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Sums and products of bad functions

R. M. Aron, J. A. Conejero, A. Peris, and J. B. Seoane-Sepúlveda

Abstract. We examine the question of whether there are algebras of functions having special
properties. The types of functions studied will be everywhere surjective functions, hypercyclic
entire functions, and continuous functions that attain their maximum at a unique point.
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1. Introduction

This expository note deals with the following type of general problem. Suppose that we have
a set of functions, all having a special property. When does it occur that the set contains a “large”
vector space? When does it contain a large algebra?

A typical situation occurs with ND = {f ∈ C[0, 1] | f is nowhere differentiable}. It was first
observed by V. Gurariy [10] that ND contains an infinite dimensional Banach space. Later, L.
Rodŕıguez-Piazza [15] proved that, in fact, there is an isometric copy of every separable Banach
space contained in ND. (See [13] for an even stronger result concerning nowhere Hölder functions.)
Recently, F. Bayart and L. Quarta [6] have proved that ND contains an infinite dimensional
algebra. On the other hand, it is known that the set of everywhere differentiable functions on
[0, 1] does not contain a complete, infinite dimensional vector space (see, e.g., [11]). In short, we
see that the set ND of continuous functions that are nowhere differentiable contains large Banach
spaces (in fact, every separable Banach space) as well as large algebras. On the other hand, no
infinite dimensional vector subspace of everywhere differentiable functions is complete.

In this article, we describe several other such instances. In particular, we discuss the so-called
algebrability of the following sets:

(i) the everywhere surjective functions on C,
and
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(ii) the entire functions that are hypercyclic with respect to either the Birkhoff translation
operator or the MacLane differentiation operator.

We will conclude this brief article with a discussion of one result that seems to be in the same
spirit and a somewhat surprising one that is not!

2. Everywhere surjective functions

Let S denote the set of everywhere surjective functions on C, that is functions f : C→ C with
the property that for every open set U ⊂ C, f |U is surjective. It was shown in [2] that S ∪ {0}
contains a large vector space. In fact, the cardinality of this vector space is the same as that of
the set of all functions C→ C, and so this vector space clearly has the largest possible dimension.
In fact, in [4], the following is proved.

Theorem 2.1. ([4]) The set S contains an infinitely generated algebra A. That is, there is
an algebra A ⊂ S having a (countably) infinite number of generators.

Proof. We provide a brief sketch of the proof. First, it is not hard to see that S 6= ∅. Indeed,
enumerate the squares in C2 having only complex rational coordinates, (Sj)∞j=1, and for each j let
Cj ⊂ Sj be a copy of the Cantor set that is disjoint from C1 ∪ · · · ∪ Cj−1. Define fj : Cj → C to
be any one-to-one correspondence. Since any open subset of C contains some Sj , the function f
defined by

f(z) =
{

fj(z) if z ∈ Cj

0 if z /∈ ∪jCj

is easily seen to be in S.

We remark in passing that the algebra generated by an element f ∈ S has the property that
any non-zero element in it is everywhere surjective. To see this, consider an arbitrary such element
P (f) =

∑k
j=1 ajf

j and the associated polynomial P (z) =
∑k

j=1 ajz
j . Given any w ∈ C, let z0

be a solution to
∑k

j=1 ajz
j = w. If U ⊂ C is an arbitrary open set, we can find u0 ∈ U so that

f(u0) = z0, and it is clear that P (f)(u0) = w.
In order to find an infinitely generated algebra, we must do more. First, it suffices to find

functions f, g : C→ C with the following properties:
• f and g are algebraically independent,
and
• Any non-zero function in the algebra A generated by f, g is onto.
To see this, let F : C → C be a fixed function in S. Then it is easy to verify that every non-zero
function in the algebra {h ◦ F | h ∈ A} is everywhere surjective.

