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Robust Image Recognition Based on a New 

Supervised Kernel Subspace Learning Method 

Abstract  
 

Image recognition is a term for computer technologies that can recognize certain 

people, objects or other targeted subjects through the use of algorithms and machine 

learning concepts. Face recognition is one of the most popular techniques to achieve the 

goal of figuring out the identity of a person. This study has been conducted to develop a 

new non-linear subspace learning method named “supervised kernel locality-based 

discriminant neighborhood embedding,” which performs data classification by learning 

an optimum embedded subspace from a principal high dimensional space. In this 

approach, not only is a nonlinear and complex variation of face images effectively 

represented using nonlinear kernel mapping, but local structure information of data from 

the same class and discriminant information from distinct classes are also simultaneously 

preserved to further improve final classification performance. Moreover, to evaluate the 

robustness of the proposed method, it was compared with several well-known pattern 

recognition methods through comprehensive experiments with six publicly accessible 

datasets. In this research, we particularly focus on face recognition however, two other 

types of databases rather than face databases are also applied to well investigate the 

implementation of our algorithm. Experimental results reveal that our method consistently 

outperforms its competitors across a wide range of dimensionality on all the datasets. 

SKLDNE method has reached 100 percent of recognition rate for Tn=17 on the Sheffield, 

9 on the Yale, 8 on the ORL, 7 on the Finger vein and 11on the Finger Knuckle 

file:///C:/Users/ali/Desktop/Table
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respectively, while the results are much lower for other methods. This demonstrates the 

robustness and effectiveness of the proposed method. 
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1 INTRODUCTION 
 

 Overview 

Reliable identification is a very important thing for many applications such as 

airport security and border control[1, 2]. Sometimes we hear about computer breakdown 

by hackers, bank security breaches and credit card hacking. A fundamental flaw in 

conventional access control systems was taken advantage of by criminals in most crimes. 

These systems cannot identify humans by “who we are” but by “what we have”. Such 

systems recognize humans through passwords and ID cards. Therefore, these systems are 

very unreliable.  If you lose your ID card or credit card, they might get hacked. So we 

have to find solutions to this problem, which are temper-proof to assure security. The best 

choice, in this case, is to use something of the same person who is supposed to be identified 

or verified. Human faces are the most suitable means for this purpose [3, 4]. 

 Face recognition is one of the most successful ways to reach the goal of figuring 

out who somebody is [5-7]. Several methods and algorithms for face recognition have 

been proposed recently. Among them, the most well-known subspace learning methods 

are[8], Principal Component Analysis (PCA)[8], Kernel Principal Component Analysis 

(KPCA), Discrimination Neighbor Embedding (DNE), Locality Preserving Projection 

(LPP) [9, 10], Unsupervised Discriminant Projection (UDP), Linear Discriminant 

Analysis (LDA)[11] [12, 13] and Locality-Based Discriminant Neighborhood Embedding 

(LDNE). In this particular thesis, these methods included our proposed recognition 
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technique implemented in some different face databases to illustrate the most prominent 

method for face recognition in surveillance systems [14, 15].  

 Biometrics 

Any technology which connects people’s identity to their physical or behavioral 

characteristics to provide security and safety is called Biometrics[16]. Numerous 

behavioral or physical characteristics exist that can be recognized by biometric technology 

such as fingerprint and finger vein, iris, DNA, retina, voice. Two main factors in this field 

are time and accuracy which means that the highest priority in biometric systems is how 

to identify with maximum accuracy in a minimum of time. This shows why computers are 

applied to identify and verify people [11, 17]. 

Although access cards or passwords or a combination of both are very useful, they 

can easily be fraudulently used by criminals. Consequently, we cannot be totally sure of 

their safety and security. Therefore, to increase the level of security, a robust method must 

be found to solve this important problem related to these applications. As has already been 

mentioned, the best option is to use something of the person to be identified or verified. 

A human face is the most appropriate means for this purpose because of the following two 

main factors: 

-Availability- photos of the person who has to be identified or verified are easily 

available. 

-Convenience- it minimizes the issue of hygiene problems and photo can be taken 

without the person noticing it as it is contactless so it improves user acceptance. 
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 Face recognition 

To perform face recognition, many methods and techniques have been used. However, the 

extraction of important information and the dimensionality reduction of a photo without 

losing important information are the most common problems in all these techniques. 

Considering a general overview on how face recognition is done, it can be said that since 

the dimension of the original photo is too high and includes noise, it is better to determine 

merely the important factors which will consequently reduce the entire dimension. 

Extracting the important features from the photo is another important key to face 

recognition. Therefore, while these special features are extracted and the dimensionality 

is successfully reduced, then the comparison of the photos can easily be done and the 

scheme will inevitably determine which photo belongs to which category[18]. Figure 1.1 

illustrates an example of how face recognition generally works[19].  

 

Figure 1.1. An example of face recognition scenario [19] 
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1.3.1 Identification and verification 

It is very important to understand that identification and verification are two 

completely different fields. Identification means we don’t know “who this person is” and 

we are trying to identify him/her. For example, when you see someone on the street and 

this person says” hi”, then first you look at the person’s face and your mind tries to 

recognize this person using the information which has previously been taken from that 

person’s face. This process is the same in the biometric identification solution. It means 

that you have a lot of images stored in your mind (database). When you see an unknown 

person, you take a photo of this person and your biometric system tries to compare this 

picture with all the pictures in your database and return the information about this person 

to determine who this person is [20, 21]. Identification systems are the technology in 

which the image of a face is compared to all the images in the database to determine whose 

image the input data belong to which is called a “one-to-many” process. Verification is 

the process of verifying a person’s identity. For instance, somebody claims that they are 

specific person and shows some information such as an ID card or passport. Then you try 

to compare their image with a specific person’s image in your mind (database). Your mind 

will return a positive or negative response which indicates that a person is really who they  

claim to be [22]. In this thesis, merely identification is the field we purpose to focus on. 

 Recognition methods 

As already mentioned, the most well-known subspace learning methods to be used 

in this project are, Principal Component Analysis (PCA), Kernel Principal Component 

Analysis (KPCA)[23], Discrimination Neighbor Embedding (DNE), Locality Preserving 
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Projection (LPP), Unsupervised Discriminant Projection (UDP), Linear Discriminant 

Analysis (LDA) and Locality-Based Discriminant Neighborhood Embedding (LDNE). 

PCA aims to preserve global geometric information for representation by 

maximizing the trace of the feature covariance matrix[24]. KPCA is an extension of PCA 

in which data is first mapped and then PCA is applied to the mapped data. One of the most 

widely used representations of face recognition is Eigenfaces, which is based on the 

principal component analysis. The Eigenface algorithm uses the principal component 

analysis (PCA) for dimensionality reduction and to find the vectors of those that best 

account for the distribution of face images within the entire face image spaces.  

However, both PCA and KPCA can always suffer from the Small Sample Size (SSS) 

problem, especially in the case of excitant outliers, which dramatically decreases the final 

recognition rate. LDA aims to find global discriminant information for classification by 

maximizing the ratio between inter-class and intra-class scatters. However, LDA can also 

suff er from the Small Sample Size (SSS) problem. LPP is an unsupervised linear subspace 

learning method that finds graph embedding, which can well preserve local information 

for detecting the intrinsic manifold structure. Since the “over-learning of locality” problem 

still exists in LPP, the multi-manifolds for diff erent classes cannot be well achieved, 

which could degrade classification performance. UDP, which is a successful extension of 

LPP, is a linear subspace learning method to find graph embedding, which can well 

preserve local information for distinguishing the intrinsic manifold structure. Since the 

“overlearning of locality” problem still exists in UDP, which means the multi-manifolds 

for different classes cannot be well achieved and the classification performance can be 

degraded. Discrimination Neighbor Embedding (DNE) is also an effective dimensionality 
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reduction technique although this method cannot preserve the local and geometrical 

structure information of data so the recognition rate will be highly degraded. Recently, a 

new supervised subspace learning method, called Locality-Based Discriminant 

Neighborhood Embedding (LDNE) has been proposed [25], which considers both the 

“locality” in LPP and the “discrimination” in DNE in an integrated modeling environment. 

The embedding yielded by LDNE cannot only preserve local structure information of data 

of the same class but can also obtain more discriminant information from diff erent classes 

which effectively improve classification performance. 

 Problem statement 

In today’s society identification plays an important role. Identity recognition tries to 

answer the aforementioned questions: whether or not the individual is really whom he/she 

claims to be; whether or not a specific person’s records and information are available, 

whether or not a particular person has permission to enter the system. Face image is one 

of the most suitable means for this purpose. The highest priorities in these fields are 

actually how to recognize and identify with maximum accuracy. This explains why we 

tend to use a new method of classification to classify our data. In image recognition, 

dimensionality reduction is an effective technique to solve the “curse of dimensionality”, 

and improve classification performance and computational efficiency in many 

applications. However, most of the existing dimensionally reduction techniques could 

suffer from the Small Sample Size (SSS) problem. Some of them also might fail to 

discover the essential nonlinear data structure hidden in the input space. “Overlearning of 

locality” and the “out-of-sample” are other existing problems in regards to pattern 

recognition.   
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In this thesis, to handle the aforementioned problems, a novel supervised subspace 

learning method named “supervised Kernel Locality-Based Discriminant Neighborhood 

Embedding” (SKLDNE) is proposed, in which not only is nonlinear and complex 

variation of face images effectively represented using nonlinear kernel mapping, but local 

structure information of data from the same class and discriminant information from 

distinct classes are also simultaneously preserved to further improve final classification 

performance. 

 Research objectives 

Here are the main targets of this research: 

 To develop an algorithm for face recognition utilizing our proposed 

supervised subspace learning method.  

 To deal with complicated problems as many effective nonlinear data 

features may be lost during the classification process using linear 

techniques. 

 To get benefits from the advantages of “locality” in LPP in which, due to 

the prior class-label information, geometric relations are preserved. 

 To build a compact submanifold to preserve ‘discrimination’ information. 

 To resolve the SSS problem, which is mostly faced by other techniques 

such as PCA, LDA, UDP, and LPP, as well as the “overlearning of 

locality” problem in the manifold learning. 
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 To investigate the performance of a new proposed algorithm compared 

with the state-of-the-art dimensionality reduction techniques such as PCA, 

KPCA, DNE, LPP, UDP, LDA and LDNE in six available databases. 

In our novel SKLDNE, firstly we use nonlinear kernel mapping to map the data 

into an implicit feature space F, which is successfully used in the Support Vector Machine 

(SVM). Then we seek a linear transformation that can preserve within-class geometric 

structures in F. Thus, we can gain a nonlinear subspace that can approach the intrinsic 

geometric structure of the face manifold. Furthermore, both “discrimination” in DNE and 

“Locality” in LPP have been used in an integrated modeling environment for image 

recognition. Besides, to investigate the performance of our proposed method, we will 

compare it with the state-of-the-art dimensionality reduction techniques such as PCA, 

KPCA, LDA, UDP, LPP, DNE and LDNE in six different publicly available datasets. 

 Thesis outlines  

This thesis is organized into five chapters as follows: 

Chapter 2 introduces the literature review of the biometric system. 

Chapter 3 describes the methodology of this research and also provides an overview of 

our proposed method.  

Chapter 4 consists of some information about MATLAB software, an explanation of 

different databases and the latest experimental results as the obtained results are discussed 

to analyze the performance of the proposed method.  
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Chapter 5 is the last chapter and presents the conclusion and recommendations for future 

work.
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2 LITERATURE REVIEW 
 

2.1 Biometric systems 

Recently, the adoption of biometric systems has ranked among the safest security 

measures to apply access control, also against attempts of identity theft [26]. This is due 

to the possibility to automatically discriminate people based on their physical or 

behavioral characteristics. Biometrics could be described as a research field that measures 

physical or behavioral human features to identify an individual[27]. These features, such 

as, facial image, Fingerprint [28], vein, iris [29, 30], DNA information, and voice are 

unique for each individual.  Many types of research continue developing methods to 

characterize these features for each individual as it is very vital in many fields like access 

control, banking security and so on. Therefore, the popularity and reliability of biometric 

systems kept rising. They are presently used to chase high levels of security in different 

real-life applications, from video surveillance [31-33] to smartphone authentication and 

access control to restricted areas. A biometric system can be applied in both the 

verification and identification process [28], depending on which application is required 

[34]. There are generally two different classes for  biometric characteristics 

(figure2.1)[35] [36]: 

 Physiological characteristics, which are related to human body shapes such as 

face shape, finger shape and other parts of the human body. Face, fingerprint 

and palm recognition are some examples of the so-called biometric systems. 

 Behavioral characteristics relating to human behavior such as voice and 

signature.  
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 Figure 2.1. Principal biometric modalities 

As crimes such as bank robbery and vehicle theft have been increasing substantially, 

it is very important to increase the security level in our society. Therefore, the number of 

governmental applications of biometric systems is growing fast to verify citizen identity. 

Consequently, industries have become more interested in producing biometric devices, 

aiming to enhance the level of security, such as surveillance systems control (system’s 

control) access devices and so on. For instance, Apple surprised its customers all around 

the world when this company introduced its facial recognition system in its new iPhone 

production, called iPhone X, which is considerably more secure than other previous 

versions of Apple’s Touch ID with fingerprint recognition system. Figure 2.1 shows the 

survey results of the question ‘In your opinion what was the most exciting biometric 

modality in 2017?’[37]. 
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Figure 2.2. Over 200 people were surveyed, including executives from the world’s leading 

biometrics companies on topics concerning the most exciting biometric modality in 2017 

From the figure, it is clear that around 13 percent of respondents selected fingerprint 

modality as the most exciting, multimodality was chosen by 19 percent and facial 

recognition achieved around 38 percent as a topmost interesting modality among others. 

Identification refers to the field in which the biometric system has already been 

trained with known data being taken from known users or people. Whenever the system 

receives an unknown input, it tries to match this input with one of the data in a database, 

to identify this unknown user, this new input should be compared with all training sets in 

the database one by one. It should be mentioned that the performance of the identification 

system is done without considering the subject having to claim an identity. The 

identification aim is to prevent a single person from using multiple identities [38]. 

