 4</td>
<td>5– 8</td>
<td>9– 12</td>
<td>13–16</td>
<td>17–20</td>
<td>je weitere 4 Seiten/for every additional 4 pages</td>
</tr>
<tr>
<td>1– 4</td>
<td>330,—</td>
<td>385,—</td>
<td>425,—</td>
<td>445,—</td>
<td>548,—</td>
<td>752,—</td>
</tr>
<tr>
<td>5– 8</td>
<td>470,—</td>
<td>556,—</td>
<td>608,—</td>
<td>636,—</td>
<td>784,—</td>
<td>1077,—</td>
</tr>
<tr>
<td>9– 12</td>
<td>610,—</td>
<td>717,—</td>
<td>786,—</td>
<td>824,—</td>
<td>1016,—</td>
<td>1396,—</td>
</tr>
<tr>
<td>13–16</td>
<td>744,—</td>
<td>874,—</td>
<td>958,—</td>
<td>1004,—</td>
<td>1237,—</td>
<td>1701,—</td>
</tr>
<tr>
<td>17–20</td>
<td>885,—</td>
<td>1040,—</td>
<td>1138,—</td>
<td>1196,—</td>
<td>1489,—</td>
<td>2022,—</td>
</tr>
<tr>
<td>je weitere 4 Seiten/ for every additional 4 pages</td>
<td>140,—</td>
<td>164,—</td>
<td>175,—</td>
<td>188,—</td>
<td>231,—</td>
<td>315,—</td>
</tr>
</tbody>
</table>

Hefte/Issues

1 Exemplar/1 copy: 20,—Euro

PDF (high resolution)

330,—Euro

Postage and handling charges included. All Wiley-VCH prices are exclusive of VAT. Prices are subject to change.

Annual subscription rates 2012

<table>
<thead>
<tr>
<th></th>
<th>Institutional*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Euro 2892.00/2515.00</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Sfr 4757.00/4133.00</td>
</tr>
<tr>
<td>All other areas</td>
<td>US $ 3540.00/3078.00</td>
</tr>
</tbody>
</table>

*print and electronic / print only or electronic only

Postage and handling charges included. All Wiley-VCH prices are exclusive of VAT. Prices are subject to change.

November 2011