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Ultradifferentiable fundamental kernels of linear
partial differential operators on

non–quasianalytic classes of Roumieu type

By

Angela A. Albanese and José Bonet

Abstract

Let P be a linear partial differential operator with coefficients in the Roumieu
class E{ω}(Ω). We prove that if P and its transposed operator tP are {ω}–hypoelliptic
in Ω and surjective on the space E{ω}(Ω), then P has a global two–sided ultradifferen-
tiable fundamental kernel in Ω, thus extending to the Roumieu classes the well–known
analogous result of B. Malgrange in the C∞ class. This result is new even for Gevrey
classes.

§1. Introduction and Preliminaries

Ehrenpreis [5] and Malgrange [17] proved that every linear partial differ-
ential operator with constant coefficients has a fundamental solution; therefore
the inhomogeneous equation Pu = f admits always C∞/E{ω}–solutions for
each right hand side f in the class C∞/E{ω} respectively, and with compact
support. However, it is well-known that this is not longer the case for linear
partial differential operators with variable coefficients, i.e., see the Lewy’s op-
erator. The condition of hypoellipticity of the operator P on an open set Ω
ensures that its transposed operator tP is locally solvable, as it was proved in
[7] in the C∞ case and in [2] in the frame of Gevrey classes. On the other hand,
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under the assumptions that P and tP are both hypoelliptic in an open set Ω
and surjective on C∞(Ω), Malgrange [17] showed that P has a two-sided fun-
damental kernel, thereby obtaining that the inhomogeneous equation Pu = f

admits a linear continuous solution operator on the space of C∞ functions with
compact support.

The purpose of this paper is to extend the classical result of Malgrange
[17] to the setting of ultradifferentiable function spaces E{ω} of Roumieu type,
in particular for Gevrey classes (see Theorem 2.2). The topological structure
of these spaces is much more involved than that of Fréchet spaces of C∞ func-
tions. The main result is based on Theorem 2.1 about the existence of local
two-sided kernels, which extends (and improves) the work of Morando [20]
from Gevrey classes to the case of general non-quasianalytic classes as defined
by Braun, Meise and Taylor [3]; see the details below. Our results are obtained
as an application of topological tensor products and spaces of vector valued
ultradistributions and ultradifferentiable functions to linear partial differential
operators. Several authors, like Gramchev or Rodino, had asked the authors
about the validity of Malgrange result for Gevrey classes. We believe that it
might have useful consequences; compare with [1]. This research continues work
of A. Corli, L. Rodino, A. Morando and the first author. In particular, certain
estimates from [2] are essential. The paper concludes with a few examples of
partial differential operators with variable coefficients to which our results can
be applied.

We refer the reader to [10, 14, 24] for functional analysis, to [8, 9] for the
theory of linear partial differential operators, and [6, 10, 14, 24] for properties
of topological tensor products. We fix notation and give some definitions and
results which will be useful for the sequel. Following Braun, Meise and Taylor
[3], we introduce the classes of non–quasianalytic functions of Roumieu type.

Definition 1.1. A continuous increasing function ω : [0,∞[→ [0,∞[ is
called a weight function if it has the following properties:

(α) there exists K ≥ 1 with ω(2t) ≤ K(1 + ω(t)) for all t ≥ 0,

(β)
∫∞
0

ω(t)
1+t2 dt <∞,

(γ) log t = o(ω(t)) for t→∞,

(δ) ϕ : t→ ω(et) is convex on R.

For a weight function ω we define ω̃ : CN → [0,∞[ by ω̃(z) := ω(|z|) and again
denote this function by ω. The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is defined
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by
ϕ∗(y) := sup

x≥0
(xy − ϕ(x)).

Example 1. The following functions ω : [0,∞[→ [0,∞[ are examples
of weight functions: ω(t) = tα, 0 < α < 1; ω(t) = (log(1 + t))β , β > 1;
ω(t) = exp(β(log(1 + t))α)), 0 < α < 1, β > 0; ω(t) = t(log(e+ t))−β , β > 1.

We point out that for ω(t) = tα the classes of functions defined below
coincide with the Gevrey class Gs for s = 1/α. This is the most important
example we have in mind.

Definition 1.2. Let ω be a weight function.
(a) For a compact set K in RN which coincides with the closure of its

interior and µ > 0 let

Eω(K,µ) :=

:=

{
f ∈ C∞(K) : ||f ||K,µ := sup

x∈K
sup

α∈NN
0

|f (α)(x)| exp (−µϕ∗(|α|/µ)) <∞

}

which is a Banach space endowed with the || ||K,µ–topology.
(b) For a compact set K in RN which coincides with the closure of its

interior let

E{ω}(K) := ind
m→∞

Eω(K, 1/m)

which is the strong dual of a nuclear Fréchet space (i.e., a (DFN)–space) if it
is endowed with its natural inductive limit topology [3].