In verification application, the biometric system captures the data from a person and 

compares this data with the data which has already been captured from this person to 

verify the individual’s identity. The main aim in this field is preventing people or criminals 
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from impersonating someone else’s identity. In such a system, a person claims an identity 

and the system tries to determine whether this claim is true or not by proposing the 

following question ‘Does this biometric data belong to this user or not?’ Verification 

systems usually need a personal identification number (PIN), a smart card or a user name. 

By getting one of this information, the system tries to conduct a one-to-one comparison 

to verify the desired identity [7].  

Figure 2.2 illustrates a general block diagram of identification and verification 

systems [7]. This system consists of four parts: a sensor used to capture the biometric data, 

a feature extractor applied to extract the main features from the input, a matcher to 

compare these features and decision module to indicate the response of accepting or 

rejecting. 

 

Figure 2.3. The general block diagram of identification and verification systems [7] 
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2.1.1 Face recognition 

Face recognition, as a biometric authentication technique, is an important 

application field of artificial intelligence [39]. Its main advantage is that, unlike other 

biometric techniques such as finger print [40] , iris and speaker recognition [41], it does 

not require the applicant to spend time in the personal data acquisition process. For 

instance, facial recognition software, which is deployed in a public area where many 

different people pass by, can recognize faces of passers in a crowd and can help identifying 

a criminal. Its main disadvantage is the sensitivity to illumination variances, poses and 

occlusions which occur in unstructured environments. The issue of face recognition has 

been given a lot of attention by many researchers in pattern recognition, biometrics and 

computer vision [42]. Face recognition based on subspace analysis has been widely 

studied in recent years. There are some issues which should be considered when biometric 

features are applied in a practical biometric system [43]. The reliable biometric system 

should have the following properties: 

 Universality:  everyone should have this biometric characteristic. 

 Acceptability: data from users can be taken easily without being noticed as it is 

contactless. 

 Measurability: the characteristics should be measured easily. 

Biometric systems should also include some other properties such as the following [44]: 

 Performance: the biometric system should be able to achieve the desired accuracy 

and computational speed in a minimum of time by considering the operational 

factors that can affect the level of speed and accuracy. 
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 Circumvention: the biometric system should be very reliable and robust to prevent 

counterfeiting. 

Based on the properties mentioned above, the comparison of different biometric 

technologies can be seen in Table 2.1 consisting of five factors and it is obvious that the 

face recognition method has a better position compared to the others, especially in the 

case of acceptability as user data can easily be taken without being noticed as it is totally 

contactless. 

 Table 2.1. Comparison of different biometric methods consisting of five factors [45] 

 

H: High  M: Medium  L: Low 

 Dimensionally redaction 

Since there are large volumes of high-dimensional data in numerous real-world 

applications, dimensionality reduction is a fundamental problem in many scientific fields. 

In the field of face recognition, many different dimensionality recognition approaches 

have been developed in recent times [15, 16, 19]. Dimensionality reduction is the main 

problem in numerous recognition techniques [1, 2, 46]. Dimensionality reduction 

techniques have been recommended by researchers to avoid “the curse of dimensionality,” 

 

Category 

 

Traits 

 

Universality 

 

 Acceptability 

 

Performance 

 

Measurability 

 

Circumvention 

 

 

Conventional 

Face H H M H H 

FP M M H M M 

Iris H L H M H 

Voice M H L M L 
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to amend the computational efficiency of image recognition [5, 14]. Generally, 

dimensionality reduction techniques can be classified into two main groups: i.e., linear 

and nonlinear. In linear methods, a significant low-dimensional subspace has to be 

discovered in the input data with high-dimensional space, where the embedded data in the 

input space have a linear structure [4, 6, 7, 47]. PCA is one of the famous linear methods 

[8, 11, 25, 48], which aims to retain global geometric information for data representation 

through enhancing the trace of the feature covariance matrix [8, 11, 49]. 

Linear discriminant analysis (LDA) is a linear technique that seeks to find out the 

discriminant information for data classification by enhancing the ratio between inter-class 

and intra-class scatters [11, 12]. Some of the limitations of both PCA and LDA are that 

they could suffer from the small sample size issue (SSS) [25] and that they may fail to 

recognize many important data structures that are nonlinear [13, 24]. Scholars have 

developed abundant practical nonlinear dimensionality reduction strategies [18] to address 

these problems. They can be classified into two types: manifold learning-based and 

kernel-based techniques [23, 50]. Manifold learning directly aims to discover the principal 

nonlinear data with low-dimensional structures that are concealed in the input space. 

Isometric Feature Mapping (ISOMAP) [42, 51] and Local Linear Embedding (LLE) [52, 

53] are the most well-known manifold learning -based techniques to find inherent low-

dimensional embedding of data [54]. Based on some experiments which have been done 

with these techniques, it has been proved that these methods can well discover meaningful 

embedded nonlinear data structures for face images. However, manifold learning-based 

techniques could suffer from two issues in terms of pattern recognition [25]. The first one 

is called “overlearning of locality,” [55] since manifold learning keeps locality data 
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structures, but there is no straight connection with the classification. Out-of-sample is 

another issue that shows why most manifold-learning-based techniques are not 

appropriate for image recognition tasks [56-58]. These techniques can yield an embedding 

directly from a training data set, but they are often unable to find the sample’s image in 

the embedding space when it is implemented in a new point. These problems cannot be 

overcome by the currently proposed manifold-learning methods. Although a few 

supervised forms have been proposed, they still suffer from these problems [59-61] 

because they are all based on “locality” characterization. Local quantity is sufficient for 

one manifold modeling, but it does not work well for classification tasks in multi-manifold 

modeling [49]. 

In contrast with manifold-learning-based techniques and to indirectly represent 

observed patterns in possibly much larger dimensional feature vectors, kernel-based 

techniques have been proposed by applying a kernelized nonlinear representation method. 

In this approach, the nonlinear data structure can be more separable in the observation 

space and become linear in the feature space. The representative strategies include the 

Kernel Fisher Discriminant (KFD) [50, 62] and the Kernel  Principal Component Analysis 

(KPCA) [63-65]. Both have shown that they can be practical in many real-world functions, 

such as face recognition, to preserve the nonlinear data structure [66]. However, these 

kernel-based methods cannot directly consider the local data structure, which results in 

classification performance degradation. Recently, the Locality Preserving Projections 

(LPP) method [67] has been proposed as a linear subspace learning method to address the 

out of sample problem. LPP is an unsupervised linear subspace technique that has the 

remarkable advantage of being able to generate an explicit map. Similar to the one 
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belonging to PCA and LDA, this map is linear and easy to compute and is also effective 

for many face recognition tasks. Although LPP has been designed based on “locality,” 

like most manifold learning methods, it still suffers from the “over learning of locality” 

problem, because there is no direct connection with the classification in its algorithm. 

Therefore, on some occasions, it cannot be guaranteed to map an appropriate projection 

for classification purposes [67].  

Subsequently, to address this issue and delve into more influential projections for 

classification tasks, the Unsupervised Discriminant Projection (UDP) method [68] was 

developed as a simple version of LPP. UDP is considered a linear estimation of multi-

manifold-based learning because it considers both the local and nonlocal scatter of data. 

In both LPP and UDP, data class label information is not considered, which may degrade 

their pattern classification performance. Furthermore, the Discriminant Neighborhood 

Embedding (DNE) method has been presented with the idea of using data class label 

information. Furthermore, this method [69] has been presented with the idea of using  data 

class label information. DNE can find out a good embedding for classification considering 

intra-class absorption and inter-class separability. The main characteristic of DNE is 

called “discrimination”, meaning the ability to distinguish the same class from distinct 

classes. This specification of DNE can deal well with ‘out-of-sample’ and ‘small training 

sample size’ problems. Nevertheless, DNE cannot correctly preserve local information of 

data because it only concedes +1 and −1 to intra-class and inter-class neighbors [25]. Thus, 

a lot of the important geometrical structure information of data may be lost, and it might 

fail to discover the most significant sub-manifolds for pattern recognition. The locality-

based discriminant neighborhood embedding method (LDNE) [25] has recently been 
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proposed to tackle the problems existing in LPP and DNE. This method takes into account 

both “locality” and “discrimination” in a united modeling environment. However, many 

important non-linear data might be lost during the dimensionality reduction process, 

which dramatically influences classification accuracy. 

According to the way dimensionality reduction algorithms “learn” about data to 

create predictions, they can be categorized into two different classes: supervised and 

unsupervised learning methods. Among these two, supervised machine learning is used 

more prevalently in which the data scholar acts as a guide to instruct the algorithm 

regarding what results should be found by [70]. The most well-known supervised 

algorithms include supervised LPP [69] , Local Discriminant Embedding (LDE) [71], 

Neighborhood Discriminant Projection (NDP) [72], Discriminant Locality Preserving 

Projections (DLPP) [73], Locally Discriminating Projection (LDP) [74] and Geometry 

Preserving Projections (GPP) [75] It is obviously clear that the aforementioned supervised 

techniques are generally applied to class label information to amend the dimensionality 

reduction. On the other hand, the unsupervised LPP-based algorithms generally aim to 

improve locality preserving and discriminating capabilities to further enhance the final 

performance of classification. Graph-Optimized Locality Preserving Projections 

(GOLPP) [25, 76], Orthogonal Locality Preserving Projection (OLPP) [77] and UDP [68] 

are some examples of unsupervised LPP-based methods. Table 2.2 shows the summary of 

the main articles on recent works stated in the literature review. 
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Table 2.2. The summary of the main articles on recent works stated in the literature 

review. 

Authors Title (method) Weakness Robustness 
Damavandinejadmonfared, 

S., et al [11] 

Finger vein recognition using PCA-based 

methods 

small sample size 

problem 

 low computational complexity  

Kim, K.I., et al [65] Face recognition using kernel principal 

component analysis 

losing the local data 

structure 

preserving the nonlinear data 

structure 

Yu, H., et al [12] A direct LDA algorithm for high-

dimensional data 

Cannot recognize 

important nonlinear 

data structures  

Preserving the discriminant 

information 

Blackburn, J., et al [51] Human motion recognition using isomap 

and dynamic time warping 

“overlearning of 

locality,” problem 

discovering meaningful embedded 

nonlinear data structures 

Lu, J.,et al  [67] Regularized locality preserving 

projections and its extensions for face 

recognition 

 “over learning of 

locality” problem 

designed based on “locality,” 

Wang, T., et al [75] Geometry preserving projections 

algorithm for predicting 

“overlearning of 

locality,” problem 

Using class label information 

Schölkopf, B., et al [62] Nonlinear component analysis as a kernel 

eigenvalue problem 

losing the local data 

structure 

preserving the nonlinear data 

structure 

Deng, W., et al., [68] 

 

 

Globally Maximizing, Locally 

Minimizing: Unsupervised Discriminant 

Projection with Application to Face and 

Palm Biometrics 

class label 

information is not 

considered 

considering both the local and 

nonlocal scatter of data 

Chen, H.-T.,  et al [71] Local discriminant embedding and its 

variants 

over learning of 

locality” problem 

Using class label information 

You, Q., et al [72] Neighborhood discriminant projection for 

face recognition 

over learning of 

locality” problem 

Using class label information 

Roweis, S.T., et al [52] Nonlinear dimensionality reduction by 

locally linear embedding 

“overlearning of 

locality,” problem 

discovering meaningful embedded 

nonlinear data structures 

Zhang, L., et al [76] 

   

Graph-optimized locality preserving 

projections. Pattern 

“overlearning of 

locality,” problem 

discriminating abilities 

Zhang, W., et al., [69] Discriminant neighborhood embedding for 

classification 

cannot correctly 

preserve the local 

information 

dealing well with ‘out-of-sample’ 

and ‘small training sample size’ 

problems 

Shao, J., et al [77] Generalized orthogonal locality preserving 

projections for nonlinear fault detection 

and diagnosis. 

“overlearning of 

locality,” problem 

discriminating abilities 

Gou, J., et al [25] Locality-based discriminant neighborhood 

embedding 

Losing important 

nonlinear data 

structures 

taking into account both “locality” 

and “discrimination” 

Lu, G., et al [73] 

  

Face recognition using discriminant 

locality preserving projections based on 

maximum margin criterion. 

over learning of 

locality” problem 

Using class label information 

Kishore, K., et al [74] Hybrid face recognition with locally 

discriminating projection 

over learning of 

locality” problem 

Using class label information 

 

In this project, a new supervised subspace learning algorithm named ‘Supervised 

Kernel Locality-Based Discriminant Neighborhood Embedding’ (SKLDNE) is proposed, 

in which not only the nonlinear data structure can be preserved by applying a kernelized 

nonlinear mapping method, but also both “locality” and “discrimination” of data in an 
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integrated modeling environment are considered simultaneously. It should be noted that 

this technique is supervised through a direct connection with classification to well guide 

the procedure of dimensionality reduction. Due to its kernel-weighting, it is very 

influential in reducing the negative influence of outliers in the projection directions, which 

effectively handles the drawbacks of the linear model and makes it more robust to outliers. 

To obtain a reliable and powerful comparison, the efficiency of the proposed SKLDNE 

technique is compared with PCA, KPCA, LDA, UDP, LPP, DNE and LDNE through a 

wide range of experiments on different publicly available face datasets, i.e., Yale face, 

ORL face, Head Pose, and Sheffield. Moreover, Finger Vein and Finger Knuckle 

databases are also applied to well investigate the implementation of our algorithm in other 

types of databases rather than face databases.   

2.2.1 Principal Component Analysis (PCA) 

PCA is one of the fundamental and effective methods in the case of dimensional 

reduction [78]. This kind of transformation method is used to simplify data analysis. 

Dimensionality reduction and feature extraction of images are the main proposals of PCA 

[79]. 

2.2.1.1 Background of mathematics 

Some elementary mathematical background skills which require for the 

understanding of the PCA process are given in this section [80]. The following topics have 

been covered independently from each other. 
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2.2.1.2 Standard Deviation 

Before calculating the standard deviation, the mean of the samples must be obtained 

by the given formula [80]: 

𝑋 ̅ =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
        (2.1) 

Then the standard deviation (SD) can be calculated as follows [80]: 

𝑆𝐷 = √
∑ (𝑥𝑖−�̅�)

2𝑛
𝑖=1

(𝑛−1)
       (2.2) 

Where, n is the total number of data set and x is the set value. The standard deviation 

of a data set is the spread measure of the different data. 

