We welcome you to study at the School of Computer Science at the University of Malaga (ETSI Informática – UMA). In this course guide, which is first and foremost designed to help exchange students to plan their studies during the exchange period, you will find descriptions of all the courses taught in English at our School during the academic year 2017-2018. Further inquiries will be handled by your contact teachers and the International Coordinator of the School:

Ana Cruz Martín
subdir-iem@informatica.uma.es

Also the International Office is there to help you:
Mª Carmen González
mcgonso@uma.es
http://www.uma.es/relaciones-internacionales/

We hope you will enjoy your stay at University of Malaga.
http://www.uma.es

More info: http://www.informatica.uma.es
Courses Syllabi

CODE 104

NAME Fundamentals of Programming

Credits 6 ECTS

Period Fall Semester

Course Specifications

Learning how to program computers. Most of this course hard work is to be performed in front of a computer. The theoretical basis and concepts are not complex and are previously discussed in classes.

Objectives and contents

The main objective is acquiring correct programming skills. A general programming language is used. References are made to other languages and techniques. The main focus is on the acquisition of algorithmic construction skills and code organization. Understanding the underlying concepts of computational sciences and a light approach to its formal basis will provide the necessary background.

Contents:
1. Introduction to programming.
2. Introduction to a programming language: C/C++
4. Structured data types

Assessment

Attending lectures is compulsory. Apart from the final unavoidable exam, there will be, at least, two midterm exams. Every practice, homework exercise, class activity, and forum participation will be part of a continuous evaluation.

Lecturer

Dr. Juan Falgueras Cano

juanfc@uma.es

Room 3.2.32

CODE 201

NAME Analysis and Design of Algorithms

Credits 6 ECTS

Period Fall Semester

Course Specifications

In-classroom activities: lectures, problem solving sessions, laboratory work; Individual work: problem assignments.

Objectives and contents

The objectives of the course are (1) knowing and grasping the main techniques for algorithm design (i.e., being able to apply these for solving specific problems and being able to reason about their applicability and suitability) and (2) attaining adequate knowledge about algorithmic complexity (i.e., analyze the algorithms built, reason about their efficiency and perform comparisons among algorithms).

The course is organized in two major thematic parts, one dealing with algorithm analysis (complexity, formal specification and verification) and another one tackling algorithm design (comprising techniques such as divide-and-conquer, dynamic programming, greedy algorithms, backtracking and branch-and-bound).

Assessment

A continuous assessment methodology is used: four partial exams and several lab tests will be conducted during the semester. The final mark will be based on their outcome plus a bonus obtained by actively participating in class (e.g., delivering proposed assignments, solving problems in class, etc.). A final exam will be available for students who could not obtain enough points during the semester.

Lecturer

Dr. Carlos Cotta Porras

ccottap@lcc.uma.es

Room 3.2.49
Courses Syllabi

CODE 202
NAME Databases
Credits 6 ECTS
Period Fall Semester

Course Specifications
Lectures in the classroom will introduce the foundations of database systems. Also, practical activities in laboratories will allow the students to learn how to handle a commercial database manager system. The student will have enough skills to understand and put in practice the basic topics and tools concerning database systems. This course is mainly developed in the labs, directly interacting with professional database software.

Objectives and contents
The objective is twofold: to learn the main concepts of the relational model (which is nowadays the base of most of commercial database systems) and to put in practice all this elements managing a commercial database manager system by means of professional tools. Contents include the Entity-Relationship model, the Relational model, the data definition language and data manipulation language of SQL and a brief introduction of the database architecture.

Assessment
There will be 2 main activities to be developed and evaluated in the semester (40% of the global score): database design (project activity) and database implementation by using the Oracle software (lab activity). A final exam regarding SQL language (lab activity) and a questionnaire complete the evaluation. The students have to engage in all the activities, participate in every evaluation milestone, and show a minimum level in all of them.

Lecturer
Dr. Manuel Enciso García-Oliveros
enciso@lcc.uma.es
Room 3.2.30

CODE 203
NAME Computer Organization
Credits 6 ECTS
Period Fall Semester

Course Specifications
Lectures in the classroom, individual work, questionnaires on-line by virtual campus and laboratory work.