So, all that remains to show is that we can find functions f, g with the two properties indicated
above. For each p, q ∈ N, let Φp,q be a homeomorphism from Up,q = {z = x + iy | p − 1 < x <
p; q − 1 < y < q} to C. Define f, g : C→ C by

f(z) =
{

[Φp,q(z)]p if z ∈ Up,q

0 otherwise ;

g(z) =
{

[Φp,q(z)]q if z ∈ Up,q

0 otherwise .

We now verify that {f, g} is an algebraically independent set and that every non-trivial function
h ∈ A is surjective. In fact, one argument will suffice to show that both requirements hold. Let
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P : C2 → C be a non-constant polynomial, and recall the observation [1] that for some m1,m2 ∈ N,
the polynomial z ∈ C Ã P (zm1 , zm2) ∈ C is onto. Then consider h = P ◦ (f, g)|Um1,m2

. For any
z ∈ C, since Φ−1

m1,m2
(z) ∈ Um1,m2 , the definitions of f and g imply that h(z) = P (zm1 , zm2). In

other words, not only is P ◦ (f, g) non-trivial but it is in fact a surjective mapping.

Problem 2.1. We remark that the same techniques will show that the cone of functions {f :
R+ → R+ | for all (a, b) ⊂ R+, f(a, b) = R+} is closed under multiplication. In addition, we
mention that we believe that there is an algebra A ⊂ S having uncountably many generators.

3. Entire functions

Recall that an operator T : X → X between Fréchet spaces is said to be hypercyclic if
there is a vector x ∈ X whose orbit under T, orb(T, x) = {x, T (x), T 2(x), ...} is dense in X.
Although they may seem rare and counterintuitive at first, there are many natural instances when
hypercyclic operators arise, and their relations to the theory of chaos and dynamical systems are
well established.

In general, we will restrict our attention here to the two most basic hypercyclic operators T
acting on the Fréchet space H(C) of entire functions in one complex variable. Namely, we will
consider only the Birkhoff translation operator T = τ : H(C) → H(C), τ(f)(z) = f(z + 1), and
the MacLane differentiation operator T = D : H(C) → H(C), D(f) = f ′. It is known that for each
of these (and every convolution operator that is not a multiple of the identity), the set HC(T ) of
entire functions that are hypercyclic contains an infinite dimensional dense vector space (see, e.g.,
[9]). Here, we ask the question of whether HC(T ) contains an algebra. Namely, our focus here is
on the size and behavior of the set of functions f, g ∈ HC(T ) such that fg is again in HC(T ). We
will present some partial results from [1]. However, very many problems remain.

Proposition 3.1. ([1]) . Suppose that f ∈ H(C) is such that for some k ∈ N, fk ∈ HC(τ).
Then k = 1.

In particular, if f is hypercyclic for the Birkhoff translation operator τ, then fk is not for every
k ≥ 2. In [1], the authors characterize Orb(τ, fk) for an arbitrary k ∈ N and f ∈ H(C).

Proof. Suppose that fk ∈ HC(τ) for some k ≥ 2. Thus, the set {fk(z), fk(z + 1), ..., fk(z +
n), ...} is dense in H(C), with the usual compact-open topology. Consequently, for some sequence
(nj), it must be that

sup
|z|≤1

|fk(z + nj)− z| → 0 as j →∞.

Now, by Hurwitz’s theorem (see, e.g, [7], p. 152), for sufficiently large j, fk(z + nj) and z have
the same number of zeros, namely one, in the unit disk. However, this is impossible if k ≥ 2.

We now turn to the same question for T = D. For each k ≥ 1, set

Mk = {f ∈ H(C) | fk ∈ HC(D)}.
In other words, Mk is the set of those entire functions whose kth power is hypercyclic for the
differentiation operator.