2.2.1.3 Variance 

Variance is also used to measure the spread of data. However, the standard deviation 

is the most common one, but the variance is sometimes used. In fact, it is almost identical 

to the SD. The formula can be seen below: 

𝑣𝑎𝑟(𝑋) =  
∑ (𝑋𝑖−�̅�)

2𝑛
𝑖=1

(𝑛𝑥−1)(𝑛𝑦−1)
                     (2.3) 

2.2.1.4 Covariance 

Standard deviation and variance can only operate in one dimension. However, many 

data sets have more than one dimension and the aim is usually to see the relationship 

between these dimensions. Covariance is measured between two dimensions. The 

variance formula and covariance are very similar to each other. It means that if you try to 
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find the covariance of x by itself, it will give you the variance. Here is the formula for 

covariance: 

𝑐𝑜𝑣(𝑋, 𝑌) =  
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)
𝑛
𝑖=1

(𝑛−1)
      (2.4) 

2.2.1.5 Eigenvectors 

Eigenvectors are a special method to multiply two matrices together. It should be 

mentioned that the eigenvectors can only be found for square matrices. For example, 

observing two multiplications between a matrix and a vector in equation 2.5 and equation 

2.6, for equation 2.5 the result vector is not an integer multiple of the original vector, but 

in equation 2.6 the result is a multiplication of integer value 4 by the original vector. Thus, 

number 4 is called the eigenvalue, (3
2
) is the eigenvector and equation 2.5 also shows the 

non-eigenvector [80]. 

(2   3
2    1

)  × (1
3
) = (11

5
)     (2.5) 

(2   3
2    1

)  × (3
2
) = (12

8
) = 4 × (3

2
)     (2.6) 

2.2.1.6 Advantages of PCA 

As it has been mentioned before, PCA is a way of identifying patterns in data and 

also expresses data to highlight their differences and similarities. In high dimension data, 

the pattern in the data is hard to find and the PCA can be applied to analyze these data. 

Another important advantage of PCA is reducing the number of dimensions without 

losing information [81]. This technique is also used to compress the image. 
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2.2.1.7 Mathematics of PCA 

PCA can analyze the 1-D images since face images are 2-D. The first step is the 

dimensional reduction to present the 1-D images. Assume M vectors of size N (i.e. rows 

of the image multiplied by columns of image), where 𝑝 is the pixel value: 

𝒳𝑖 = [𝑝1… 𝑝𝑁]
𝑇 , 𝑖 = 1, … ,𝑀       (2.7) 

Based on PCA methods, mentioned in previous sections, the next step is computing 

the mean center of images: 

𝑚 =
1

𝑀
∑ 𝒳𝑖
𝑀
𝑖=1           (2.8)  

To calculate the mean centered image the following formula is used: 

𝑤𝑖 = 𝒳𝑖 –  𝑚         (2.9) 

The covariance matrix should be obtained to determine a set of eigenvectors and 

eigenvalues: 

𝐶 = 𝑊𝑊𝑇         (2.10) 

Where 𝑊 is a matrix composed of column vectors 𝑤𝑖 placed side by side. 

If we assume  𝜆  as an eigenvector, 𝑣  as an eigenvalue and considering proven 

equation  𝜆𝑣 = 𝐶𝑣 , which shows the multiplication of integer value C (covariance) and 

original vector, we can obtain the following equation. 

𝑊𝑊𝑇(𝑊𝑣) = 𝜆(𝑊𝑣)        (2.11) 
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It should be mentioned that this equation is obtained by multiplying both sides of 

the given equation by w and the substitution of C       

It indicates that the first 𝑀- 1 eigenvectors λ and eigenvalues 𝑣 can be obtained by 

calculating𝑊𝑊𝑇. 

After finding the  𝑀 eigenvectors and eigenvalues, images can be projected onto the 

𝐿 ≪ 𝑀 dimensions by computing 𝛺 which is the projected value and could be calculated 

by the following formula: 

𝛺 = [𝑣1𝑣2…𝑣𝐿]
𝑇        (2.12) 

To determine which finger vein images provide the best description of an input 

image; the Euclidean distance should be calculated as follows:  

∈𝑘= ‖𝛺 − 𝛺𝑘‖          (2.13) 

Where the minimum value of ∈𝑘  decide the unknown data into the 𝑘 class. 

2.2.2 Kernel Principal Component Analysis (KPCA)  

The KPCA method to extract features was proposed after PCA. KPCA is a nonlinear 

extension of PCA, which computes the principal components in a high-dimensional 

feature space F, which is nonlinearly related to the feature space. PCA is a linear method 

that ensures that the transformed data is uncorrelated and insensitive to the dependencies 

of multiple features in the patterns. To overcome this problem, KPCA is proposed. 
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2.2.2.1 The idea of KPCA 

The basic idea of KPCA is to first map the input data into feature space F via 

nonlinear mapping Q. Once we have done the nonlinear mapping, the input data, the linear 

PCA, is performed on the mapped data. 

2.2.2.2 Mathematics of KPCA 

As it has already been mentioned, the basic idea of KPCA is to nonlinearly map 

input data 𝑋 into feature space F. When the input data is mapped by nonlinear mapping 

Φ, a linear PCA is performed in F. Assuming that F is centered, ∑ 𝛷(𝑋𝑖) = 0𝑀
𝑖=1 where 𝑀 

is the number of input data. The covariance matrix of F can be defined as  

 𝐶 =
1

𝑀
∑ 𝛷(𝑋𝑖).
𝑀
𝑖=1 𝛷(𝑋𝑖)

𝑇            (2.14)  

To do so, equation λ 𝑣 =  𝐶𝑣 , which is the eigenvalue equation, should be solved 

for eigenvalues λ≥ 0 and eigenvectors 𝑣 ∈ F. 

As Cv = (1/M) ∑ (𝛷(𝑋𝑖). 𝑣)𝛷(𝑋𝑖),
𝑀
𝑖=1  solutions for v with λ ≠ 0 lie within the 

span of Φ(𝑋1), … , Φ (𝑋𝑀),  coefficients 𝛼𝑖(𝑖 = 1,… ,𝑀) are obtained in such a way 

V = ∑ αi Φ(Xi)
M

i=1
                      (2.15) 

The equations can be considered as follows 

𝜆(𝛷(𝑋𝑖). 𝑉) = (𝛷(𝑋𝑖). 𝐶𝑣)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… ,𝑀              (2.16) 

Having M ×  M matrix 𝐾 by 𝐾𝑖𝑗 = 𝑘(𝑋𝑖 , 𝑋𝑗) = (𝛷(𝑋𝑖).𝛷(𝑋𝑗)),  causes an 

eigenvalue problem. 

The solution to this is as follows: 
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𝑀 𝜆𝛼 = 𝐾𝛼                        (2.17) 

By selecting the kernels properly, different mappings can be achieved. One of 

these mappings can be achieved by taking the 𝑑-order correlations, which is known as 

ARG, between the entries, 𝑋𝑖, of input vector𝑋. The required computation is prohibitive 

where 𝑑 > 2 . 

(𝛷𝑑(𝑋).𝛷𝑑(𝑦)) =  ∑𝒳𝑖1  . … . 𝒳𝑖𝑑  . 𝒴𝑖1  . … . 𝒴𝑖𝑑  = (∑𝒳i . 𝒴i

𝑁

𝑖=1

)

𝑑

= (𝑥. 𝑦)𝑑.

𝑁

𝑖1 ,…,𝑖𝑑=1 

 

       (2.18) 

2.2.3 Locality Preserving Projection  

Locality preserving projection (LPP) [23] is the linear dimensionality reduction 

algorithm  that finds graph embedding of data sets, which directly models the manifold 

structure by constructing the nearest-neighbor graph that discloses neighborhood relations 

of data points to preserve the local structure of the input data in the projection. Although 

LPP has been applied effectively as feature extraction in many circumstances, it might be 

unsuitable for pattern recognition as it is a linear method. It often fails to retain with-in 

class local structure images which are subjected to involved nonlinear changes because of 

large expression, pose or illumination variations. It also suffers from ‘over-learning of 

locality’ which dramatically degrades classification performance.  

LPP works based on a linear approximation of the Laplacian Eigen Map, which 

searches transformation P, in which a high-dimensional input data X= [𝑥1, 𝑥2,. . . , 𝑥𝑛 ] 

could project into low-dimensional subspace Z while the local structure of the input data 
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is preserved. To calculate linear transformation T, an objective function should be 

minimized as follows: 

𝑚𝑖𝑛𝑃∑ ‖𝑧𝑖 − 𝑧𝑗‖
2
𝐻(𝑖, 𝑗)

𝑛

𝑖,𝑗=1
            (2.19) 

Where weight matrix H (called the heat kernel) is obtained by the nearest-neighbor 

graph and 𝑧𝑖 = 𝑃
𝑇𝑥𝑖.  

𝐻(𝑖, 𝑗) = 𝑒−
‖𝑥𝑖−𝑥𝑗‖

2

𝑡   (2.20) 

Where the parameter t is an appropriate constant number. Otherwise,𝑆(𝑖, 𝑗) = 0. On 

the other hand, when 𝑥𝑖  and  𝑥𝑗  are the nearest neighbors, the weight matrix H could 

clearly be set as 𝐻(𝑖, 𝑗) = 1. Otherwise,𝐻(𝑖, 𝑗) = 0. The optimal transformation matrix 

can be calculated by using the minimization problem to solve the generalized eigenvalue 

problem  

𝑋𝐿𝑋𝑇𝑃 = 𝜆𝑋𝐷𝑋𝑇𝑃,                          (2.21) 

Where L = D – H is the Laplacian Matrix and  𝐷𝑖𝑖 = ∑ 𝐻(𝑖. 𝑗)𝑗  is a diagonal 

matrix. 

2.2.4 Discriminant Neighborhood Embedding  

Discriminant Neighborhood Embedding (DNE) is proposed, based on an intuition 

of a dynamics theory. DNE is a supervised learning method which modulates an optimum 

low dimensionality embedding of multi-class data points in a high dimensional space for 

classification. Furthermore, DNE effectively avoids the complication of the singularity 

matrix as the inverse matrix does not need to be calculated anymore.  Based on the main 
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characteristics of DNE, it can present a good solution for the small-sample-size (SSS) and 

out-of-sample problems. Although this comprehensive technique is effective in pattern 

classification, it still cannot uphold the local and geometrical structure information of data. 

The main steps of the DNE algorithm [69] come next:  

1- Adjacent matrix 𝐻 of graph G which refers to the underlying supervised 

manifold structure is as follows: 

𝐻𝑖𝑗 =

{
 
 

 
 
−1,                                  𝑥𝑖 ∈ 𝑘𝑛𝑛(𝑗) 𝑜𝑟 𝑥𝑗 ∈ 𝑘𝑛𝑛(𝑖)𝑎𝑛𝑑 (𝑐𝑖 ≠ 𝑐𝑗)

                   

+ 1,                                  𝑥𝑖 ∈ 𝑘𝑛𝑛
(𝑗) 𝑜𝑟 𝑥𝑗 ∈ 𝑘𝑛𝑛(𝑖)𝑎𝑛𝑑(𝑐𝑖 = 𝑐𝑗)

                        
0 ,                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (2.22) 

Where, ci shows the class label of xi and knn(i) illustrates the set of k nearest-neighbors 

of xi. Note that each edge is weighed +1 or −1 respectively, to determine the local intra-

class attraction and inter-class repulsion between neighboring points. 

2- The optimal transformation of matrix P can be defined as follows:  

𝑚𝑖𝑛∑ ‖𝑧𝑖 − 𝑧𝑗‖
2

𝑖𝑗 𝐻𝑖𝑗        (2.23) 

The minimization problem can be reduced to: 

𝑎𝑟𝑔𝑚𝑖𝑛 𝑡𝑟(𝑃𝑇𝑋𝐿𝑋𝑇𝑃)              (2.24) 

Subject to 𝑃𝑇𝑃 = 𝐼, where  𝐿 = 𝐷 − 𝐻 .  𝐷𝑖𝑖 = ∑ 𝐻𝑖𝑗𝑗   is a diagonal matrix. 

Like LPP, parameter P (projection matrix) could be optimized by calculating the 

minimum eigenvalue solution to the generalized Eigenvalue problem as follows: 
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𝑋𝐿𝑋𝑇𝑃 = 𝜆𝑃 ,          (2.25) 

Where P is constituted by r eigenvectors corresponding to its first smallest negative d 

eigenvalues of d, i.e., 𝜆1 ≤𝜆2≤...≤𝜆𝑑 < 0 ≤𝜆𝑑+1                   (2.26) 

2.2.5 Unsupervised Discriminant Projection (UDP) 

UDP is a linear projective map in which the neighborhood structure of data sets can 

be preserved where the lower-dimensional manifold embedded the desired space should 

be obtained from high dimensional data sets. UDP considers local and nonlocal scatters 

simultaneously while seeking to detect a projection maximizing the ratio of the non-local 

scatters to local scatters. UDP performs more intuitively than LPP for classification tasks 

as non-local information is utilized. Nevertheless, in both LPP and UDP, the class label 

information of data is not considered, which might dramatically reduce pattern 

classification performance. Adjacent matrix H is defined as follows [82]: 

𝐻𝑖𝑗 = {1,                               ‖𝑋𝑖 − 𝑋𝑗‖
2
< 𝛿

0,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
     (2.27) 

Where the mean square of the Euclidean distance between any pair of the projected 

sample points that are within any local δ-neighborhood (δ > 0). Specifically, two samples 

xi and xj are viewed within a local δ-neighborhood provided that ‖𝑋𝑖 − 𝑋𝑗‖
2
< 𝛿. 