Objectives and contents
The objective of the subject is to understand the internal organization of a computer (from a hardware point of view). The contents are divided in three units. The first one is composed of two chapters: Measuring and understanding performance (~2 weeks) and enhancing performance with Pipelining (~4 weeks). This unit has a laboratory exercise: Simulation of a pipelined processor (DLX). The second unit is composed by a unique chapter: Memory hierarchy (~4 weeks) and we use a cache simulator in the laboratory. Finally, the last unit is composed by one chapter: Input/output and peripherals (~3 weeks) with a laboratory work: Example of an Input/output system: ARM processor on Raspberry Pi.

Assessment
There will be four partial exams (~80% of the final grade) and other exercises (~20% of the final grade): list of exercises, problems, workshops, and practical assignments in the laboratory. A final exam is mandatory if the partial exams are failed.

Lecturer
Dr. Julio Villalba Moreno
jvillalba@uma.es
Room 2.2.38
Course Syllabi

CODE 204
NAME Data Structures
Credits 6 ECTS
Period Fall Semester

Course Specifications
Lectures and laboratory work.

Objectives and contents
Data structures are nowadays used to organize huge amounts of data so that algorithms can process them efficiently. This course introduces most important data structures used in Computer Science. Different implementations of the structures using an object oriented programming language and a functional one are described and corresponding performances are analyzed and compared. Applications of data structures to solve different problems are also presented.

Contents
- Introduction to Functional Programming.
- More on Functional Programming.
- Linear data structures: stacks, queues and lists.
- Trees: search trees, heaps and balanced trees.
- Hash tables: hash function and, collision resolution techniques.
- Graphs: directed and undirected graphs, depth and breadth first traversals, topological sorting.

Assessment
Continuous assessment during the lectures and laboratory sessions. Written and on computer examinations.

Lecturer
Dr. José E. Gallardo
pepeg@lcc.uma.es
Room 3.0.5

CODE 205
NAME Automata Theory and Formal Languages
Credits 6 ECTS
Period Fall Semester

Course Specifications
The course is mainly based in lectures in which student participation is encouraged through the presentation of exercises, individual work, and group work. Extra activities include writing essays and solving proposed exercises.

Objectives and contents
The course gives a basic introduction to the classic and contemporary theory of formal languages and automata theory. Contents include the following topics:

Assessment
The course contents will be evaluated in 4 blocks. A minimum of 5 is needed in each of the 4 blocks to pass the course, and for achieving this, the students have one opportunity during the continuous evaluation and a second and third ones in the two ordinary final exams calls. The final grade will be obtained by averaging the best grades obtained from each of the 4 blocks plus some extra points from proposed activities.

Lecturer
Dr. Leonardo Franco
lfranco@lcc.uma.es
Room 3.2.29
Courses Syllabi

<table>
<thead>
<tr>
<th>CODE</th>
<th>920</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>Computational Intelligence</td>
</tr>
<tr>
<td>Credits</td>
<td>4.5 ECTS</td>
</tr>
<tr>
<td>Period</td>
<td>Fall Semester</td>
</tr>
</tbody>
</table>

Course Specifications
The course is based on lectures in which the main ideas of the course are given as specific details of the problems and algorithms to be discussed and applied should be taken from reading the suggested related scientific publications. For each of the topics of the course, a computer based practice should be carried out together with a report of the work done and the results obtained.

Objectives and contents
The objective of the course is that the students acquire the knowledge and abilities needed in order to choose and apply computational intelligence algorithms for solving real problems in bioinformatics.

Contents
1. Clustering algorithms application to DNA microarray data.
2. Classification algorithms application for prediction of disease evolution.
3. Evolutive algorithms application to feature selection.
4. Probabilistic algorithms application to sequence detection and alignment.

Assessment
Course assessment is based on class participation, on the elaboration of reports and on a final exam.

Lecturer
Dr. Leonardo Franco
lfranco@lcc.uma.es
Room 3.0.29

<table>
<thead>
<tr>
<th>CODE</th>
<th>932</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>Biomedical Computational Modeling</td>
</tr>
<tr>
<td>Credits</td>
<td>4.5 ECTS</td>
</tr>
<tr>
<td>Period</td>
<td>Fall Semester</td>
</tr>
</tbody>
</table>

Course Specifications
Lectures to explain theoretical concepts, individual laboratory work with programming practices, work in groups with specific applications and seminars. The course follows a practical approach by using the MATLAB and MODELICA programming languages.