(c) For an open set Ω in RN we define

E{ω}(Ω) := proj
K⊂⊂Ω

E{ω}(K)

and we endow E{ω}(Ω) with its natural projective topology. The elements of
E{ω}(Ω) are called ω–ultradifferentiable functions of Roumieu type on Ω. By
[3, Proposition 4.9] E{ω}(Ω) is a complete, nuclear and reflexive locally convex
space. In particular, E{ω}(Ω) is also an ultrabornological (hence barrelled and
bornological) space as it follows from [25] (or see [26, Theorem 3.3.4]) and [4,
Lemma 1.8]). We denote by E ′{ω}(Ω) the strong dual of E{ω}(Ω).

(d) For a compact set K in RN which coincides with the closure of its
interior let

D{ω}(K) :=
{
f ∈ E{ω}(RN ) : supp f ⊂ K

}
,
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endowed with the induced topology. In [3, Remark 3.2–(1) and Corollary 3.6–
(1)] it is shown that D{ω}(K) 6= {0} is the strong dual of a Fréchet nuclear
space (i.e., (DFN)–space). For an open set Ω in RN let

D{ω}(Ω) := ind
K⊂⊂Ω

D{ω}(K).

The elements of its strong dual D′{ω}(Ω) are called ω–ultradistributions of
Roumieu type on Ω.

Let Sω := {σ : σ is a weight function satisfying σ = o(ω)}. By [19, Corol-
lary 3.3] the family of seminorms defined by

‖f‖K,σ := sup
x∈K

sup
α∈NN

0

|f (α)(x)| exp(−ϕ∗σ(|α|)), f ∈ E{ω}(Ω),

where K ⊂⊂ Ω, σ ∈ Sω, is a fundamental system of continuous seminorms
on E{ω}(Ω) and hence on D{ω}(K) for all compact subset K of Ω. From [3,
Lemma 3.3 and Proposition 3.4] it follows that the family of seminorms

‖f‖2,σ :=
(∫

RN

|f̂(t)|2e2σ(t)dt

)1/2

, σ ∈ Sω,

is also a fundamental system of continuous seminorms on D{ω}(K).
For each σ ∈ Sω we now introduce the space

Hσ
ω := {u ∈ S ′(RN ) : û(t)eσ(t) ∈ L2(RN )}.

It is easy to show that Hσ
ω is a Hilbert space with respect to the inner product

defined by

< u, v >σ,ω:=
∫

RN

û(t)¯̂v(t)e2σ(t)dt, u, v ∈ Hσ
ω ,

and the following inclusions

(1.1) D{ω}(K) ↪→ Hσ
ω ↪→ L2(RN )

are continuous with dense ranges. Actually, (D{ω}(K), ‖ ‖2,σ) is continuously
included in L2(RN ) too, as

‖f‖2 = (2π)−N‖f̂‖2 ≤ (2π)−N‖f‖2,σ

for every f ∈ D{ω}(K). Denoting byHσ
{ω}(K) the closure of D{ω}(K) inHσ

ω , we

have that
(
Hσ
{ω}(K), ‖ ‖2,σ

)
is a Hilbert space and its strong dual (Hσ

{ω}(K))′



Ultradifferentiable fundamental kernels 5

may be continuously embedded in D′{ω}(K) with dense image. In particular,
by (1.1) we have

(1.2) Hσ
{ω}(K) ↪→ L2(RN ) continuously with dense range.

Vector–valued ultradifferentiable function and ultradistribution spaces of
Roumieu type are defined as it follows. Let F be a locally convex space. A
vector–valued function f : Ω → F is said to be an ultradifferentiable function of
Roumieu type if it is infinitely differentiable as an F–valued function [10], see
also [22, 23], and if for each continuous seminorm q on F and each compact set
K ⊂ Ω there exists m ∈ N such that

(1.3) sup
x∈K

sup
α∈NN

0

q(f (α)(x)) exp(− 1
m
ϕ∗(m|α|)) <∞.