The K-nearest neighbors’ method can obtain the following adjacent matrix H: 

𝐻𝑖𝑗 = {

1,               𝑖𝑓 𝑋𝑗   𝑖𝑠 𝑎𝑚𝑜𝑛𝑔 𝐾 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑋𝑖
                      𝑎𝑛𝑑 𝑋𝑖   𝑖𝑠 𝑎𝑚𝑜𝑛𝑔 𝐾 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑋𝑗
0,                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

 (2.28) 
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2.2.6 Linear Discriminant Analysis (LDA) 

LDA simply finds the global discriminant information for classification by 

maximizing the ratio between inter-class and intra-class scatters. Linear Discriminant 

Analysis (LDA) seeks those vectors with the best discriminant among classes. 

Mathematically described LDA defines two measures, for all the samples of all classes. 

The first called the within-class scatter matrix which is, as follows: 

𝑆𝑤 = ∑ ∑ (𝑋𝑖
𝑗
− 𝑦𝑗)

𝑁𝑗
𝑖=1

(𝑋𝑖
𝑗
− 𝑦𝑗)

𝑇
𝑐
𝑗=1  (2.29) 

Where 𝑋𝑖
𝑗
 is the ith sample of class j, 𝑦𝑗 is the mean of class j, c is the number of classes, 

and 𝑁𝑗 is the number of samples in class. The second measurement is called the between-

class scatter matrix: 

𝑆𝑏 = ∑ (𝑦𝑗 − 𝑦)
𝑐
𝑗=1 (𝑦𝑗 − 𝑦)

𝑇
       (2.30) 

Where y represents the mean of all classes. 

However, LDA suff ers from the Small Sample Size (SSS) problem in data 

classification, which means that when a small training data set is used, there is no 

guarantee that LDA performs well. 

2.2.7  Locality- Based Discriminant Neighborhood Embedding  

In the multi-class classification assignment, N data points should be classified. The 

problem that arises here is finding a circumlocutory manifold embedded subspace. Based 

on the DNE, there are two classifications for the important characteristic of manifold 
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structure, namely inter-class compactness and intra-class scatters.  These two classes can 

be defined as follows: 

 Intra-class absorption: it is the interaction between pairs of neighbours 

from the same class. 

 Inter-class abhorrence: it is the interaction between pairs of neighbours 

from different classes. 

 

Figure 2.4. The interactions by attraction and repulsion for the points between different classes 

Significantly, it is possible to classify all data points based on absorption 

interaction or distracting behavior using these two classes (figure 2.3). As a result, 

neighbors from the same class are absorbed while neighbors from the different class 

become separable in the subspace. To formulate the method first we consider that 𝑥𝑖 is a 

data point, 𝑁𝑠(𝑥𝑖) demonstrates the intra-class neighbors of 𝑥𝑖 , 𝑁
𝑑(𝑥𝑖) denotes the inter-

class neighbor of 𝑥𝑖 and 𝑁(𝑥𝑖) represents all the 𝑥𝑖 neighbors. Thus, to carry out this task 

as the purpose of understanding these two classes, the edges between 𝑥𝑖  , inter-class 

neighbors and intra-class neighbors are indicated using different weights. Denoted 
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weights are calculated with a kernel function whose functioning is based on the 

dissimilarity between 𝑥𝑖 and its neighbors. The neighborhood, including inter-class and 

intra-class neighbors, can be called the discriminant neighborhood. Discriminant adjacent 

graph G can be obtained by the 𝜖 -neighborhood or 𝑘 -neighborhood. Discriminant 

adjacent weight matrix (DAWM) S of G using the 𝑘-neighborhood is defined as [20]: 

𝑆𝑖𝑗 =

{
 
 

 
 −exp(−

‖𝑥𝑖−𝑥𝑗‖
2

𝑡
),     𝑥𝑖 ∈ 𝑁𝑘

𝑠(𝑥𝑖) 𝑜𝑟 𝑥𝑖 ∈ 𝑁𝑘
𝑠(𝑥𝑗)

+ exp (−
‖𝑥𝑖−𝑥𝑗‖

2

𝑡
),      𝑥𝑗 ∈ 𝑁𝑘

𝑑(𝑥𝑖)𝑜𝑟 𝑥𝑖 ∈ 𝑁𝑘
𝑑(𝑥𝑗)

0 ,                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2.31) 

Where, t is the regulator, 𝑁𝑘
𝑠(𝑥𝑖) is the intra-class neighbor of 𝑥𝑖 and 𝑁𝑘

𝑑(𝑥𝑖) is the 

inter-class neighbor of 𝑥𝑖 in the k-neighborhood. 

It is obvious that different samples lead to different classification results. In view 

of the fact that the individual feature space location of the sample indicates its conditions, 

a parameter was defined to regulate adjacent weight between pairs of neighbors. This 

regulator can be formulated as: 

𝑡 =
1

𝑘
Σ𝑗=1 
𝑘 ‖𝑥𝑖 − 𝑥𝑗‖

2
 (2.32) 

To gain intra-class compactness and inter-class scatters in the transformation space, 

it is recommended to apply a linear mapping method to project intra-class absorption and 

inter-class abhorrence of the input data points. As a result, the new low dimensional space 

can be defined as: 

a. Intra-class compactness: 
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Φ(𝑃) = Σ𝑖𝑗‖𝑦𝑖 − 𝑦𝑗‖
2
𝑊𝑖𝑗 = 𝛴𝑖𝑗‖𝑃

𝑇𝑥𝑖 − 𝑃
𝑇𝑥𝑗‖

2
𝑊𝑖𝑗 (2.33) 

 𝑥𝑗 ∈ 𝑁𝑘(𝑥𝑖)  𝑜𝑟  𝑥𝑖 ∈ 𝑁𝑘(𝑥𝑗)𝑎𝑛𝑑 (𝑐𝑖 = 𝑐𝑗) 

b. Inter-class scatters: 

Ψ(𝑃) = Σ𝑖𝑗‖𝑦𝑖 − 𝑦𝑗‖
2
𝑊𝑖𝑗 = 𝛴𝑖𝑗‖𝑃

𝑇𝑥𝑖 − 𝑃
𝑇𝑥𝑗‖

2
𝑊𝑖𝑗 (2.34) 

 𝑥𝑗 ∈ 𝑁𝑘(𝑥𝑖)    𝑜𝑟  𝑥𝑖 ∈ 𝑁𝑘   𝑎𝑛𝑑 ( 𝑐𝑖 ≠ 𝑐𝑗) 

Finally, the difference between the weighted distance from each data point to the 

inter-class neighbors in 𝑁𝑑(𝑥𝑖) and those from 𝑥𝑖 to the intra-class neighbors in 𝑁𝑠(𝑥𝑖) 

in the mapped space must be calculated and, by maximizing this measurement, we can 

obtain the optimum result. This measurement can be referred to as a margin, which is 

calculated as follows: 

Θ(𝑃) = Ψ(𝑃) − Φ(𝑃) (2.35) 

Thus, if the original data points are close together this margin can keep the 

projected data points as close as possible. However, we can prevent 𝑥𝑖 and 𝑥𝑗  from being 

mapped far apart if they are close by defending the retribution generation:   

Θ(𝑃) = Σ𝑖𝑗‖𝑃
𝑇𝑥𝑖 − 𝑃

𝑇𝑥𝑗‖
2
𝐹𝑖𝑗 (2.36) 
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3 METHODOLOGY 
 

 Introduction 

In this chapter, first, the overall view of the proposed method is explained with 

mathematics. Then, all databases used in this research are introduced 

 Main idea of the proposed method 

In this project, we have proposed a novel supervised subspace learning method named 

“Supervised Kernel Locality-Based Discriminant Neighborhood Embedding” (SKLDNE) 

which is presented based on the following main ideas:  

-To apply a kernel trick as an instance-based learner in a nonlinear kernel feature space: 

As many effective nonlinear data features would be lost during the classification process 

using the linear technique, applying a nonlinear method can improve the recognition 

performance. 

-To obtain the advantages of “locality” in LPP: in which geometric relations are preserved 

due to the prior class-label information. 

-To use “discrimination” from DNE: in which the compact submanifold for data from the 

same class is formed in the embedded low dimensional subspace. 

 Supervised Kernel Locality-Based Discriminant Neighborhood Embedding 

 In our novel SKLDNE, first nonlinear kernel mapping is applied to map the data 

into implicit feature space Ϝ. Therefore, a nonlinear subspace that can approach the 
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intrinsic geometric structure of the face manifold can be obtained. Then, we seek a linear 

transformation in which both “locality” and “discrimination” of data are successfully 

preserved in the manifold learning phase. In fact, the proposed SKLDNE is modeled to 

capture nonlinear data in the feature space while the important “locality” , as well as the 

“discrimination” of data, are simultaneously preserved. Suppose X= [𝑥1, 𝑥2,. . . , 𝑥𝑛 ] is a 

set of d-dimensional input samples and this input data is projected onto a higher 

dimensional feature space Ϝ  via nonlinear mapping Ø : 𝑅𝑛→ Ϝ. Then, manifold learning 

is carried out on the projected samples Ø(𝑋) = [Ø(𝑥1), Ø(𝑥2),… , Ø(𝑥𝑛)]. Now assume 

that we are to find the projection transformation 𝑉Ø in Ϝ. The optimization problem can be 

expressed as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ‖𝑧𝑖 − 𝑧𝑗‖
2
𝐹𝑖𝑗

𝑛
𝑖𝑗    (3.1) 

Subject to  𝑉Ø
𝑇𝑉Ø = 𝐼 , where I denotes the identity matrix, 𝑧𝑖 = 𝑣Ø

𝑇Ø(𝑥𝑖) and 

 𝑧𝑗 = 𝑣Ø
𝑇Ø(𝑥𝑗)  are the projection of Ø(𝑥𝑖)  and Ø(𝑥𝑗)  with respect to 𝑉Ø   and 𝐹𝑖𝑗 

represents the relationship between of 𝑥𝑖  and  𝑥𝑗 . The optimization problem can be 

kernelized as 

∑ ‖𝑧𝑖 − 𝑧𝑗‖
2
𝐹𝑖𝑗

𝑛
𝑖𝑗      = ∑ ‖𝑣Ø

𝑇Ø(𝑥𝑖) − 𝑣Ø
𝑇Ø(𝑥𝑗)‖

2
𝐹𝑖𝑗

𝑛
𝑖𝑗  (3.2) 

This equation can be rewritten from the square of the norm in Eq. (3.2) into the trace form 

∑ ‖𝑣Ø
𝑇Ø(𝑥𝑖) − 𝑣Ø

𝑇Ø(𝑥𝑗)‖
2
𝐹𝑖𝑗

𝑛
𝑖𝑗 = tr {∑ (𝑣Ø

𝑇Ø(𝑥𝑖) − 𝑣Ø
𝑇Ø(𝑥𝑗))(𝑣Ø

𝑇Ø(𝑥𝑖) − 𝑣Ø
𝑇Ø(𝑥𝑗))

𝑇𝐹𝑖𝑗
𝑛
𝑖𝑗 } 

 (3.3) 
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=tr {𝑣Ø
𝑇 ∑ (2Ø(𝑥𝑖)𝐹𝑖𝑗Ø(𝑥𝑗)

𝑇 − (2Ø(𝑥𝑗)𝐹𝑖𝑗Ø(𝑥𝑖)
𝑇 𝐹𝑖𝑗)𝑉Ø}

𝑛
𝑖𝑗     

The linear transformation should lie in the span of Ø(𝑥1), Ø(𝑥2), … , Ø(𝑥𝑛), 

 𝛼 = [α1, α2, … , α𝑛] consists of expansion coefficient vectors and  

𝑉Ø = ∑ α𝑖
𝑛
𝑖=1 Ø(𝑥𝑖)= Ø(𝑋) α . (3.4) 

Substituting (3.4) into (3.3), we obtain 

𝑈∅=2tr{𝑣Ø
𝑇Ø(𝑋)(D − F) Ø(𝑋)𝑇𝑉Ø} 

   =2tr{𝑣Ø
𝑇Ø(𝑋)L Ø(𝑋)𝑇𝑉Ø} 

   =2∑ {𝑣Ø𝑙
𝑇 Ø(𝑋)L Ø(𝑋)𝑇𝑉Ø𝑙

𝑚
𝑙=1 } (3.5) 

Where 𝐷𝑖𝑖=∑ 𝐹(𝑖, 𝑗)𝑗  is the diagonal matrix and L=D-F, L and D are the symmetric matrix 

and represent the number of eigenvalues  

So with some effort optimization problem can be rewritten as 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 tr {𝑣Ø
𝑇Ø(𝑋)L Ø(𝑋)𝑇𝑉Ø}     

=α𝑇𝐾𝐿𝐾𝛼  (3.6) 

Subject to  α𝑇𝐾𝛼 = 𝐼 

Where k is the kernel matrix with k(xi, xj) = [ Ø(𝑥𝑖). Ø(𝑥𝑗)] and a kernel in the matrix 

form is 

𝐾 = Ø(𝑋)𝑇Ø(𝑋)  (3.7) 
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The corresponding generalized eigenvalue problem can be obtained by computing the 

maximum eigenvalues in Ø(𝑋)L Ø(𝑋)𝑇𝑉Ø =  𝜆𝑉Ø  where the generalized eigenvector 

corresponding to the largest eigenvalue is the main interest. So we need to compute the 

dot product via kernel and find its nearest neighbor in the embedding space.  

 The main algorithm of the SKLDNE  

The detailed steps of the algorithm are summarized as follows: 

 

SKLDNE Algorithm 

 

Input: high-dimensional input X= [𝑥1, 𝑥2,. . . , 𝑥𝑛 ] 

Output: Low dimensional subspace  

1 For i=1To N 

2 Construct a nonlinear kernel mapping to map the data into an implicit feature space 

3 Obtain Discriminant adjacent graph G by the ϵ-neighborhood or k-neighborhood.  

4   𝑰𝒇 𝑥𝑖 ∈ 𝑁𝑘
𝑠(𝑥𝑖) 𝑜𝑟 𝑥𝑖 ∈ 𝑁𝑘

𝑠(𝑥𝑗 ) 𝑻𝒉𝒆𝒏 − 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

𝑡
)   

5  𝑰𝒇   𝑥𝑗 ∈ 𝑁𝑘
𝑑(𝑥𝑖)𝑜𝑟 𝑥𝑖 ∈ 𝑁𝑘

𝑑(𝑥𝑗) 𝑻𝒉𝒆𝒏 + 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

𝑡
)     

6   𝑰𝒇 𝑵𝒐𝒕    0                                                                     

7 Optimized the eigenvalues via the generalized eigenvalue. 

8 Apply the transformation matrix to reduce the dimension from the original space to a 

new subspace. 