Proposition 3.2. ([1]). For each k ≥ 1, Mk is a dense Gδ−set in H(C).
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Although the details of the proof are too technical to repeat here, the basic idea is to fix an
arbitrary countable collection of basic open sets (Un)∞n=1 for H(C). For each n, one shows that the
set S(n) of entire functions f, such that for some j ∈ N, Dj(fk) ∈ Un, is a dense open subset
of H(C). Once this is shown, the rest of the argument is easy, since Mk =

⋂∞
n=1 S(n). The proof

of the denseness of each S(n) is the key, difficult point. In very rough terms, the idea is to let
ε > 0, K ⊂ C compact, p(z) =

∑m′

i=0 aiz
i and q(z) =

∑m
i=0 biz

i ∈ Un all be arbitrary. After some
calculations, one shows that there exist f(z) ∈ H(C) and j ∈ N such that for ||f(z)− p(z)||K < ε
and Djfk(z) = q(z). The reader is referred to [1] for complete details.

By taking intersections of the sets Mk, we obtain the following result.

Proposition 3.3. The set of entire functions f such that fk ∈ HC(D) for every k ∈ N is a
dense Gδ−set in H(C).

We conclude this section with several comments and questions.

Problem 3.1. Although the preceding proposition can be regarded as positive “experimental
evidence,” it is unknown if HC(D) contains an algebra. In particular, it is not even known if
there is f ∈ H(C) such that every non-zero function in the algebra generated by f is hypercyclic
for the differentiation operator.

Problem 3.2. The question of whether the set HC(T ) contains algebras for other natural
hypercyclic operators T on H(C) remains open. In particular, the behavior of τ ◦D, which takes
f(z) → f ′(z + 1), relative to this question is unknown. On the other hand, the argument that is
given here to show that no power of an entire function can be hypercyclic for τ has been used by J.
H. Shapiro [16] to show that for any f ∈ HC(τ), f : C→ C, is surjective.

Problem 3.3. In addition, it is unknown whether HC(D) contains a closed subspace. In
connection with this, we mention recent work of H. Petersson [14], in which the following is proved:

Theorem 3.4. ([14]) Let T : H(Cn) → H(Cn) be a linear continuous mapping that satisfies
the following condition: T (τb)(f) = τb(T )(f), for every f ∈ H(Cn) and every b ∈ Cn. Then, if
n ≥ 2, HC(T ) contains an infinite dimensional closed subspace.

4. Related results

An obvious requirement for large subspaces of functions having an unusual property is for
there to exist a large set with the property. For this, a very frequent tool is the Baire category
theorem. We describe here two situations in which the Baire theorem applies, but with different
conclusions.

First, following Gurariy and Quarta [12], define the set UM [0, 1] to consist of those real-valued
f ∈ C[0, 1] such that f attains its maximum at a unique point. It is not difficult to show that
UM [0, 1] is a dense Gδ−set in C[0, 1]. Despite this, one has the following:

Theorem 4.1. ([12]). If V ⊂ UM [0, 1] is a non-trivial vector space, then dim V = 1.

To conclude this note, we turn to the question of convergence of Fourier series on T. In [5],
F. Bayart shows that the set of functions in L1(T) whose Fourier series diverge everywhere on T
is spaceable; i.e. there is a closed, infinite dimensional subspace M ⊂ L1(T) such that for every
f ∈ M, f 6= 0, the Fourier series of f is everywhere divergent. In addition, Bayart shows that
given a subset E ⊂ T of measure 0, there is a dense vector space of functions in C(T), such that
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the Fourier series of every non-zero function in this vector space diverges at every point of E. In
fact, in a recent paper, the authors show the following:

Theorem 4.2. ([3]). Given any subset E ⊂ T of measure 0, there is an infinitely generated
dense algebra A ⊂ C(T) such that for all f ∈ A, f 6= 0, the Fourier series of f diverges at every
point of E.

We conclude this paper with the following:

Problem 4.1. Characterize when there exists a closed infinite dimensional algebra of func-
tions with a particular “strange” property? Note that in all the examples given above, none of the
algebras constructed is closed. On the other hand, there do exist situations in which one can find
Banach algebras of functions with a very special property. For instance, in [8], it is shown that the
collection of so-called Brodén type functions on C[a, b] contains a Banach algebra.
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