We denote by E{ω}(Ω, F ) the space of all F–valued ultradifferentiable functions
of Roumieu type on Ω endowed with the locally convex topology defined by the
following family of seminorms

‖f‖q,K,σ := sup
x∈K

sup
α∈NN

0

q(f (α)(x)) exp(−ϕ∗σ(|α|)),

where q ∈ cs(F ), K ⊂ Ω is a compact set, σ ∈ Sω. If F is complete, by
[13, Theorem 3.10] a function f : Ω → F belongs to E{ω}(Ω, F ) if and only if
u ◦ f ∈ E{ω}(Ω) for all u ∈ F ′ and we have the following isomorphism

(1.4) E{ω}(Ω, F ) ' E{ω}(Ω)⊗̂πF ' Lε(F ′τ , E{ω}(Ω)),

where ε denotes the topology of uniform convergence on the equicontinuous
sets in F ′ and F ′τ denotes the topological dual of F equipped with the Mackey
topology.

Similarly to Komatsu [13] we define the space of vector–valued ultradistri-
butions of Roumieu type on Ω as

D′{ω}(Ω, F ) := Lβ(D{ω}(Ω), F ),

where β denotes the topology of uniform convergence on the bounded sets in
D{ω}(Ω). An element u ∈ D′{ω}(Ω, F ) is said to be an ultradistribution of
Roumieu type on Ω. If F is complete, then we have the following canonical
isomorphism

(1.5) D′{ω}(Ω, F ) ' D′{ω}(Ω)⊗̂πF ' Lε(F ′τ ,D′{ω}(Ω)).
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§2. {ω}–ultradifferentiable fundamental kernels of hypoelliptic
partial differential operators

§2.1. {ω}–ultradifferentiable fundamental kernels

The theory of kernels of L. Schwartz can be extended to the setting of the
classes of {ω}–ultradifferentiable functions and {ω}–ultradistributions. Indeed,
using well known results of Grothendieck [6] on topological tensor products one
can prove the following results (see, e.g., [12, 13, 3]).

Let Ω ⊂ RN , Ω′ ⊂ RM be open sets. The bilinear map which assigns
to each pair of functions ϕ(x) on Ω and ψ(y) on Ω′ the product ϕ(x)ψ(y) on
Ω× Ω′ induces the following canonical isomorphisms

(2.1) E{ω}(Ω)⊗̂πE{ω}(Ω′) ' E{ω}(Ω× Ω′)

(2.2) D{ω}(Ω)⊗̂πD{ω}(Ω′) ' D{ω}(Ω× Ω′)

(see [12, Theorem 2.1]). Moreover, compare with [6, Théorème, Chap. II]

(2.3) D′{ω}(Ω)⊗̂πD′{ω}(Ω
′) ' D′{ω}(Ω× Ω′)

(see [12, Theorem 2.3]). We have also the following canonical isomorphism

(2.4) D′{ω}(Ω× Ω′) ' Lβ(D{ω}(Ω′),D′{ω}(Ω)) ' Lβ(D{ω}(Ω),D′{ω}(Ω
′)),

which maps every {ω}–ultradistribution K(x, y) on Ω × Ω′ onto the linear
continuous map K : D{ω}(Ω′) → D′{ω}(Ω) defined by

(2.5) < K(ψ), ϕ >:=< K,ϕ⊗ ψ >

for all ϕ ∈ D{ω}(Ω), ψ ∈ D{ω}(Ω′), where (ϕ ⊗ ψ)(x, y) := ϕ(x)ψ(y) for all
x ∈ Ω, y ∈ Ω′ (see [12, Theorem 2.3]). Formally, we can write

(2.6) (Kψ)(x) =
∫

Ω′
K(x, y)ψ(y)dy.

Under the correspondence (2.5) the following isomorphism holds

(2.7) E{ω}(Ω× Ω′) ' Lβ(E ′{ω}(Ω
′), E{ω}(Ω))

Following Malgrange [17] (see also [13, 21]) we introduce the following
properties.
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Definition 2.1. Let Ω ⊂ RN , Ω′ ⊂ RM be open sets and let K(x, y) ∈
D′{ω}(Ω×Ω′). The kernel K is said to be {ω}–semiregular in x if (2.5) defines
a linear continuous map from D{ω}(Ω′) to E{ω}(Ω); while the kernel K is said
to be {ω}–semiregular in y if the corresponding map K defined in (2.5) can
be extended as a linear continuous map from E ′{ω}(Ω

′) into D′{ω}(Ω) or equiv-
alently, the transposed map tK is semiregular in x. We say that the kernel K
is {ω}–regular if it is {ω}–semiregular in x and y. The kernel K is said to be
{ω}–regularizing if it is an element of E{ω}(Ω × Ω′) ' E{ω}(Ω)⊗̂πE{ω}(Ω′) or
equivalently, see (2.7), the corresponding map K can be extended to a linear
continuous map from E ′{ω}(Ω

′) into E{ω}(Ω). Finally, a kernel K ∈ D′{ω}(Ω×Ω)
is said to be {ω}–very regular if it is {ω}–regular and it is also a E{ω}–function
in the complement of the diagonal ∆ in Ω× Ω.