9 Classify the transformed data point. 

10 end 
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 Benefits of the SKLDNE method 

It is worthwhile to highlight several characteristics of the proposed approach here: 

(1) SKLDNE has been designed successfully with some effort to retain local 

geometric relations of the within-class samples, which are very important for image 

recognition. Generally, the categorization strength of methods with a linear learning 

algorithm is restricted. They fail to deal with complicated problems. Many effective 

nonlinear data features may be lost during the classification process using linear 

techniques such as LDNE, LDA, DNE, and LPP. Therefore, applying a nonlinear method 

can effectively improve classification performance. 

(2) This technique is a supervised learning method, as the data scholar acts as a guide 

to instruct the main algorithm whose conclusion should be found. SKLDNE considers 

class label information of neighbors in which there is a direct connection with the 

classification to enhance final recognition performance. 

(3) It benefits from the advantages of “locality” in LPP in which, due to the prior class-

label information, geometric relations are preserved. 

(4) Not only can it build a compact submanifold by minimizing the distance between 

the same points in the same class, but it also expands the gaps among submanifolds of 

distinct classes simultaneously, which is called ‘discrimination’. 

(5) SKLDNE can resolve the SSS problem, which that is mostly faced by other 

aforementioned techniques such as PCA, LDA, UDP, and LPP, as well as the 

“overlearning of locality” problem in the manifold learning. 
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(6) Due to its kernel weighting, it is very efficient in reducing the negative influence 

of outliers on the projection directions, which effectively handles the drawbacks of linear 

models and makes it more robust to outliers.  

Figure 3.1 briefly shows the main aforementioned benefits of the SKLDNE method which 

are already explained. 

 

 

Figure 3.1. The basic benefits of the proposed SKLDNE method  

 Methodology and algorithm 

As already mentioned, DNE cannot correctly preserve local information of data because 

it only concedes +1 to intra-class and −1 to inter-class neighbors, so it might fail to find 

out the most significant submanifold for pattern classification. In addition, LPP is 

designed based on ‘locality’ since it has no direct connection with classification, and it 

still suffers from the ‘over-learning of locality’ problem. Therefore, LDNE has been 

proposed to overcome the problems existing in LPP and DNE, considering both ‘locality’ 

and ‘discrimination’ in a unified modeling setting. However, it does not guarantee an 

appropriate projection for classification purposes, because many important non-linear data 

might be lost during its dimensionality reduction process. In some cases, LDNE cannot 
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distinguish inter-class and intra-class neighbors properly to conduct projection for all 

points either, which can degrade the classification performance. To address these 

problems, we propose a new supervised subspace learning method named “Supervised 

Kernel Locality-Based Discriminant Neighborhood Embedding” (SKLDNE). Combined 

with a nonlinear data structure, locality, and discrimination information, SKLDNE can 

yield an optimal subspace that best finds the indispensable submanifold-based structure. 

In our proposed SKLDNE, we first use nonlinear kernel mapping to represent the input 

data in implied feature space F. Afterwards, a linear transformation is searched to retain 

within-class geometric structures in the feature space. Hence, we can achieve a nonlinear 

subspace that can estimate the essential geometric structure of the face manifold. The 

proposed SKLDNE is modeled to take the nonlinear data in the feature space while 

important features of data including “locality” and “discrimination” are simultaneously 

preserved. To well elucidate the performance of our SKLDNE, we have compared it with 

several dimensionality reduction techniques including PCA, KPCA, LDA, UDP, LPP, 

DNE, and LDNE on six different publicly available datasets. As we can see from Figure 

3.2, all aforementioned techniques have been divided into two classes. Linear and 

nonlinear. Figure 3.3 shows the overall view of the main recognition algorithm including 

Database, Image preprocessing, identification process, and decision-making part.  Image 

preprocessing part includes ROI extraction, image resizing, and image enhancement. The 

identification process, which is the main purpose of this research, includes feature 

extraction, classification and comparison part. This part will be explained in further details 

in the next sections. 
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Figure 3.2. Different recognition techniques applied in this project 
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Figure 3.3. The overall view of main recognition algorithm 
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 Databases 

To obtain a reliable and powerful comparison, the performance of the proposed 

SKLDNE method is compared with PCA, KPCA, LDA, UDP, LPP, DNE and LDNE in 

extensive experiments on different publicly available face datasets, i.e., the Yale Face, 

ORL Face, Head Pose and Sheffield (Normal and pre-cropped). Moreover, Finger Vein 

and Finger Knuckle databases are also applied to well examine the performance of our 

method in other types of databases rather than face databases. For each dataset, depending 

on the number of data for each class, some samples of each class are randomly selected as 

training samples, while the remaining ones of that class are chosen for testing. 

Furthermore, the nearest neighbor (NN) classifier with the Euclidean distance is used in 

the recognition phase.  In all the experiments, for fair comparisons, parameter K selected 

in all methods is chosen as a fixed number of K=Tn-1 where Tn denotes the number of 

training samples of each class. Some information about the MATLAB software (which is 

used in our implementations) and database is provided in the next section.  Besides, how 

to gain accuracy is described as well. Analyses and discussions are based on the 

experimental results for each database separately. 

 MATLAB software 

MATLAB is a very useful program to develop the algorithm, visualization, data 

analysis, and numerical computing. All codes used in this research are programmed by 

MATLAB software. The MATLAB version is R2016, Natick, MA, USA. It is included in 

the whole processing, matching algorithm and performance evaluation. 

 



49 

 

 How to find accuracy? 

As mentioned, the comparison between methods is done at different numbers of 

training and testing finger vein images. If a test image is correctly identified, the number 

of correct identifications is increased by one and if a test image is not correctly recognized, 

it will not contribute to the number of correct identifications so it will increase the number 

of errors. The final accuracy can be calculated by the following simple formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦% =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
× 100 

 Summary 

This chapter first presented the proposed method of this research and related 

algorithm and benefits. In addition, the SKLDNE algorithm is discussed more providing 

its implementation flow. Finally, to have fair comparisons, 7 different methods have been 

chosen for implementation on six publicly available datasets. In the next, chapter all 

experimental results corresponding to each database will be discussed in detail. 
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4 RESULTS AND DISCUSSION 
 

 Introduction 

In this chapter, the performance of SKLDNE has been evaluated on six different 

publicly available datasets, i.e., the Yale Face, ORL Face, Head Pose, Sheffield(normal 

and pre-cropped), Finger Vein and Finger Knuckle and compared with the performances 

of PCA, KPCA, LDA, UDP, LPP, DNE and LDNE. The performance of our proposed 

method is evaluated by comparing it with the other aforementioned dimensionality 

reduction methods. 

 Experiments and discussion 

To have a fair investigation of the performance of the proposed SKLDNE method, it has 

been compared with PCA, KPCA, LPP, UDP, LDA, DNE and LDNE in extensive 

experiments on six different data sets, i.e., the Sheffield (original and pre-cropped 

database), ORL, Yale, Finger Vein, Finger Knuckle databases. For each experiment, the 

first Tn samples have been chosen from each class as training samples and the rest of each 

class have been used for testing. To simplify and improve the recognition result, the 

nearest neighbor (NN) classifier using the Euclidean distance has been used in the 

recognition phase. The k-neighborhood parameter k for calculating the weight matrix is 

denoted by Wk in the following discussions. In all the experiments, for fair comparisons, 

Wk has been selected as Wk=Tn-1 (where Tn is the number of training samples per class) 

because, based on our experiments, in this value of Wk, the aforementioned methods have 

achieved the optimal recognition rate. 
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4.2.1 Experiment using the Sheffield database 

The Sheffield Face Database includes a total of 20 individuals with 564 images of them 

(mixed race/gender/appearance) in which each individual is illustrated in a range of poses 

from profile to frontal views. The images are all in PGM format, with a size of 

approximately 220*220 pixels with a 256-bit grayscale. Figure 4.2 shows a sample for 

different poses of one subject contained in the Sheffield Face Multi-View and figure 4.3 

illustrates a sample of pre-cropped face images on the Sheffield Face. In our experiments, 

each image was resized to 112*92 pixels. Figure 4.1 demonstrates the different types of 

implementations by the SKLDNE method on the Sheffield database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 image to train, 18 images to test 

7 images to train, 12 images to test 

          2 image to train, 17 images to test 

3 images to train, 16 images to test 

4 image to train, 15images to test 

5 images to train, 14 images to test 

SKLDNE on 

Sheffield  

6 images to train, 13 images to test 

8 images to train, 11 images to test 

15 images to train, 4images to test 

16 images to train, 3 images to test 

17images to train, 2 images to test 
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Figure 4.1. Different types of implementations by the SKLDNE method in the Sheffield 

database 

 

Figure 4.2. A Sample of one subject with different poses from the Sheffield Face Multi View 

 

Figure 4.3. A Sample of pre-cropped face image in the Sheffield Face  

 

The maximal rate of recognition of each method and the related dimension implemented 

in the Sheffield database are illustrated in Table 4.1 and for that of a pre-cropped face 

image in Table 4.2. Note that in both tables the best performance among other methods is 

assigned in boldface. In addition, in all experiments due to the large number of 

implementations, it is decided to select  some number of training and testing images that 

are more challenging for classification task to investigate the performance of 

aforementioned directionally reduction techniques in these critical areas, so considering 

the small training sample size problem (SSS), first we have selected a  few small training 

samples and then some large numbers to examine the performance of our SKLDNE 

methods in some common existing problems of dimensionality reduction techniques such 

as  SSS problem, over learning  and out of sample problem. 
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Table 4.1. Maximum recognition accuracies (in percentage terms) of supervised kernel 

locality-based discriminant neighborhood embedding (SKLDNE) and other methods for the 

different numbers of training and testing images in the Sheffield Face and corresponding 

dimensions (shown in parentheses). 

DATABASE SHEFFIELD FACE 

TN 1 2 3 4 5 6 7 8 15 16 17 

PCA 
45.1 

(18) 

47.94 

(18) 

49.68 

(18) 

49 

(18) 

49.64 

(30) 

51.15 

(26) 

52.5 

(30) 

54.54 

(26) 

85.5 

(18) 

93 

(28) 

92 

(10) 

KPCA 
45.2 

(18) 

48.2 

(22) 

50.31 

(30) 

50.33 

(38) 

50.7 

(42) 

51.92 

(58) 

54.15 

(50) 

55.9 

(69) 

87.5 

(38) 

93 

(30) 

92 

(14) 

UDP 
45.33 

(10) 

48.1 

(22) 

48.43 

(30) 

51.66 

(30) 

50.71 

(45) 

51.9 

(66) 

55.41 

(54) 

57.27 

(50) 

87 

(90) 

95 

(86) 

92.5 

(14) 

LPP 
45.55 

(14) 

48.2 

(26) 

52.81 

(12) 

50.66 

(34) 

56.07 

(38) 

52.3 

(54) 

54.16 

(46) 

55.9 

(62) 

90 

(74) 

93.33 

(42) 

95 

(34) 

LDA 
45.2 

(18) 

50.29 

(26) 

48.43 

(14) 

58.66 

(34) 

56.07 

(22) 

59.23 

(6) 

60 

(42) 

61.36 

(50) 

92.5 

(22) 

93 

(30) 

97.5 

(18) 

DNE 
45.2 

(18) 

48.23 

(34) 

50.31 

(14) 

51.33 

(74) 

51.78 

(58) 

51.9 

(42) 

54.58 

(74) 

56.36 

(78) 

87.5 

(38) 

93.33 

(30) 

92.5 

(20) 

LDNE 
45.27 

(22) 

50.58 

(9) 

56.87 

(14) 

58.66 

(14) 

65 

(14) 

73.07 

(34) 

76.66 

(18) 

76.81 

(14) 

90 

(22) 

96.1 

(14) 

97.5 

(18) 

SKLDNE 
46.38 

(10) 

52.94 

(10) 

59.06 

(14) 

62.66 

(10) 

69.64 

(14) 

78.46 

(30) 

83.75 

(10) 

80.45 

(10) 

93.75 

(34) 

98.33 

(10) 

100 

(10) 
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Table 4.2. Maximum recognition accuracies (in percentage terms) of supervised kernel 

locality-based discriminant neighborhood embedding (SKLDNE) and other methods for the 

different numbers of training and testing images in the Sheffield Face (pre-cropped) and 

corresponding dimensions (shown in parentheses). 

DATABASE      

TN 1 3 15 16 17 

PCA 46.5 

(18) 

48.75 

(22) 

85 

(14) 

93.3 

(30) 

92.5 

(14) 

KPCA 46.8 

(14) 

49.37 

(22) 

87 

(30) 

93.3 

(30) 

95 

(14) 

UDP 46.9 

(17) 

47.81 

(38) 

87.5 

(82) 

93.3 

(28) 

92.5 

(30) 

LPP 48.05 

(10) 

50 

(30) 

87.5 

(38) 

93 

(38) 

95 

(78) 

LDA 46.94 

(14) 

49.06 

(22) 

82. 5 

(74) 

93.3 

(22) 
100 

(30) 

DNE 48.33 

(22) 

49.37 

(22) 

87.5 

(30) 

93.33 

(30) 

92.5 

(14) 

LDNE 48.33 

(22) 

57.81 

(18) 

88.75 

(14) 

95 

 (36) 
100 

(13) 

SKLDNE 49.16 

 (18) 
60.93 

(22) 
91.25 

(62) 
98.33 

(30) 
100 

(10) 

 

In the following, the output figures of MATLAB with comparative recognition results 

are plotted with changing the dimensionality of the transformation matrix for each given 

training number Tn on each data. 
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Figure 4.4. (a-k). The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn on each data (Sheffield Face 

database). 
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Figure 4.5. (a-e). The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn on each data (Sheffield pre-

cropped database). 

The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn on Sheffield face and Sheffield 
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pre-cropped database are shown in Figure 4.4a-k and Figure 4.5a-e respectively. 