Objectives and contents
The aim of this course is to provide an introduction to the computational modeling of biomedical systems, presenting the underlying principles of mathematical modeling methodology together with its implementation using programming languages. This course is directed at students across a wide range of engineering background, and is designed to appeal to biomedical engineers and to others studying physical and engineering sciences, and biological and life sciences by following an interactive computational approach. Outline:
1. Introduction to System Modeling
2. Mathematical Modeling of Biomedical Systems
3. Computational Modeling Tools. MATLAB and MODELICA
4. Identification of Biological Systems
5. Modeling of Physiological Control Systems
6. Dynamic Modeling of Biological Systems

Assessment
Continuous assessments, collaborative work in groups, questionnaires, a final laboratory exam.

Lecturer
Dr. Javier Fernandez de Canete
canete@isa.uma.es
Room 2.2.29
Computer Technology

CODE 110
NAME Computer Technology
Credits 6 ECTS
Period Spring Semester

Course Specifications
Lectures, exercises and laboratory, where we work on several assignments in a team of maximum two persons. The educational material is based on a book, exercises and laboratory assignments.

Objectives and contents
Go into the wonderful world of the computer processor. The student designs processors based on Boolean logic and observes its functioning based on code we feed it. We get a feeling for the language the processor understands based on creating assembler code.

Assessment
The English of the student is promoted due to interacting in the lectures. The assessment of the course is done via a written and practical exam and hand in work of assignments during the course.

Lecturer
Dr. Eligius M.T. Hendrix
eligius@uma.es
https://sites.google.com/site/eligiushendrix/

Object Oriented Programming

CODE 109
NAME Object Oriented Programming
Credits 6 ECTS
Period Spring Semester

Course Specifications
Lectures where the theoretical concepts are described. Individual and laboratory work where the students put in practice these theoretical concepts using the Java programming language.

Objectives and contents
The course introduces students to object oriented design and programming using Java.

Course Outline:
1. Object Oriented Programming
 Fundamentals: classes, objects, methods, messages, composition, inheritance, data polymorphism, dynamic binding.
2. Introduction to Java.
3. Exception management.
4. Basic predefined classes in java.lang, java.util and java.io.
5. Collections.
6. Graphical User Interfaces.

Assessment
Attending the lectures and the laboratory sessions, short questions to be answered during lectures, short programs to be developed during laboratory sessions, partial and final exams in the laboratory.

Lecturers
Dr. Mónica Pinto Alarcón
pinto@lcc.uma.es
Room 3.2.7

Dr. Juan Miguel Ortiz de Lazcano
jmortiz@lcc.uma.es
Room 3.2.21
CODE 206
NAME Introduction to Software Engineering
Credits 6 ECTS
Period Spring Semester

Course Specifications
The course is mainly based on lectures in which student participation is encouraged through classroom debates and collaborative development of exercises. Students will work on assignments both individually and in groups. Laboratory work will be used to teach selected software engineering tools and to develop the ability to apply the theoretical knowledge in practical scenarios. Extra activities include peer reviews, writing essays and solving proposed exercises.

Objectives and contents
This is an introductory course in Software Engineering. As such, and given the wide domain of the subject in terms of techniques and tools, the course is necessarily dense in content. We offer a broad view of the problems that are related to software development, the concepts, processes, techniques, tools and standards that conform what is called the Software Engineering Body of Knowledge. Our goal is to provide students with a good understanding of this central aspect of software development that will allow them to take more advanced courses on specific subfields.

Assessment
Continuous assessment of the student participation in lectures, debates and laboratory sessions throughout the course. Evaluation of student assignments. Written and practical (on computer) examinations.

Lecturer
Dr. Antonio Maña Gómez
amg@lcc.uma.es
Room 3.2.16

CODE 207
NAME Systems Programming and Concurrency
Credits 6 ECTS
Period Spring Semester

Course Specifications
Lectures where theoretical concepts, problems and algorithms are explained and laboratory work where every student put in practice these concepts resolving well-defined problems. The course follows a practical approach using the Java and C programming languages.

Objectives and contents
The main objective is to learn parallel programming in contrast to traditional programming models. Classical problems are shown as well as their solutions using several approaches. A second objective is to learn the C programming language from a low level point of view (system programming). Contents include:
2. Low level programming in C.
3. Concurrency: main concepts.
4. Concurrency: communication and synchronization.
5. Event driven programming.

Assessment
Practical exams focused on low level C capabilities, threads in Java, shared memory and message passing. In addition, participation in class and a final homework on Swing and background threads will be part of the final evaluation.