Remark. Via the following isomorphisms

Lβ(D{ω}(Ω′), E{ω}(Ω)) ' E{ω}(Ω,D′{ω}(Ω
′)),

Lβ(E ′{ω}(Ω
′),D′{ω}(Ω)) ' E{ω}(Ω′,D′{ω}(Ω))

(compare with [13, Theorem 5.2]), the kernels which are {ω}–semiregular in
x ∈ Ω can be identified with the E{ω}–functions of x ∈ Ω valued in D′{ω}(Ω

′)
with respect to y, while the kernels which are {ω}–semiregular in y can be
identified with the E{ω}–functions of y ∈ Ω′ valued in D′{ω}(Ω) with respect to
x.

§2.2. {ω}–hypoelliptic partial differential operators

Let
P = P (x,D) =

∑
|α|≤m

aαD
α

be a partial differential operator, where Dα = Dα1
1 . . . DαN

N , Dj = −i∂/∂xj ,
|α| = α1 + . . . + αN for any multi–index α ∈ NN

0 and m ∈ N. Suppose that
the coefficients aα of P belong to E{ω}(Ω), Ω an open set of RN . Then P con-
tinuously maps each of the spaces E{ω}(H), E ′{ω}(H), D{ω}(H) and D′{ω}(H)
into itself for every open or compact subset H ⊂ Ω. We denote by N(ω, P,Ω)
(by N(ω, P,H), with H ⊂ Ω, respectively) the kernel of P acting on E{ω}(Ω)
(on E{ω}(H) respectively). The transposed operator tP of P is defined by <

Pϕ,ψ >=< ϕ,tPψ > for all ϕ, ψ ∈ D{ω}(Ω), where< ϕ,ψ >:=
∫
Ω
ϕ(x)ψ(x)dx.

The operator P is said to be {ω}–hypoelliptic in Ω if Pu ∈ E{ω}(Ω′) implies
u ∈ E{ω}(Ω′) for every open set Ω′ ⊂ Ω and for every u ∈ D′{ω}(Ω

′).
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We denote by Px (by Py respectively) the operator P acting on the spaces
E{ω}(Ωx × Ωy) and D′{ω}(Ωx × Ωy) with respect to the x–variables (to the
y–variables respectively). For example

Pxϕ(x, y) =
∑
|α|≤m

aα(x)Dα
xϕ(x, y), ϕ ∈ E{ω}(Ωx × Ωy),

where Dα
x denotes the derivative of order α with respect to the x–variables.

The operators Px : E{ω}(Ωx×Ωy) → E{ω}(Ωx×Ωy) and Px : D′{ω}(Ωx×Ωy) →
D′{ω}(Ωx × Ωy) correspond to the extended tensor products

P ⊗̂I : E{ω}(Ω)⊗̂πE{ω}(Ω) → E{ω}(Ω)⊗̂πE{ω}(Ω)

and
P ⊗̂I : D′{ω}(Ω)⊗̂πD′{ω}(Ω) → D′{ω}(Ω)⊗̂πD′{ω}(Ω)

via the canonical isomorphisms.

Definition 2.2. Let Ω ⊂ RN be an open set and letK(x, y) ∈ D′{ω}(Ωx×
Ωy). The kernel K is said to be {ω}–ultradifferentiable fundamental kernel of
the differential operator Px if

PxK(x, y)− δ(x− y) = 0.

Here δ(x−y) denotes the Dirac measure on the diagonal ∆ of Ω×Ω and corre-
sponds to the canonical inclusion i : D{ω}(Ω) ↪→ D′{ω}(Ω) via the isomorphism
given in (2.5). The kernel K is said to be a {ω}–ultradifferentiable parametrix
if PxK(x, y)− δ(x− y) ∈ E{ω}(Ωx × Ωy). Finally, the kernel K is said to be a
two–sided {ω}–ultradifferentiable kernel in Ω of the differential operator P if

PxK(x, y) = δ(x− y), tPyK(x, y) = δ(x− y),

or equivalently, if the corresponding map K defined in (2.5) satifies

KPϕ = PKϕ = ϕ

for all ϕ ∈ D{ω}(Ω).

The next result is due to Morando [20] for Gevrey classes.

