

Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots

Anthony Mandow, Tomas J. Cantador, Antonio J. Reina, Jorge L. Martínez, Jesús Morales, and Alfonso García-Cerezo

> Dpto. Ingeniería de Sistemas y Automática Universidad de Málaga (Spain)

> > 1

- **1. FUZZY ELEVATION MAPS**
- **2. PERFORMANCE IMPROVEMENTS**
- **3. EXPERIMENTAL RESULTS**
- 4. CONCLUSIONS

1. FUZZY ELEVATION MAPS

3D terrain modeling from onboard range sensors is crucial for many field robotics applications

- Natural environments
 Search & Rescue
- Onboard 3D scanner
 - Huge amount of data
 - Resolution decreases with range
 - Need for compact representation

Fuzzy surfaces offer an interesting alternative to tesselated models for terrain elevation

The Fuzzy Elevation Map method (FEM) can produce a reliable fuzzy elevation region

Proposed **contributions** aim to improve FEM computational speed and performance

2. PERFORMANCE IMPROVEMENTS

Subsampling can reduce fuzzy identification speed and homogenize data distribution

maSpherical subsampling is a fast range-
independent method for sensors with a pitching2D scanner

Spherical subsampling is a fast rangeindependent method for sensors with a rotating 2D scanner

www.uma.es/isa

ANFIS Training starts from an **uneven** Standard Fuzzy Partition and zero-order Sugeno inference

Standard Fuzzy Partition (SPF)

$$\sum_{\forall i,j} \omega_{ij}(x,y) = 1$$

Firing strength:

 $\omega_{ij}(x,y) = \mu_{F_i}(x)\,\mu_{F_j}(y)$

Zero-order Sugeno inference

Constant consequents:

$$G_{ij}(x,y) = a_{ij}$$

Terrain elevation:

$$z = H(x, y) = \sum_{\forall i, j} (\omega_{ij}(x, y))$$

www.uma.es/isa

3. EXPERIMENTAL RESULTS

Experiments have been performed with a pitching Hokuyo sensor designed for mobile robotics

- UnoLaser 3D Scanner (UTM-30LX):
 - ► 30m range
 - 1 m above ground
 - *ΔΨ*= 0.278°
 - Scan time: 12.43s
 - *Up to 505036 points*

ROBOT 2015 Lisbon, Portugal (November 19-21, 2015)

The position of a standing obstacle has been modified in four different scans

- No obstacle
- Close front
- Close side

Fuzzy Performance Evaluation with a QuadCore Intel Core i7 at 2.2 GHz

Obs-	~	Training	No.	RMSE	Time	Oba	,	Training	No	RMSE	Time
tacle	p	points	of rules	(m^2)	Adju	ıstme	ent is	more		(m^2)	(s)
-	-	186767	15×8	0.0237		urate	with	with no (close)			174.00
		100707	7×4	0.0413	1					0.0558	117.00
	1	115423	15×8	0.0237	stan	standing obstacles					80.84
			7×4	0.0420	~					0.0563	47.84
None	0.75	65010	15×8	0.0238	,3 21.33	For	0.75	64666	15×8	0.0369	41.32
none		65019	7×4	0.0421		rar	0.75		7×4	0.0564	20.32
	0.5	28916	15×8	0.0238	22.07	-	0.5	28770	15×8	0.0370	21.12
			7×4	0.0421	9.07				7×4	0.0564	9.12
	0.1	1180	15×8	0.2568	11.90		0.1	1168	15×8	0.4484	10.96
			7×4	0.0451	5.90				7×4	0.0642	5.96
	_	187600	15×8	0.0951	177.00	.00	-	189688	15×8	0.0871	174.00
			7×4	0.1283	115.00				7×4	0.1259	119.00
	1	115525	15×8	0.0955	80.87	-	1	117941	15×8	0.0879	87.65
	1		7×4	0.1295	48.87		1		7×4	0.1262	50.65
Close	0.75	65122	15×8	0.0955	40.33	Close -front	0.75	66465	15×8	0.0872	44.26
-side -	0.75		7×4	0.1295	20.33		e 0.75		7×4	0.1262	21.26
	0.5	28020	15×8	0.0956	21.07		0.5	29554	15×8	0.0872	23.05
		20939	7×4	0.1295	9.07	_			7×4	0.1262	10.05
	0.1	1174	15×8	0.1580	10.89		0.1	1206-	15×8	0.1568	11.19
		11(4)	7×4	0.1305	4.89		0.1		7×4	0.1495	5.19