Lecturer
Dr. Sergio Gálvez Rojas
galvez@uma.es
Room 3.2.28
COURSES SYLLABI

CODE 208
NAME Networks and Distributed Systems
Credits 6 ECTS
Period Spring Semester

Course Specifications
Lectures and problem solving sessions; individual and laboratory work.

Objectives and contents
This is the first course about Communication Networks with focus on communication protocols covering from physical level thru the application level.

Contents include the following topics:
Internet layered network structure. Basic protocol functions such as addressing, multiplexing, routing, forwarding, flow control, re-transmission error recovery schemes, and congestion control. Overview of link, network and transport layer protocol standards, following a bottom up approach. Introduction to wireless and mobile networks. This course will also give hands-on experience in network programming using the socket API in C and Java programming languages.

Assessment
The acquisition of concepts is evaluated considering: class attendance and participation; midterm and final exams (70% aprox.). The practical part of this course counts 30% of the final grade.

Lecturer
Dr. Lidia Fuentes
lff@lcc.uma.es
Room 3.2.8

CODE 209 (305)
NAME Intelligent Systems
Credits 6 ECTS
Period Spring Semester (Fall Semester)

Course Specifications
Lectures, written exercises, individual work, programming laboratory practices.

Objectives and contents
This is a first course in Artificial Intelligence (AI). AI is ‘the art of creating machines that perform functions that require intelligence when performed by people’ (Kurzweil, 1990). We offer a broad view of the problems that AI can solve. The aim is to provide a general knowledge of this branch of Computer Science, so that you are able to take more advanced courses on specific subfields. Course contents include: search, games, logic, planning, artificial neural networks and decision problems.

Assessment
There are two written exams: a midterm exam and a final exam. The grade of the midterm exam is used to improve the grade of the final exam, in case that the grade of the final exam is lower. Also, there are mandatory programming exercises, to be coded in Java. Therefore, programming skill is a prerequisite. Active class participation and other optional activities give extra marks.

Lecturers
Dr. Ezequiel López-Rubio
ezeqlr@lcc.uma.es
Room: 3.2.42

D. Miguel Ángel Molina Cabello
miguelangel@lcc.uma.es
Room: 3.3.2
CODE 210

NAME Operating Systems

Credits 6 ECTS

Period Spring Semester

Course Specifications
The course includes lectures, exercises, individual laboratory work (programming and defending ideas in public presentations).

Objectives and contents
The subject focuses on the Operating System as a mediator between the user and the computer hardware in general purpose systems. Any real usage of the computer is done through the Operating Systems. Programming in High Level Languages is actually based on the OS services even if not explicitly calling OS when using paradigms like threads, processes, files, network sockets, memory allocation, etc.

Contents:
• Processes and threads
• Process scheduling
• Memory management
• File systems

Assessment
During the course the student is expected to:
• Follow the book “Operating System Concepts” by Abraham Silberschatz et al.
• Pass two theory midterm exams that count for 50% of the final mark.
• Make proposed exercises and laboratory work at home and hand in them through the Virtual Campus.
• Attend the sessions at the laboratory and participate presenting his/her work to the other students. Participation in debates with presenters is also expected.
• Handed in work and laboratory participation counts for the other 50% of the final mark.

A final theoretical exam will also be scheduled for students who did not pass one of the midterm exams. Laboratory work must also be handed in to pass the course in case the student decides to go directly to June or September final exams.

Lecturers
Dr. Guillermo Pérez Trabado
gperez@uma.es
Room 2.2.34
Full year offer (87 ECTS)

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Programming (6)</td>
<td>Object Oriented Programming (6)</td>
</tr>
<tr>
<td>Analysis and Design of Algorithms (6)</td>
<td>Computer Technology (6)</td>
</tr>
<tr>
<td>Databases (6)</td>
<td>Introduction to Software Engineering (6)</td>
</tr>
<tr>
<td>Computer Organization (6)</td>
<td>Systems Program and Concurrency (6)</td>
</tr>
<tr>
<td>Data Structures (6)</td>
<td>Networks and Distributed Systems (6)</td>
</tr>
<tr>
<td>Computational Intelligence (4.5)</td>
<td>Operating Systems (6)</td>
</tr>
<tr>
<td>Biomedical Computational Modeling (4.5)</td>
<td></td>
</tr>
</tbody>
</table>