According to Table 4.1 and Table 4.2, three main conclusions can be drawn. First, 

SKLDNE significantly outperformed other methods (PCA, KPCA, UDP, LPP, LDA, 

DNE and LDNE) over an extensive range of dimensionality for all the different numbers 

of training and testing images, whether the training sample size was large or small. As can 

be observed, when the training sample number was small, SKLDNE clearly behaved more 

efficiently than all other recognition techniques which proves the robustness of this 

method in a case of small training sample size problem (SSS). Secondly, it is obvious that 

the recognition rates of all implementations are better when more training samples are 

used. Third, when the dimensionality increases to about 20, the recognition accuracy of 

each method first surges rapidly and then roughly becomes stable. The differences 

between the recognition rate of SKLDNE and other methods are obvious when the training 

sample number is very small. However, for the larger training sample, the mentioned 

differences of classification rate increase which shows the superiority of our technique. 

For instance, in training number of 1, 2, 3, SKLDNE has achieved much better results 

than others. Besides, for Tn=17 on Sheffield, SKLDNE has reached 100 percent of 

recognition rate while the results are much lower for other methods. The Accuracy of 

SKLDNE for Tn=16, 15, 8, 7, 6, 5, 4 is 2.2%, 3.7%, 3.6%, 7%, 5.4%, 4.6% and 4% more 

than LDNE respectively.  

SKLDNE can effectively yield an optimal embedding subspace that finds a 

substantial submanifolds-based structure with lower dimensionality. The within-class 

local structure, which is very important for face recognition, can be preserved 

simultaneously in a nonlinear kernel feature space. SKLDNE can solve the “out-of-
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sample” problem and the “overlearning of locality” problem in manifold learning, which 

other aforementioned methods often fail. To explain the superiority of our method 

compared to its main competitors (LDNE, LPP, and DNE), we should discuss their 

differences and similarities. LPP is an unsupervised subspace learning that preserves 

locality without considering class label information of neighbors. Unlike LPP, SKLDNE 

not only takes into account locality with kernel weighting but also utilizes class label 

information. For multi-class classification problems, LPP could improperly take inter-

class repulsion as intra-class attraction, which may result in that the inter-class neighbors 

might have the same representations as intra-class neighbors in the transformed space, and 

could further degrade classification performance. In contrast, SKLDNE divides the 

neighborhood of a data point into inter-class and intra-class neighborhoods to distinguish 

points from different classes in the new subspace by analyzing inter-class repulsion and 

intra-class attraction. It can simultaneously preserve intra-class and interclass geometrical 

information and have more discriminating power than LPP. Besides, due to the small 

sample size (SSS) problem, the generalized Eigen equation of LPP cannot be directly 

solved, but this problem does not exist in our method. SKLDNE, LDNE, and DNE are 

supervised subspace learning methods. LDNE and DNE are designed to use class 

information to distinguish points from different classes in the transformed space. 

However, their projection method might not be effective for preserving locality and 

nonlinear features. Moreover, because DNE ignores similarities between a point and its 

neighbors, its simple weight assignment scheme could be inadequate for the analysis of 

intra-class compactness and inter- class scatterness in the embedded space, which could 

result in the degradation of classification performance.  
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Therefore, based on these results, it can be concluded that the recommended 

SKLDNE technique is a promising technique to be used for dimensionality reduction with 

very satisfactory performance in classification to deal with high-dimensional data. 

4.2.2 Experiment using the Yale database 

The Yale face database [83] contains 165 grayscale images in GIF format from 15 

individuals. Under different facial expressions and lighting conditions include 11 images 

for each subject with different facial expression or configuration as following: center-

light, wearing glasses, happy, left light, wearing no glasses, normal, right-light, sad, 

sleepy, surprised and wink. In the experimental results, each image was cropped and 

resized to 32*32 pixels. Figure 4.6a-b shows sample images of one person in the Yale 

database and corresponding cropped images and Figure 4.7 demonstrates the different 

types of implementations with all the different number of training and testing image on 

the Yale database. 

 

a 
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Figure 4.6 (a). A subset of original YALE database, (b) a subset of cropped images 

 

 

 

 

 

 

 

Figure 4.7. Different types of implementations of the SKLDNE method in the Yale Database 

Note that PCA was used in all methods for feature extraction, and all methods 

include a PCA phase. The optimum rate of recognition of each technique and the 

equivalent dimension implemented in the Yale database is illustrated in Table 4.3. 

Furthermore, in all experiments, due to a large number of implementations, it was decided 

to select some training and testing images that were more challenging for the classification 

task to clarify the performance of the aforementioned dimensionality reduction techniques 

in these critical areas. Considering the small training sample size problem (SSS), we first 

selected a training number of 1 sample and then some larger numbers from 6 to 9 to 

1 image to train, 10 images to test 

6 images to train, 5 images to test 

7 images to train, 4 images to test 

8 image to train, 3images to test 

9images to train, 2 images to test 

SKLDNE on 

Yale 
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evaluate the performance of our SKLDNE method in some common existing problems 

such as the SSS problem and the out-of-sample problem.  

Table 4.3. Maximum recognition accuracies (in percentage terms) of SKLDNE and other 

methods for the different number of training and testing images in the Yale Face database and 

corresponding dimensions (shown in parentheses). 

Database Yale Face 

Tn 1 6 7 8 9 

PCA 51.66 
(29) 

81.66 
(22) 

88.88 
(26) 

86.6 
(26) 

93 
(10) 

KPCA 50 
(10) 

83.3 
(30) 

91 
(30) 

86.66 
(90) 

93.3 
(10) 

UDP 49.16 
(25) 

81.66 
(50) 

88.8 
(54) 

90 
(28) 

92.9 
(18) 

LPP 51 
(22) 

83 
(26) 

91.1 
(30) 

93 
(34)  

93.3 
(18) 

LDA 50 
(22) 

81.66 
(18) 

91.1 
(22) 

93.3 
(98) 

93.3 
(50) 

DNE 51.66 
(30) 

83.3 
(30) 

91 
(30) 

90 
(66) 

93 
(10) 

LDNE 60 
(19) 

83.3 
(50) 

88.88 
(57) 

93.33  
(48) 

100 
(42) 

SKLDNE 60.83 
(22) 

85 
(38) 

95.55 
(52) 

96.66  
(46) 

100 
(26) 
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Figure 4.8. (a-e). The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn on each data 

Table 4.3 shows that the SKLDNE method achieved the highest accuracy in 100% 

of the implementations in the Yale Database. In Figure 4.8a–e, the comparative 

classification accuracies are plotted for each given Tn (training number) in each dataset 

through changing the dimensions of the transformation matrix. As is shown, the 

recognition rate of each technique increased promptly until the dimensionality was almost 

40, and then it stabilized. It can be observed in Table 4.3 that SKLDNE was implemented 

more efficiently than others among a wide variety of dimensionality in the Yale Face 

Database. Meanwhile, the best implementation of SKLDNE was achieved at smaller 

dimension values in most of the training numbers for each data set compared to LDNE. 

Moreover, differences in the classification between SKLDNE and other methods are very 

clear, especially when the training number was small, for instance, Tn = 1. For training 
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number 7, SKLDNE yielded an improvement of around 4.5% compared with DNE, LPP, 

LDA, and KPCA, and 6.6% in comparison with LDNE, UDP, and PCA respectively. For 

training number 9, both SKLDNE and LDNE gained 100% accuracy, while accuracies in 

other methods with the same training number were much lower. To explain the superiority 

of the proposed method, our SKLDNE first mapped the data in the kernel space to capture 

the substantial extracted data and then both geometrical and discriminant information of 

the data were taken, benefiting from a significant form of the affinity weight matrix to 

embed the graph. Although LPP, DNE, and LDNE outperforming PCA, KPCA, and UDP 

demonstrates that the discriminant and local data structure-based methods are more 

suitable for face recognition, our SKLDNE had more nonlinear data representation, 

locality preservation, and discriminating power than other methods, and consequently 

achieved the best recognition accuracy. Therefore, based on the mentioned characteristics 

of SKLDNE, it can be concluded that our SKLDNE can overcome the “SSS,” “out-of-

sample,” and “overlearning” problems. 

4.2.3 Experiment using the ORL database 

The ORL face database [84] contains a set of face images capturing between 1992 

and 1994 in the AT&T lab in collaboration with the Robotic Group of the Cambridge 

University Engineering Department [85]. There are ten different grayscale images from 

40 distinct subjects. All 10 face images of each subject were captured at different times, 

with changes in the lighting, facial details (with glasses or no glasses) or facial expressions 

(smiling/not smiling, open/closed eyes,), against a dark homogeneous background, and 

with straight and frontal views. The size of all images is equal to 92 × 112 pixels in PGM 

format. The images were captured in 40 directories [86]. It should be noted that 
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preprocessing was used and all original images were already cropped and resized. In this 

project, the size of 32 × 32 pixels was chosen for all ORL images. Figure 4.9 illustrates 

three different subjects (each with 10 images) from the ORL database.  

 

Figure 4.9.  The three different subjects (each with 4 images) from ORL database. 

Figure.4.10 below shows the different types of implementations of the SKLDNE method 

in the ORL Face Database include one small training sample size and the rest of larger 

size. 

 

 

 

 

 

 

 

 

 

Figure.4.10. The different types of implementations of the SKLDNE method in the ORL Face 

Database 

1 image to train,9 images to test 

4 images to train, 6 images to test 

5 images to train, 5 images to test 

6 image to train, 4 images to test 

7 images to train, 3 images to test 

SKLDNE on 

ORL Face  

8 images to train, 2 images to test 
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In our experiments, the number of training samples Tn = 1, 4, 3, 4, 5, 6, 7, 8 were 

chosen from the dataset related to each subject to make the training sample set. The other 

numbers of images are applied as a testing sample set. As already mentioned, PCA was 

used in the classification phase in all methods. The maximal average accuracy (in 

percentage terms) and its corresponding dimension, followed by the alteration in the 

training sample sizes, are illustrated in Table 4.4. It should be noted that the best 

performance among other methods is indicated in boldface. From Table 4.4 and Figures 

4.11a-f, it can be observed that SKLDNE generally outperformed LDNE, whether the 

number of training sample size was small or not, in almost smaller numbers of dimensions. 

Moreover, as a supervised method, SKLDNE also significantly outperformed other 

techniques (KPCA, LPP, DNE, UDP, and LDA) regardless of the change in the training 

sample size. Compared to other techniques, SKLDNE performed better in small training 

sample size case. Furthermore, when the training number was equal to 8, SKLDNE had a 

zero error rate compared to that of PCA (4.1%), KPCA (3.75%), UDP (4%), LPP (2.5%), 

LDA (4%), DNE (3.75), and LDNE (3.5%). The Accuracy of SKLDNE for Tn=7, 6, 5, 4 

is 2.5%, 1.2%, 2%, and 1.3%more than LDNE respectively. SKLDNE can simultaneously 

discover inter-class and intra-class geometrical information and have more nonlinear data 

representation, locality preservation, and discriminating power than other techniques. 

Therefore, SKLDNE does have merit over other techniques in terms of resolving 

classification problems in face recognition. This characteristic of SKLDNE in small 

sample size cases is indeed important to improve the recognition rate in practice since face 

recognition is commonly a small sample size problem. Normally, a small number of 

images of each person are accessible in many real-world tasks.   
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Table 4.4. Maximum recognition accuracies (in percentage terms) of SKLDNE and other 

methods for the different number of training and testing images in the ORL Face database and 

corresponding dimensions (shown in parentheses). 

DATABASE ORL FACE 

TN 1 4 5 6 7 8 

PCA 
78.75 

(30) 

85.41 

(30) 

87.5 

(26) 

95.62 

(20) 

95.83 

(10) 

95.9 

(10) 

KPCA 
81.56 

(46) 

87 

(54) 

89 

(66) 

96.2 

(34) 

96.66 

(34) 

96.25 

(20) 

UDP 
80 

(54) 

86.66 

(90) 

89.5 

(98) 

94.75 

(38) 

96.6 

(18) 

96 

(14) 

LPP 
80.62 

(58) 

87.5 

(86) 

90 

(94) 

95 

(34) 

95.8 

(30) 

97.5 

(62) 

LDA 
80.93 

(54) 

87.91 

(34) 

90 

(38) 

96.25 

(22) 

95.83 

(34) 

96 

(18) 

DNE 
81.56 

(46) 

87.08 

(54) 

89 

(66) 

96.2 

(34) 

96.66 

(34) 

96.25 

(10) 

LDNE 
85 

(26) 

92 

(62) 

92 

(78) 

95.6 

(30) 

95 

(24) 

96.5 

(54) 

SKLDNE 
85.93 

(38) 

93.33 

(61) 

94 

(50) 

96.87 

(66) 

97.5 

(22) 

100 

(18) 
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Figure 4.11. (a-f). The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn on each data(ORL database) 
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4.2.4 Experiment using the Head Pose database 

Head Pose database[87, 88] contains 2790 face images of 15 individuals with 

variation of pan and tilt angles from -90 to +90 degrees. For every person 2 series of 93 

images (93 different poses) were taken. Figure 4.12 illustrates a subset of images of one 

subject from head pose image database. 

 

Figure 4.12. A subset of images of one subject from the Head Pose database 
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Figure 4.13. The different types of implementations of the SKLDNE method in the Head Pose 

Database  

As can be observed in Table 4.5 and Figure 4.14a-f, SKLDNE performed better than 

the other seven methods, regardless of the variation in the training sample size. The 

maximal recognition rate of SKLDNE when Tn = 130 was up to 99.28%, while for other 

methods it was much lower. This reveals that, when the given training sample size for 

each class gets larger, SKLDNE can obtain much better results than other methods. Two 

more points can also be outlined. First, our supervised method with kernel weighting can 

notably enhance the class classification performance, but applying the kernel trick has no 

significant influence on PCA performance. Second, SKLDNE achieves optimal 

recognition rates at an almost smaller number of dimensions as the recognition rate of 

SKLDNE retains the best results as the dimension varies from 14 to 30. Compared to the 

other techniques, SKLDNE preserves the more discriminating and local features of face 

images. It also preserves more local geometric relations of the within-class samples by 

30 image to train, 156 images to test 

70 images to train, 116 images to test 

90 images to train, 96 images to test 

110 image to train, 76 images to test 

120 images to train, 66 images to test 

SKLDNE on 

Head Pose  

130 images to train, 56images to test 
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nonlinear kernel mapping. It should be noted that linear methods such as LPP, LDA, 

LDNE, DNE, and UDP often fail to deliver good classification performance when face 

images are subject to complex nonlinear changes such as expression, lighting, pose and 

so on. Figure 4.14a-f indicates that the recognition implementations of all methods first 

sharply increase while the projected dimensions are added, and then, after obtaining the 

optimum, they tend to become stable. 