Theorem 2.1. Let P be a linear partial differential operator defined in
an open set Ω ⊂ RN with coefficients in E{ω}(Ω). If P is {ω}–hypoelliptic in
Ω, then every point of Ω has an open neighborhood in which tP has a {ω}–
ultradifferentiable fundamental kernel. If tP is also {ω}–hypoelliptic in Ω, then
every point of Ω has an open neighborhood where P has a two–sided {ω}–
ultradifferentiable fundamental kernel, which is {ω}–very regular.



Ultradifferentiable fundamental kernels 9

We recall the following consequence of [2, Lemma 2.3 and Proof of Theorem
2.1].

Proposition 2.1. Let P be a linear partial differential operator defined
in an open set Ω ⊂ RN with coefficients in E{ω}(Ω). Suppose that P is {ω}–
hypoelliptic in Ω. Then for every x ∈ Ω there is a compact subset K ⊂ Ω with
x ∈

◦
K such that for every σ ∈ Sω there exist σ′ ∈ Sω, σ ≤ σ′, and cσ > 0 for

which

(2.8) ‖ϕ‖2,σ ≤ cσ‖Pϕ‖2,σ′

for all ϕ ∈ D{ω}(K).

Remark. If tP is also {ω}–hypoelliptic in Ω, for a fixed x ∈ Ω we can

find a compact subset K of Ω with x ∈
◦
K such that for every σ ∈ Sω there

exist σ′ ∈ Sω, σ ≤ σ′, and cσ > 0 for which inequalities (2.8) and

(2.9) ‖ϕ‖2,σ ≤ cσ‖tPϕ‖2,σ′ , ∀ϕ ∈ D{ω}(K),

are both satisfied.

The proof of Theorem 2.1 is inspired by the one of [24, Theorem 52.2] and
relies on the projective description of the Roumieu classes given in §1.

Proof. Fix x ∈ Ω. Since P is {ω}–hypoelliptic in Ω, by Proposition 2.1

there exists a compact subset K ⊂ Ω with x ∈
◦
K such that for every σ ∈ Sω

there exist σ′ ∈ Sω, σ ≤ σ′, and cσ > 0 for which

(2.10) ‖ϕ‖2,σ ≤ cσ‖Pϕ‖2,σ′

for all ϕ ∈ D{ω}(K). Then the operator J :
(
{Pψ : ψ ∈ D{ω}(K)}, ‖ ‖2,σ′

)
→

(D{ω}(K), ‖ ‖2,σ), Pϕ→ ϕ, is well-defined, linear and continuous. Denoting by
M the closure of P (D{ω}(K)) in Hσ′

{ω}(K), J can be extended as a continuous
linear map T0 from M into Hσ

{ω}(K) (T0(Pϕ) = ϕ for all ϕ ∈ D{ω}(K)). Let

pM be the orthogonal projection of the Hilbert space Hσ′

{ω}(K) onto M and

T := T0 ◦ pM . Then T : Hσ′

{ω}(K) → Hσ
{ω}(K) is a linear continuous operator

such that (T (ϕ) = T0(ϕ) for all ϕ ∈M)

(2.11) T (Pϕ) = ϕ

for all ϕ ∈ D{ω}(K). Next, we consider its transposed map tT : (Hσ
{ω}(K))′ →

(Hσ′

{ω}(K))′. Since D{ω}(K) and (Hσ′

{ω}(K))′ are continuously embedded in
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(Hσ
{ω}(K))′ and D′{ω}(K) respectively (see §1), we have

D{ω}(K) ↪→ (Hσ
{ω}(K))′

tT→ (Hσ′

{ω}(K))′ ↪→ D′{ω}(K),

i.e. we can regard tT ∈ Lβ(D{ω}(K),D′{ω}(K)) ' D′{ω}(K × K) (see [12,
Theorem 2.1], [13, §5]). Moreover, from (2.11) we obtain that tP (tTϕ) = ϕ for
all ϕ ∈ D{ω}(K). Thus, the kernel associated with tT is a {ω}–fundamental

kernel of tP in K, hence in the open neighbourhood U =
◦
K of x. Thus, the first

statement of the theorem is proved.
Assume that tP is {ω}–hypoelliptic in Ω too. By Proposition 2.1 and

Remark thereafter we can proceed as before to obtain a continuous linear map
S : Hσ′

{ω}(K) → Hσ
{ω}(K) such that S(tPϕ) = ϕ for all ϕ ∈ D{ω}(K); hence, for

all u ∈ D′{ω}(K)

(2.12) P (tSu) = u.