Fuzzy Performance Evaluation with a QuadCore Intel Core i7 at 2.2 GHz

Obs-	<i>m</i>	Training	No.	RMSE	Time	Obs-	Tr	aining	No.	RMSE	Time
tacle	p	points	of rules	es (m^2) (s)		tacle p		points of rules		(m^2)	(s)
None	-	186767	15×8	0.0237	176.00		1	05073	15×8	0.0369	174.00
		100707	7×4	Snheri	cal su	Ibsamr	lina	J-	7×4	0.0558	117.00
	1	115423	15×8	ojomifi		, roduo			15×8	0.0369	80.84
		110425	7×4	signin	cantiy	reauc	es	_	· · 4	0.0563	47.84
	0.75	65019	15×8	compu	itation	n time v	vithou	1t 6-	1	0.0369	41.32
		00010	7×4	much (effect	on RMSE			7×1	0.0564	20.32
	0.5	28916	15×8					<u> <u> </u></u>	15×8	0.0370	21.12
			7×4	0.0421	9.07	╡ –	0.0	200	7×4	0.0564	9.12
	0.1	1180	15×8	0.2568	11.90	0.1	0.1	1168	15×8	0.4484	10.96
			7×4	0.0451	5.90		1100	7×4	0.0642	5.96	
		187600	15×8	0.0951	177.00 115.00	- 18	189688-	15×8	0.0871	174.00	
			7×4	0.1283			-		7×4	0.1259	119.00
	1	115525	15×8	0.0955	80.8	Overaa	ljustm	ent 1	15×8	0.0879	87.65
			7×4	0.1295	48.8	to small d	II data		7×4	0.1262	50.65
Close	0.75 0.5	65122	15×8	0.0955	40.3			5-	15×8	0.0872	44.26
-side			7×4	0.1295	20.3	sampie		_	7×4	0.1262	21.26
		28939	15×8	0.0956				4-	15×8	0.0872	23.05
		20000	7×4	0.1295	<u></u>	H -		1	7×4	0.1262	10.05
	0.1	1174	15×8	0.1580	10.89		0.1	1206	15×8	0.1568	11.19
		11.1	7×4	0.1305	4.89		U.1	1200	7×4	0.1495	5.19

Fuzzy Performance Evaluation with a QuadCore Intel Core i7 at 2.2 GHz

Obs-	~	Training	No.	RMSE	Time	Obs-	2	Training	No.	RMSE	Time
tacle	p	points	of rules	(m^2)	Comp	romic	20	nts	of rules	(m^2)	(s)
Nono	-	186767	15×8	0.0237	Comp		Se	372	15×8	0.0369	174.00
			7×4	0.0413	betwe	en tin	ne ar	nd ⁹⁷³	7×4	0.0558	117.00
	1	115423	15×8	0.0237	accura	acv		768	15×8	0.0369	80.84
	1		7×4	0.0420				100	7×4	0.0563	47.84
	0.75	65010	15×8	0.0238	43.33 21.33	Far	0.75	64666	15×8	0.0369	41.32
None	0.15	05015	7×4	0.0421				04000	7×4	0.0564	20.32
	05	28916	15×8	0.0238	22.07 9.07		0.5	28770	15×8	0.0370	21.12
	0.5	28910	7×4	0.0421				20110	7×4	0.0564	9.12
	0.1	1180	15×8	0.2568	$11.90 \\ 5.90$		0.1	1168	15×8	0.4484	10.96
			7×4	0.0451				1100	7×4	0.0642	5.96
	-	187600	15×8	0.0951	177.00 115.00	- Close	- 18	180688	15×8	0.0871	174.00
			7×4	0.1283				109000	7×4	0.1259	119.00
	1	115525	15×8	0.0955	80.87		1	1170/1	15×8	0.0879	87.65
	1		7×4	0.1295	48.87		T	117941	7×4	0.1262	50.65
Close	0.75	65122	15×8	0.0955	$ 40.33 \\ 20.33 $		0.75	66465	15×8	0.0872	44.26
-side	0.79		7×4	0.1295			0.75	00405	7×4	0.1262	21.26
	0.5	28030	15×8	0.0956	21.07 9.07	-110110	0.5	20554	15×8	0.0872	23.05
	0.5	20939	7×4	0.1295			0.5	29004	7×4	0.1262	10.05
	0.1	1174	15×8	0.1580	$10.89 \\ 4.89$	1	0.1	1906	15×8	0.1568	11.19
	0.1	11/4	7×4	0.1305		1	0.1	1200	7×4	0.1495	5.19

Computation time, model size, and accuracy outscore tesselated QSlim elevation maps, especially with outstanding obstacles

Close-front obstacle

Performance is significantly improved with respect to original FEM

	Modeling		RMSE	Time	Number of
Scene	method	Characteristics	(m^2)	(s)	parameters
		$15 \times 8, p = 0.5$	0.0238	22.07	143
No obstacle	ANFIS	$7 \times 4, p = 0.1$	0.0451	5.90	39
NO ODSTACIE		$15 \times 8 \ ([23])$	0.0468	31.01	406
	OSlim	1000 faces	0.0250	29.17	4590
	491111	100 faces	0.0357	29.17	483
		$15 \times 8, p = 0.5$	0.0370	21.12	143
Far obstacle	ANFIS	$7 \times 4, p = 0.1$	0.0642	5.96	39
Tar obstacle		15×8 [23]	0.0660	31.20	406
	OSlim	1000 faces	0.0383	32.21	4572
	Com	100 faces	0.0783	32.03	471
		$15 \times 8, p = 0.5$	0.0956	21.07	143
Close side obstacle	ANFIS	$7 \times 4, p = 0.1$	0.1305	4.89	39
Close-side Obstacle		$15 \times 8 \ [23]$	0.1256	32.14	406
	OSlim	1000 faces	0.1349	29.14	4578
	Com	100 faces	0.1959	29.14	477
		$15 \times 8, p = 0.5$	0.0872	23.05	143
Close front obstacle	ANFIS	$7 \times 4, p = 0.1$	0.1495	5.19	39
Close-front obstacle		$15 \times 8 \ [23]$	0.1303	33.07	406
	OSlim	1000 faces	0.1212	33.18	4569
	Q:51111	100 faces	0.2038	33.16	477

ma

4. CONCLUSIONS

Conclusions

Ground based terrain modeling approach

Fuzzy Elevation Maps

- Compact
- Continuous
- Manage noisy and missing data.

Proposed improvements

- Spherical subsampling for training data selection
- Uneven membership functions with Standard Fuzzy Partition and Zero-order Sugeno inference
- Successful results with respect to original FEM and QSlim
- Future work
 - Global maps
 - Alternatives to ANFIS