Table 4.5. Maximum recognition accuracies (in percentage terms) of SKLDNE 

and other methods for the different number of training and testing images in the Head 

Pose database and corresponding dimensions (shown in parentheses). 

DATABASE HEAD POSE 

TN 30 70 90 110 120 130 

PCA 
66.21 

(30) 

63.69 

(26) 

50.16 

(26) 

79.73 

(26) 

83.6 

(74) 

82.67 

(26) 

KPCA 
66.38 

(30) 

64.31 

(70) 

59.37 

(30) 

84.86 

(90) 

86.22 

(22) 

85.71 

(62) 

UDP 
65.83 

(6) 

64.39 

(22) 

58.75 

(34) 

85.52 

(98) 

87.21 

(94) 

85.71 

(78) 

LPP 
68.01 

(30) 

64.4 

(82) 

59.7 

(26) 

85.39 

(90) 

88.36 

(62) 

87.85 

(50) 

LDA 
68.21 

(6) 

65.14 

(18) 

60 

(22) 

86.57 

(98) 

87.04 

(98) 

88.57 

(46) 

DNE 
66.28 

(30) 

64.5 

(70) 

58.5 

(30) 

84.63 

(90) 

86.22 

(74) 

85.71 

(62) 

LDNE 
69.7 

(20) 

66.2 

(19) 

59 

(18) 

96.9 

(24) 

98 

(18) 

98.02 

(18) 

SKLDNE 
70.7 

(30) 

67.06 

(18) 

60.83 

(22) 

98.94 

(22) 

99.01 

(18) 

99.28 

(14) 
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Figure 4.14. (a-f). The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn on each data(Head Pose) 

 

4.2.5 Experiment using the Finger Vein and Finger Knuckle Print databases 

To examine the performance of our method on other databases rather than face 

database, it has been decided to do all implementations on Finger Vein and Finger 

Knuckle Database which are two famous public databases. The following is a brief 

explanation of both databases. The Finger Vein database used in this project was collected 

from 51 individuals (male and female) who were aged between 21 and 56 [89]. 10 images 

were captured from each subject. Four fingers were used for capturing, including right 

and left middle finger and right and left index finger. There are 204 different fingers in 

the database, and the data consist of 2040 images in total, in which each finger image 
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originally had a dimension of 480 × 160 pixels. In our implementations, each image was 

resized to 32 × 32. The captured images from one person can be seen in Figure 4.15. 

 

Figure 4.15. The captured images from one person in the Finger Vein Database 

The Finger Knuckle Print (FKP)[90] database has been provided by Hong Kong 

Polytechnic University and is freely available online. Based on the database description, 

Finger Knuckle Print (FKP) images were collected from 165 individual volunteers (males 

and females) [91]. The samples were collected in two distinct sessions and, in each one, 6 

images were captured from 4 fingers (including left and right index finger and the left and 

right middle finger). Therefore, 7920 finger images in total were taken from 660 different 

fingers. In our experiments, the original image of the database was cropped and was then 

resized to 32 × 32 pixels. Figure 4.16 shows a cropped sample of the FKP database. 

 

Figure 4.16. A cropped sample of the FKP database. 

Figure 4.17 and Figure 4.18 illustrate the different types of implementations by the 

SKLDNE method in the Finger Vein and Finger Knuckle databases respectively. 
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Figure 4.17 .The different types of implementations of the SKLDNE method in the Finger Vein  

 

 

 

 

 

 

 

 

 

 

 

 

 

1 image to train, 9 images to test 

7 images to train, 3 images to test 

2 images to train, 8 images to test 

3 images to train, 7 images to test 

4 image to train, 6 images to test 

5 images to train, 5 images to test 

SKLDNE on 

Finger Vein 

6 images to train, 4 images to test 

1 image to train, 11 images to test 

9 images to train, 3 images to test 

4 images to train, 8 images to test 

5 images to train, 7 images to test 

6 image to train, 6 images to test 

7 images to train, 5 images to test 

SKLDNE on 

Finger Knuckle 

8 images to train, 4 images to test 

10 images to train, 2 images to test 

11 images to train, 1 images to test 
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Figure 4.18. The different types of implementations of the SKLDNE method in the Finger 

Knuckle 

In this section, the performance of each method is explored by changing the 

dimensionality of the transformation matrix and the related best recognition rate with the 

corresponding dimension on each database. Besides, the first Tn images of each subject 

in the dataset are used for training and the remaining images for a test. Furthermore, the 

PCA classifier using Euclidean distance is applied in the recognition phase. The best 

classification rates of all methods implemented in both databases are demonstrated in 

Table 4.6 and Table 4.7 (in the Finger Vein and Finger Knuckle databases respectively). 

Based on the experiment results shown in Table 4.6 and Figure 4.19a-g, our SKLDNE 

gained the best recognition rate among all the different training numbers in the Finger 

Vein database, which proves that it has a convincing performance compared to other 

advanced methods. Regarding the small training sample size case, the SKLDNE method 

still showed that it performed significantly better than other techniques, as the maximal 

recognition accuracy rate of SKLDNE in training number 2 was almost 5% more than 

PCA, KPCA, UDP, LPP, and DNE, and 1.2% more than LDNE. The Accuracy of 

SKLDNE for Tn=5 is 2.8%, 2.4%, 1%, 2.6%, 2.2%, 2.8% and 2.7% more than LDNE, 

DNE, LDA, LPP, UDP, KPCA, and PCA respectively. Our SKLDNE method was always 

able to represent its optimal embedding space with a lower value of dimensions in 

comparison with the other seven techniques. For example, the SKLDNE results for Tn = 

7 achieved 100% recognition accuracy in the smallest value of projected dimensions (26). 

This conveys that our approach is more effective, due to its significant characteristics, 

being able to represent not only nonlinear and complex variations in images but also to 
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model both localities of LPP and discrimination of DNE simultaneously. This fact 

demonstrates the good performance of our proposed method. 

 Table 4.7 shows that the SKLDNE recognition performance was significantly more 

efficient than other techniques, regardless of the variation in the training sample size, in 

the Finger Knuckle database. The recognition rate of SKLDNE when Tn = 11 was equal 

to 100%, while for the LDNE it was equal to 97.2%. Another point that is worth 

mentioning on the  recognition performance of SKLDNE compared to other methods is 

related to the small training sample size case, as SKLDNE had the best performance in 

this respect. Again, all the best recognition performances of SKLDNE were mostly 

achieved at smaller dimension values on every Tn per data set. It can also be observed 

that, when the given training sample size of each class became larger, SKLDNE achieved 

much better results than other techniques. For example, for Tn = 6, the accuracy of 

SKLDNE was around 8% and 21% more than LDNE and PCA respectively. The Accuracy 

of SKLDNE for Tn=1, 4, 5, 7, 8, 9, and 10 is 2.4%, 2.6%, 3.4%, 6%, 5.2%, and 5.7% 

more than LDNE respectively.  To well explain the superiority of SKLDNE, it should be 

noted that it can preserve more effective nonlinear features and more geometrical and 

discriminant information so, it can tackle the small sample size, the out-of-sample, and 

the “overlearning of locality" problems. Hence, it can be concluded that the SKLDNE 

approach is a promising supervised technique with satisfactory classification performance 

when applied in the Finger Knuckle database. The recognition rates in comparison with 

the variety of dimensions for each Tn in the Finger Knuckle Print database are shown in 

Figure 4.20a-i. 
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Table 4.6. Maximum recognition accuracies (in percentage terms) of SKLDNE and other 

methods for the different numbers of training and testing images in the Finger Vein database and 

corresponding dimensions (shown in parentheses). 

DATABASE FINGER VEIN 

TN 1 2 3 4 5 6 7 

PCA 
79.66 

(30) 

89.37 

(34) 

94.85 

(34) 

96.3 

(26) 

96.41 

(26) 

99 

(26) 

99.54 

(27) 

KPCA 
79.33 

(30) 

88.75 

(30) 

94.57 

(30) 

96.33 

(30) 

96.4 

(26) 

99.2 

(26) 

99.5 

(27) 

UDP 
80 

(30) 

90.75 

(30) 

95.85 

(30) 

96.8 

(34) 

97 

(30) 

99 

(34) 

99.5 

(30) 

LPP 
79.66 

(30) 

89.5 

(22) 

94.85 

(34) 

96.83 

(26) 

96.6 

(22) 

99 

(34) 

99.56 

(34) 

LDA 
79.66 

(30) 

91.75 

(26) 

96.71 

(30) 

97.16 

(30) 

98.2 

(30) 

99.5 

(22) 

99.55 

(29) 

DNE 
81 

(90) 

90.12 

(90) 

95.42 

(62) 

97 

(86) 

96.8 

(66) 

99.15 

(54) 

100 

(86) 

LDNE 
80.75 

(86) 

94.17 

(38) 

96.85 

(62) 

97.5 

(76) 

96.4 

(74) 

99.25 

(66) 

99.2 

(42) 

SKLDNE 
81.22 

(54) 

95.38 

(26) 

97.71 

(26) 

98.5 

(34) 

99.2 

(34) 

99.75 

(26) 

100 

(26) 

 

Table 4.7. Maximum recognition accuracies (in percentage terms) of SKLDNE and other 

methods for the different numbers of training and testing images in the Finger Knuckle database 

and corresponding dimensions (shown in parentheses). 

DATABASE FINGER KNUCKLE 

TN 1 4 5 6 7 8 9 10 11 
PCA 50.18 

(30) 
67.5 
(78) 

68.28 
(94) 

59.66 
(30) 

75.2 
(26) 

92 
(82) 

94 
(90) 

93 
(38) 

97.5 
(40) 

KPCA 52.9 
(50) 

61.87 
(60) 

63.42 
(39) 

59.66 
(37) 

80.2 
(30) 

87.75 
(25) 

89.66 
(26) 

93 
(27) 

97.15 
(20) 

UDP 56.18 
(62) 

65.25 
(98) 

67.14 
(90) 

63.88 
(90) 

82.2 
(98) 

92 
(98) 

93.3 
(90) 

96.5 
(70) 

97 
(35) 

LPP 55 
(62) 

71 
(94) 

72 
(94) 

67.5 
(98) 

82.2 
(94) 

92.5 
(98) 

94.2 
(98) 

96 
(74) 

98 
(86) 

LDA 53 
(62) 

72.12 
(94) 

72.14 
(98) 

68.83 
(98) 

84.8 
(90) 

92.7 
(74) 

94.33 
(90) 

97 
(82) 

98 
(26) 

DNE 53.81 
(98) 

67.5 
(88) 

68.3 
(94) 

65.33 
(94) 

80.4 
(94) 

92 
(82) 

94 
(90) 

93 
(38) 

97 
(20) 

LDNE 53.9 
(86) 

76.75 
(87) 

78 
(86) 

72.70 
(94) 

84.6 
(76) 

92.75 
(34) 

94.66 
(58) 

93.3 
(46) 

97.2 
(26) 

SKLDNE 56.36 
(22) 

79.37 
(86) 

81.42 
(98) 

80.16 
(90) 

90.6 
(66) 

98 
(66) 

98.66 
(26) 

99 
(22) 

100 
(18) 
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Figure 4.19. (a-g). The comparative recognition results, by changing the dimensionality of the 

transformation matrix for each given training number Tn in the Finger Vein Database 
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Figure 4.20. (a-i). The comparative recognition results,by changing the dimensionality of the 

transformation matrix for each given training number Tn in the Finger Knuckle Database 
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4.2.6 Standard evaluation metrics used in this research 

In this section, the classifier performance of our method is evaluated based on 

Precision, F score, and Recall (or true positive rate), considering the same implementation 

setting for all methods. Confidence intervals of error (CI) are also calculated and listed. 

In Tables 4.8, 4.9, 4.10, 4.11 and 4.12, we have summarized the results. The proposed 

method achieved the best precision, 95.5% for Yale, 60.8% for Head pose, 99.2% for 

finger vein and 79.1% for finger knuckle, among the compared methods. It was around 

3.6%, 1.4%, 0.4%, and 6.6% better than LDNE on Head pose, Yale, Finger vein and 

Finger knuckle database respectively. This proved that the proposed method consistently 

outperformed others, especially in higher precision ranges. Besides, the highest f-score 

and recall are achieved by SKLDNE. For example on the Yale database,  the f-score of 

SKLDNE is 96.1% which is 3%, 3.9%, 6%, 13.4%, 14%, 18.6% and 11.4% more than 

LDNE (93.1%), DNE (92.2%), PCA (90.2%), LDA (82.7%), LPP (82.1%), UDP (77.5%) 

and KPCA (84.7%) respectively. It can also be observed in tables that the values of the 

confidence interval of error for SKLDNE are very smaller than other techniques. 

To well explain the superiority of SKLDNE, it should be noted that it can preserve 

more effective nonlinear features and more geometrical and discriminant information. 

SKLDNE can yield an optimal subspace that best finds the indispensable submanifolds-

based structure. It has been designed successfully to preserve local geometric relations of 

the within-class samples, which are very important for image recognition. Many effective 

nonlinear data features may be lost during the classification process using linear 

techniques such as LDNE, LDA, DNE, and LPP. Therefore, applying a nonlinear method 

can effectively improve classification performance. This technique is a supervised 
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learning method, as the data scholar acts as a guide to instruct the main algorithm whose 

conclusion should be found. SKLDNE considers class label information of neighbors in 

which there is a direct connection with the classification to enhance final recognition 

performance. Besides, it also benefits from the advantages of “locality” in LPP in which, 

due to the prior class-label information, geometric relations are preserved. SKLDNE can 

resolve the SSS problem, which that mostly faced by other aforementioned techniques as 

well as the “overlearning of locality” problem in the manifold learning. Due to its kernel 

weighting, it is very efficient in reducing the negative influence of outliers on the 

projection directions, which effectively handles the drawbacks of linear models and makes 

it more robust to outliers. 