Since the spaces Hσ′

{ω}(K) and L2(RN ) are continuously included in L2(RN )
and (Hσ

{ω}(K))′ respectively (see (1.2)), we can define the map

E := TpM + tS(I − pM ),

here I denotes the identity map ofHσ′

{ω}(K). Then E ∈ Lβ(D{ω}(K),D′{ω}(K)).
By (2.11) and (2.12) we can proceed as in [24, Theorem 52.2] to show that
E(Pϕ) = ϕ and P (Eϕ) = ϕ for all ϕ ∈ D{ω}(K). Consequently the kernel in
D′{ω}(K×K) corresponding to E is a two–sided {ω}–ultradifferentiable funda-
mental kernel of P in K, hence in U . It remains to show that E is {ω}–very
regular. This is a consequence of the following lemma.

Lemma 2.1. Let P be a linear partial differential operator defined in
an open set Ω ⊂ RN with coefficients in E{ω}(Ω). If P and tP are both {ω}–
hypoelliptic in Ω, then every two–sided {ω}–ultradifferentiable fundamental ker-
nel of P in Ω is {ω}–very regular.

Proof. Let K ∈ D′{ω}(Ω×Ω) be a two–sided {ω}–ultradifferentiable fun-
damental kernel of P in Ω. Proceeding as in [24, Lemma 52.1] and using the
closed graph theorem for webbed spaces (see e.g. [10, Theorem 5.4.1, Proposi-
tion 5.2.2 and Corollary 5.3.3]), we obtain that the kernel K is {ω}–regular. It
remains to show that the kernel K is {ω}–very regular.

Since the following isomorphisms of locally convex spaces

Lβ(D{ω}(Ω), E{ω}(Ω)) ' E{ω}(Ω,D′{ω}(Ω)) ' D′{ω}(Ω)⊗̂πE{ω}(Ω)
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hold (see e.g. [13, Theorem 5.2]), K(x, y) ∈ E{ω}(Ω,D′{ω}(Ω)), and we can
proceed as in [24, Lemma 52.1] again to show that, given two open subsets U
and V of Ω such that U ∩V = ∅, the set H := {∂α

yK(x, y) : α ∈ Zn
+, y ∈ V } ⊂

D′{ω}(Ux) is contained in KerP = {u ∈ D′{ω}(Ux) : Pu = 0} ⊂ E{ω}(Ux), where
KerP is clearly a closed subspace both of D′{ω}(Ux) and of E{ω}(Ux). Thus,
KerP is a Fréchet space with respect to the topology τ2 induced by D′{ω}(Ux)
and is a webbed space with respect to the topology τ1 induced by E{ω}(Ux) (see
e.g. [10, Theorem 5.3.1]). Since the inclusion map i : (KerP, τ1) ↪→ (KerP, τ2)
is continuous, i is then a topological isomorphism by the open mapping theorem
for webbed spaces (see e.g. [10, Theorem 5.5.2]). Since E{ω}(Ux) and D′{ω}(Ux)
induce the same topology on KerP and hence on H, we conclude K(x, y) ∈
E{ω}(Vy, E{ω}(Ux)) ' E{ω}(Vy×Ux). Indeed, let (ql)l be a fundamental sequence
of continuous seminorms on D′{ω}(Ux). As K(x, y) ∈ E{ω}(Vy,D′(Ux)), for each
compact subset H of V and each l ∈ N, there is m ∈ N so that

sup
y∈H

sup
α∈Zn

+

ql(∂α
yK(., y)) exp

(
−mϕ∗

(
|α|
m

))
< +∞.

On the other hand, denoting by (pi)i∈I a fundamental system of continuous
seminorms on E{ω}(Ux), we have that

∀i ∈ I ∃l(i) ∈ N, ci > 0 ∀f ∈ KerP pi(f) ≤ ciql(i).

Consequently for each compact subset H of V and i ∈ I there is m ∈ N such
that

sup
y∈H

sup
α∈Zn

+

pi(∂α
yK(., y)) exp

(
−mϕ∗

(
|α|
m

))
< +∞.

ThusK(x, y) ∈ E{ω}(Vy, E(Ux)) ' E{ω}(Vy×Ux). This completes the proof.

Proposition 2.2. Let P be a linear partial differential operator defined
in an open set Ω ⊂ RN with coefficients in E{ω}(Ω). Suppose that both P and
tP are {ω}–hypoelliptic in Ω and map E{ω}(Ω) onto itself. Let F be a complete
locally convex space. Consider the following conditions:

(a) P ⊗̂I : E{ω}(Ω)⊗̂πF → E{ω}(Ω)⊗̂πF is surjective.

(b) P ⊗̂I : D′{ω}(Ω)⊗̂πF → D′{ω}(Ω)⊗̂πF is surjective.