Table 4.8. Comparison of standard evaluation metrics (Precision (%), Recall (%), F-Score 

and Confidence Interval of error (CI) (%)) on Head pose Database 

 

 

 

 

 

 

Method Precision Recall F-score CI  

SKLDNE 0.608333 0.708815 0.654742 [0.360789-0.422545] 

LDNE 0.594792 0.687863 0.637951 [0.374153-0.436264] 

DNE 0.588542 0.541744 0.564174 [0.380329-0.442588] 

PCA 0.578531 0.533155 0.554842 [0.390571-0.452483] 

LDA 0.596875 0.566870 0.581486 [0.372095-0.434155] 

LPP 0.589583 0.548630 0.568370 [0.379299-0.441534] 

UDP 0.575000 0.530431 0.551817 [0.393728-0.456272] 

KPCA 0.591667 0.556076 0.573319 [0.377240-0.439427] 
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Table 4.9. Comparison of standard evaluation metrics (Precision (%), Recall (%), F-Score 

and Confidence Interval of error (CI) (%)) on Yale Database 

 

 

Table 4.10. Comparison of standard evaluation metrics (Precision (%), Recall (%), F-

Score and Confidence Interval of error (CI) (%)) on Finger Vein Database 

 

 

Table 4.11. Comparison of standard evaluation metrics (Precision (%), Recall (%), F-

Score and Confidence Interval of error (CI) (%)) on Finger Knuckle Database 

 

 

Method Precision Recall F-Score CI  

SKLDNE 0.955556 0.966667 0.961079 [0.000000-0.104657] 

LDNE 0.919178 0.943532 0.931058 [0.005649-0.162027] 

DNE 0.911112 0.933333 0.922088 [0.005739-0.172038] 

PCA 0.888889 0.916667 0.902564  [0.019288-0.202934] 

LDA 0.830243 0.833333 0.827740 [0.065063-0.289485] 

LPP 0.822222 0.820000 0.821110 [0.066070-0.273485] 

UDP 0.755556 0.796349 0.775416 [0.118878-0.370011] 

KPCA 0.844444 0.850000 0.847213 [0.049660-0.261451] 

Method Precision Recall F-score CI  

SKLDNE 0.992000 0.993333 0.992666 [0.000191-0.015809] 

LDNE 0.988000 0.990619 0.989308 [0.002456-0.021544] 

DNE 0.968000 0.974095 0.971038 [0.016573-0.047427] 

PCA 0.954000 0.961734 0.954676 [0.019977-0.053428] 

LDA 0.974000 0.978810 0.976399 [0.012051-0.039949] 

LPP 0.966000 0.973571 0.969771 [0.018115-0.049885] 

UDP 0.972000 0.978393 0.975186 [0.013540-0.042460] 

KPCA 0.964000 0.970762 0.967369 [0.019671-0.052329] 

Method Precision Recall F-score CI  

SKLDNE 0.791667 0.840189 0.815207 [0.175837-0.240829] 

LDNE 0.725000 0.787221 0.754831 [0.239271-0.310729] 

DNE 0.650000 0.673473 0.661528 [0.311834-0.388166] 

PCA 0.650000 0.673851 0.661711 [0.311834-0.388166] 

LDA 0.688333 0.715652 0.701727 [0.274605-0.348728] 

LPP 0.675000 0.717619 0.695657 [0.287522-0.362478] 

UDP 0.638333 0.700059 0.667773 [0.323220-0.400113] 

KPCA 0.596667 0.602185 0.599413 [0.364080-0.442587] 
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4.2.7 Classification performance  

In this section, utilizing a new group of experiments, we evaluated the SKLDNE 

performance through changing k-neighborhood variation Wk (from 1 to 30 with a scale 

of 2). The number of training samples selected for each database was Tn = 4, 5, 6, 7, 8, 

15, 16, 17 in Sheffield, Tn=2, 3, 14, 15, 16, 17 in Sheffield Pre-cropped, Tn = 2, 6, 7, 8, 9 

in Yale, Tn = 5, 6, 7, 8, 9 in ORL, Tn = 120, 130, 140, 150, 160 in Head Pose, Tn = 5, 6, 

7, 8, 9 in Finger Vein, and Tn = 7, 8, 9, 10, 11 in the Finger Knuckle databases. It should 

be noted that the rest of each class in each dataset was used for testing. The training 

number samples were randomly selected. The maximum recognition rates of SKLDNE in 

comparison with Wk for the different numbers of training samples are indicated in Figure 

4.21a-g. 

 
a.(Sheffield) 

 
b.(Sheffield-Pre-cropped) 
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c.(Yale) 

 
d.(ORL) 

 
e.(Head Pose) 

 
f.(Finger Vein) 

 

 
g.(Finger Knuckle) 

 
Figure 4.21. (a-g). Maximum recognition rate of SKLDNE versus Wk for the different numbers 

of training samples on Sheffield, Yale, ORL, Head Pose, Finger Vein and Finger Knuckle 

Databases. 
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It can be seen that the classification performance became better as the number of 

training samples increased. The classification performance of SKLDNE improved first 

with an increase of Wk until almost Wk = 9 in the Sheffield and Head Pose database and 

then it decreased dramatically. In the Yale, ORL, Finger Vein, and Finger Knuckle data 

sets, it can easily be observed that the recognition performance of SKLDNE enhanced 

rapidly when Wk varied from 1 to 7 in Yale, 1 to 10 in ORL, 1 to 9 in Finger Vein, from 

1 to 6 in Finger Knuckle, and then it decreased when Wk became larger, since large values 

of the k-neighborhood variable Wk have an effect on creating the adjacent weight matrix. 

It has already been proved that the k-neighborhood selected for data points might contain 

more outliers belonging to other classes at a large number of Wk when a dataset includes 

many classes with a small number of samples for each class. Thus, the constructed 

adjacent weight matrix does not have sufficient discrimination for image recognition. 

These numbers of Wk with the best recognition performances will be chosen further on to 

be used in SKLDNE. 

4.2.8 Computational cost 

The experiment of analyzing computational cost was carried out on an Intel (R) 

Core i5-4200U CPU, 2.3 GHz, 10 GB RAM machine using MATLAB (R2016, Natick, 

MA, USA). The computational costs of the different classification methods using the Yale 

database are listed in Table 4.8. 
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Table 4.12. The computational costs (Time(s)) of the different classification methods 

using the different databases. 

Method SKLDNE LDNE DNE KPCA LDA LPP UDP PCA 

Yale 0.35 0.4 0.37 0.012 0.04 0.36 0.06 0.02 

UIMST 0.39 0.43 0.87 0.021 0.034 0.056 0.054 0.04 

Sheffield 0.65 0.77 0.82 0.25 0.16 0.25 0.48 0.035 

ORL 0.44 0.5 0.51 0.22 0.029 0.10 0.10 0.017 

Head pose 77.33 83.23 64.71 0.61 0.57 6.85 6.86 0.59 

Finger vein 1.61 2.45 1.73 0.1 0.14 0.62 0.63 0.16 

Finger 

Knuckle 

5.75 20.86 20.98 0.21 0.42 2.52 2.40 0.22 

 

From the results shown in Table 4.8, it can be observed that the proposed SKLDNE 

method was faster than its main competitors, such as LDNE, DNE, and LPP. The 

processing times of PCA, KPCA, UDP, and LDA were lower. However, the recognition 

rate results illustrate that these methods were much less accurate than the SKLDNE 

method. 

4.2.9 Comparison with other previously reported results  

Now, to have a more reliable comparison, we briefly compare our recognition 

results of the proposed method with previously published works, including a deep learning 

method named Deep Belief Networks (DBNs) [92, 93] with a traditional multilayer 

perceptron model (MLP) in the used facial expression databases, i.e., the JAFFE 

Database[94]. As a deep learning method, DBNs have an unsupervised feature learning 

ability. The JAFFE database includes 10 individuals (Japanese women) with 7 different 

expressions and has around 3 or 4 images for each expression. There are 213 images in 

total in this database. Each image has a resolution pixel of 256 × 256. In detail, we divided 

all image samples into 10 parts, 90% of which were applied to training, and the remaining 
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were applied to testing. Table 8 illustrates the recognition performance comparisons in the 

JAFFE database when dealing with three different image resolutions of 16 × 16, 32 × 32, 

and 64 × 64. We can see that the proposed SKLDNE method achieved the best recognition 

performance (100% in all cases), in comparison with the other previously reported results, 

which are much lower. This is attributed to the main characteristics of SKLDNE, which 

effectively represents more nonlinear data structures and has more locality and 

discrimination information preserving power. The results (Table 4.9) again show the 

robustness of SKLDNE for facial expression recognition. 

Table 4.13. Maximum recognition accuracies (in percentage terms) of SKLDNE and other 

methods in the JAFFE database. 

Method 16 × 16 32 × 32 64 × 64 

MLP 64.76 84.76 86.19 

DBNs + MLP 88.57 89.05 90.95 

SKLDNE 100 100 100 

 

 Summary 

In this chapter first MATLAB software and database properties, which are used in 

our thesis, are explained. Then the optimum size of images that can be selected for use in 

our experimental implementations is discussed. Besides, the concept of accuracy is 

discussed and the related formula to determine the accuracy is provided. From the wide 

range of experimental results of tests conducted in 6 different databases, the SKLDNE 

classifier outperforms other states of the art dimensionality reduction techniques like PCA, 

KPCA, UDP, LDA, DNE, LPP and LDNE classifier in all the different numbers of 

training sets and testing sets. The experimental results demonstrate that our proposed 
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method has satisfactory classification behavior regardless of varying the training sample 

size and dimensions. 
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5 CONCLUSION 
 

 Summary 

In this study, the performance of several well-known pattern recognition strategies was 

analyzed to clarify which techniques are best suited to be applied in face recognition. We 

also evaluated the weakness and robustness of each technique. As already mentioned, 

DNE cannot correctly preserve local information of data because it only assigns +1 to 

intra-class and −1 to inter-class neighbors, so it might fail to discover the most significant 

submanifolds for pattern classification. LPP is designed based on “locality” since it has 

no direct connection with classification, and it still suffers from the “over learning of 

locality” problem. LDNE has been proposed to overcome the problems existing in LPP 

and DNE; however, it does not guarantee an appropriate projection for classification 

purposes because many important non-linear data might be lost during its dimensionality 

reduction process. Besides, in some cases, LDNE cannot distinguish inter-class and intra-

class neighbors well either to conduct projection for all points. This can degrade 

classification performance.  

To address these problems, we have proposed a new supervised subspace learning 

algorithm named “Supervised Kernel Locality-Based Discriminant Neighborhood 

Embedding”. Combined with nonlinear data structures, locality, and discrimination 

information, SKLDNE can yield an optimal subspace that best finds the indispensable 

submanifolds-based structure. SKLDNE has been designed successfully to preserve local 

geometric relations of the within-class samples, which are very important for image 

recognition. Many effective nonlinear data features may be lost during the classification 
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process using linear techniques such as LDNE, LDA, DNE, and LPP. Therefore, applying 

a nonlinear method can effectively improve classification performance. This technique is 

a supervised learning method, as the data scholar acts as a guide to instruct the main 

algorithm whose conclusion should be found. SKLDNE considers class label information 

of neighbors in which there is a direct connection with the classification to enhance final 

recognition performance. Besides, It also benefits from the advantages of “locality” in 

LPP in which, due to the prior class-label information, geometric relations are preserved. 

SKLDNE can resolve the SSS problem, which is mostly faced by other aforementioned 

techniques as well as the “overlearning of locality” problem in the manifold learning. Due 

to its kernel weighting, it is very efficient in reducing the negative influence of outliers on 

the projection directions, which effectively handles the drawbacks of linear models and 

makes it more robust to outliers.  

Six publicly available datasets, i.e., Yale face, ORL face, Sheffield, Head Pose, Finger 

Vein and Finger Knuckle, were used to illustrate the significance of the proposed 

technique. Based on the experimental results, SKLDNE outperforms and demonstrates the 

potential to be implemented in real-world systems compared to other advanced 

dimensionality reduction methods by obtaining the highest recognition rates in all 

experiments. Representing complex nonlinear variations makes SKLDNE more powerful 

and more intuitive than LDNE and other aforementioned techniques in terms of 

classification. It had the best performance compared to others at smaller numbers of 

projected dimensions in each number of training samples per data set. Moreover, when 

the given training sample size for each class grew larger, SKLDNE also achieved much 

better results than other techniques. The overlearning of the locality problem and the out-
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of-sample problem in manifold learning can be avoided by applying our developed 

classifier. Compared to the other state-of-the-art techniques, such as PCA, KPCA, LDA, 

LPP, UDP, DNE, and LDNE, our SKLDNE method is more robust and effective for 

classification, which has been illustrated by the highest recognition rates. Experimental 

results reveal that our method consistently outperforms its competitors as SKLDNE has 

reached the 100 percent of recognition rate for Tn=17 in Sheffield, 9 in Yale, 8 in ORL, 7 

in Finger vein and 11in Finger Knuckle respectively, while the results are much lower for 

other methods. Therefore, it can be concluded that the proposed SKLDNE technique is a 

promising technique to be used for dimensionality reduction with a very satisfactory 

classification performance when dealing with high-dimensional data. 

 Future work 

In this thesis, the performance of the proposed method in six different databases is 

examined and our SKLDNE outperformed other methods in all experiments with a gray 

level format. As a plan, we are going to develop this classifier to be directly applied to 

two-dimensional data to effectively reduce computational cost. We also want to evaluate 

the effectiveness of our method for robot vision by improving its algorithm to be able to 

utilize different multiple face patterns. In particular, we intend to develop a planning 

function for data collection and use the actual implementation of our method in a robot. 

Furthermore, in some cases, there is a problem to distinguish inter-class and intra-class 

neighbors for all the points during the projections, which can degrade the classification 

performance. To overcome the problem, a new weight function can be designed for 
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constructing an adjacent weight matrix. However, this is out of the scope of this article, 

and we will discuss it in future work.  
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