Then (a) implies (b), and (b) implies (a) if F ′τ is ultrabornological; for example
if F is a reflexive Fréchet or (DF) space.

Proof. Let F be a given complete locally convex space.
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(a)=⇒ (b) Let S ∈ D′{ω}(Ω)⊗̂πF . Since P and tP are both {ω}–hypoelliptic
in Ω and the spaces E{ω}(V ) andD′{ω}(V ) induce the same topology onN(ω, P, V )
for all open subset V of Ω (see proof of Lemma 2.1), we can apply Theorem 2.1
and proceed as in [24, Theorem 52.3] to construct an element T ∈ E{ω}(Ω)⊗̂πF

such that S − (P ⊗̂I)(T ) ∈ E{ω}(Ω)⊗̂πF . By assumption there is then an ele-
ment R ∈ E{ω}(Ω)⊗̂πF such that (P ⊗̂I)R = S − (P ⊗̂I)(T ), thereby implying
that

(P ⊗̂I)(T +R) = S,

and (b) follows.
(b) =⇒ (a) if F ′τ is ultrabornological. Fix v ∈ E{ω}(Ω)⊗̂πF , by (b) there is

u ∈ D′{ω}(Ω)⊗̂πF such that (P ⊗̂I)u = v. By the canonical isomorphism (1.5)
u defines a continuous linear map from D{ω}(Ω) into F , which we denote again
by u, such that

(2.13) f ◦ u ∈ D′{ω}(Ω) and P (f ◦ u) = f ◦ (P ⊗̂I)u = f ◦ v ∈ E{ω}(Ω)

for all f ∈ F ′. Since P is {ω}–hypoelliptic in Ω, by (2.13) we get f ◦u ∈ E{ω}(Ω)
for all f ∈ F ′. Therefore u : D{ω}(Ω) → F is σ(D{ω}(Ω), E{ω}(Ω))− σ(F ′, F )-
continuous, hence ut : F ′τ → E{ω}(Ω) is well defined and continuous if we endow
E{ω}(Ω) with the topology induced by D′{ω}(Ω), therefore ut : F ′τ → E{ω}(Ω)
has closed graph. Since F ′τ is ultrabornological, we can apply the closed graph
theorem for webbed spaces (see e.g. [10, Theorem 5.4.1, Proposition 5.2.2 and
Corollary 5.3.3]) to conclude that ut is continuous. This yields u ∈ E{ω}(Ω, F )
and (a) follows by (1.4).

As immediate consequence of Proposition 2.2 we obtain the following.

Corollary 2.1. Let P be a linear partial differential operator defined in
an open set Ω ⊂ RN with coefficients in E{ω}(Ω). Suppose that both P and
tP are {ω}–hypoelliptic in Ω and map E{ω}(Ω) onto itself. Then the following
holds.

(1) The operator P : D′{ω}(Ω) → D′{ω}(Ω) is surjective.

(2) The operators P ⊗̂I and tP ⊗̂I are surjective on the spaces E{ω}(Ω)⊗̂πF and
D′{ω}(Ω)⊗̂πF for every reflexive Fréchet space F .

Proof. In order to show (1), we have only to apply Proposition 2.2,
(a)=⇒ (b) with F = C. To show (2), let F be a reflexive Fréchet space.
Since D′{ω}(Ω) is a Fréchet space and P is surjective, a well–known theorem
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of Grothendieck [6] implies that P ⊗̂I : D′{ω}(Ω)⊗̂πF → D′{ω}(Ω)⊗̂πF is surjec-
tive, hence P ⊗̂I : E{ω}(Ω)⊗̂πF → E{ω}(Ω)⊗̂πF is surjective too by Proposition
2.2, (b) =⇒ (a). Similarly, one shows the result for tP ⊗̂I.

We note that the preceding proofs rely heavily on the {ω}–hypoellipticity
of P and of tP to establish that the surjectivity of P on the function space
E{ω}(Ω) implies the surjectivity of P ⊗̂πI on the vector valued spaces E{ω}(Ω)⊗̂πF

and D′{ω}(Ω)⊗̂πF .
The following theorem extends a well–known result of Malgrange [17] (see

also [24, Theorem 52.3]) to the setting of non–quasianalytic classes of Roumieu
type.

Theorem 2.2. Let P be a linear partial differential operator defined in
an open set Ω ⊂ RN with coefficients in E{ω}(Ω). Suppose that both P and tP

are {ω}–hypoelliptic in Ω and map E{ω}(Ω) onto itself. Then P has a two–sided
{ω}–ultradifferentiable fundamental kernel in Ω which is {ω}–very regular.

Proof. By Corollary 2.1.(2), with F = D′{ω}(Ω), there exists

K1 ∈ D′{ω}(Ωx)⊗̂D′{ω}(Ωy) with (P ⊗̂I)K1(x, y) = Ix,y.

Here Ix, Iy denote the identity maps in the spaces of {ω}–ultradistributions
in the variables x, y and Ix,y denotes the canonical inclusion i : D{ω}(Ω) ↪→
D′{ω}(Ω) respectively. Proceeding as at the end of [24, Theorem 52.3] we put
L := Ix,y − (Ix⊗̂tP y)K1 ∈ D′{ω}(Ωx)⊗̂πD′{ω}(Ωy), thereby obtaining that L ∈
L(D{ω}(Ωy),KerP ), when KerP is endowed with the Fréchet–topology induced
by D′{ω}(Ωx). Taking F = KerP and tPy instead of P , we apply again Corollary
2.1.(2), to obtain K2(x, y) ∈ KerP ⊗̂πD′{ω}(Ωy) (hence (Px⊗̂Iy)K2 = 0) such
that (Ix⊗̂tP y)K2 = L. Putting K = K1 +K2, it follows that (Ix⊗̂tP y)K = Ix,y

and (Px⊗̂Iy)K = Ix,y. By the canonical isomorphism (2.2) this means that K
is a two–sided {ω}–ultradifferentiable fundamental kernel of P in Ω. By Lemma
2.1 K is also {ω}–very regular and the proof is complete.

The following consequence is also new for Gevrey classes.

Corollary 2.2. Let P be a linear partial differential operator defined in
an open set Ω ⊂ RN whose coefficients belong to Gs(Ω) with s > 1. Suppose
that both P and tP are s–hypoelliptic in Ω and map Gs(Ω) onto itself. Then P
has a two–sided s–ultradifferentiable fundamental kernel in Ω which is s–very
regular.
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Example 2. Consider the elliptic partial differential operator of order
2m

P = P (x,D) =
∑

|p|, |q|≤m

(−1)|p|Dp (apq(x)Dq) , x ∈ RN .

Suppose that the following conditions are satisfied: all the coefficients apq are
real–valued and belong to Gs(RN ), s > 1, and the characteristic form P0(x, ξ)
of the operator P satisfies

P0(x, ξ) =
∑

|p|, |q|=m

(−1)mapq(x)ξp+q ≥ µ(x)|ξ|2m, x, ξ ∈ RN ,

where infK µ > 0 for every compact subset K of RN .
Under these hypothesis, we have that for every g ∈ Gs(RN ) and n ∈ N

there is un ∈ Gs(Bn) ∩ C(Bn) (Bn := {x ∈ RN : |x| < n}) satisfying the
following Dirichlet problem

(2.14)

{
Pun = g on Bn

∂jun

∂νj = 0, j = 0, . . . ,m− 1, on ∂Bn,

where ν denotes the normal vector field to ∂Bn, oriented towards the interior
of Bn, see [16, Ch. 8, Theorem 1.1 and Corollary 1.1] and [15, Ch. 2, §1].
Thus P is locally surjective in Gs(RN ) in the sense of Braun, Meise and Vogt
[4], i.e. for every g ∈ Gs(RN ) and n ∈ N there exists f ∈ Gs(RN ) such
that P (f)|Bn

= g|Bn
. This corresponds to the concept of semiglobally solvable

operator in the sense of Trèves [24, Definition 38.2, pp. 392].
Indeed, if we put f := χn+1un+1 where un+1 is the solution of the Dirichlet

problem on Bn+1 associated to P (here χn+1 ∈ Gs
0(RN ) satisfies χn+1 ≡ 1 on

Bn, 0 ≤ χn+1 ≤ 1, and suppχn+1 ⊂ Bn+1), we have that f ∈ Gs(RN ) and
P (f)|Bn

= P (un+1)|Bn
= g|Bn

.
Since KerP is a nuclear Fréchet space (see proof of Lemma 2.1), we can

apply [1, Proposition 1.6] to obtain that P is a surjective map on Gs(RN ).
As it is easy to verify, tP also satisfies all the above conditions and then tP

is a surjective map on Gs(RN ). As P and tP are elliptic partial differential
operators in RN , hence s–hypoelliptic in RN , by Corollary 2.2 P has a two–
sided s–ultradifferentiable fundamental kernel in RN which is s–very regular.

We refer the reader to the article [1] for more examples and related results.

Acknowledgments: The authors thank C. Fernández and A. Galbis for help-
ful suggestions on the subject of this article.
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