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Abstract

Although the set of nowhere analytic functions on [0,1] is clearly not a linear space, we show that the family of such functions
in the space of C∞-smooth functions contains, except for zero, a dense linear submanifold. The result is even obtained for the
smaller class of functions having Pringsheim singularities everywhere. Moreover, in spite of the fact that the space of differentiable
functions on [0,1] contains no closed infinite-dimensional manifold in C([0,1]), we prove that the space of real C∞-smooth
functions on (0,1) does contain such a manifold in C((0,1)).
© 2007 Published by Elsevier Inc.
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1. Introduction, terminology and known results

In this paper, we are mainly concerned with the class of real or complex functions being infinitely many differen-
tiable on an interval of the real line R but nowhere analytic.

Although at first glance the existence of such functions is somewhat surprising, the truth is that such existence is
known at least from an example given in 1876 by du Bois Reymond [13]. An excellent survey about the first results
on the subject (up to 1955) is the paper [32] by Salzmann and Zeller. An early, nice example is the following one due
to M. Lerch (see [24] and [33]):

f (x) =
∞∑

n=1

cos(anx)

n! ,

where a is an odd positive integer.
Before going on, let us fix some notation and terminology. The symbols N,N0,Q,C will stand, respectively, for

the set of positive integers, the set N ∪ {0}, the set of rational numbers, and the complex plane, while K is any of
the fields R,C. If X is a topological space and A ⊂ X, then A0, Ā denote, respectively, its interior and its closure
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in X. A subset A ⊂ X is said to be meager, or of first category, provided that there are subsets An ⊂ X (n ∈ N) such
that A = ⋃∞

n=1 An and Ā0 = ∅ for every n ∈ N. The space X is a Baire space is no nonempty open subset is of first
category. If X is a Baire space, then a subset A ⊂ X is called residual, or comeager, if X \ A is of first category, or
equivalently, if A contains some dense Gδ subset. Every completely metrizable space is a Baire space (see [27]).

In the present paper, functions are primarily defined on the unit interval I := [0,1]. Nevertheless, many results to
be proved here (or already proved in the literature) can easily be extended to real or complex functions defined on a
(closed or not) interval of R, including the whole real line. By C∞(I ) we denote, as usual, the Fréchet space of all
smooth (:= infinitely many times differentiable) K-valued functions on I . It becomes a Fréchet space (:= complete
metrizable locally convex space) if it is endowed with the topology generated by the seminorms

pk(f ) = ∥∥f (k)
∥∥

I
(k ∈ N0),

where ‖h‖A := sup{|h(x)|: x ∈ A} for any set A and any function h : A → K. Let us denote by K(A) the family of
all compact subsets of A. If J is an open interval of R, then the space C∞(J ) of smooth K-valued functions on J

is a Fréchet space whenever it is endowed with the seminorms f 
→ ‖f (k)‖L (k ∈ N0,L ∈ K(J )) (see [22, p. 136]).
Hence C∞(I ) and C∞(J ) are Baire spaces. The same is true for the Banach space C(I) of continuous functions on
I (endowed with the supremum norm ‖ · ‖I ) and the Fréchet space C(I 0) = C((0,1)) (endowed with the seminorms
‖ · ‖L, L ∈ K(I 0)).

If f ∈ C∞(I ) and x0 ∈ I , then f is said to be analytic at x0 provided that the Taylor series

T (f, x0) :=
∞∑

n=0

f (n)(x0)

n! (x − x0)
n

converges to f in some neighborhood of x0. The point x0 is said to be singular for f if f is not analytic at x0. It is easy
to see that the set S(f ) := {x ∈ I : f is singular at x} is closed in I . If x0 ∈ S(f ), then there are two possibilities: Either
T (f, x0) converges in no neighborhood of x0 (a Pringsheim singularity) or T (f, x0) converges in some neighborhood
of x0 but to a function which is different from f (a Cauchy singularity). The respective set will be denoted by PS(f )

and CS(f ) (so S(f ) = PS(f ) ∪ CS(f ), a disjoint union). It follows that a Pringsheim singularity is “worse” than a
Cauchy one. We have that x0 ∈ PS(f ) if and only if ρ(f, x0) = 0, where ρ(f, x0) denotes the radius of convergence
of T (f, x0), that is,

ρ(f, x0) =
(

lim sup
n→∞

∣∣∣∣f (n)(x0)

n!
∣∣∣∣
1/n)−1

.

For instance, the classical function g : I → R given by

g(x) =
{

exp(−1/x) if x �= 0,

0 if x = 0,
(1)

satisfies S(g) = CS(g) = {0}, PS(g) = ∅. It is easy to see that PS(f ) is a Gδ subset of I , for every f ∈ C∞(I ). In
1893, Pringsheim [28] proved that CS(f ) is never very large; specifically, it cannot contain an interval. The exact
structure of CS(f ) and PS(f ) was given by Zahorski [34] in 1947. He proved that, given two subsets A,B ⊂ I , then
there exists an f ∈ C∞(I ) with CS(f ) = A, PS(f ) = B if and only if the following holds:

(a) A is an Fσ subset of first category and B is a Gδ subset.
(b) A ∪ B is closed and A ∩ B = ∅.

Let us denote by S the set of all smooth nowhere analytic functions—that is, S = {f ∈ C∞(I ): S(f ) = I }—
and by PS the (smaller) set of all smooth functions with a Pringsheim singularity at every point, that is, PS =
{f ∈ C∞(I ): PS(f ) = I }. Observe that {f ∈ C∞(I ): CS(f ) = I } = ∅. By contrast, the above stated Zahorski result
proves specially that PS �= ∅. In Zahorski’s paper, it is established the following question posed by Steinhaus and
Marczewski: Is PS not only a nonempty family, but even topologically generic? More specifically, is PS a residual
subset in C∞(I )? A positive answer would imply, of course, the topological genericity of the (bigger) set S in C∞(I ).

By using the fact that C∞(I ) is a Baire space, Morgenstern [26] proved in 1954 the last assertion: The set S is
residual in C∞(I ). And Salzmann and Zeller [32, Section 2] answered in 1955 Steinhaus–Marczewski’s question in
Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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the affirmative: PS is residual in C∞(I ). Their papers are probably not well known (with the additional handicap
that the proof in [26] contains two gaps, see [32, p. 356]), because several authors have published later similar results.
Namely, Christensen [10] established in 1971 that the set S0 := {f ∈ C∞(I ): there exists a residual subset Af ⊂ I

such that ρ(f, x) = 0 for all x ∈ Af } is residual in C∞(I ), and Darst [11] proved in 1973 the residuality of S in
C∞(I ). Note that PS ⊂ S0 ⊂ S , where the last inclusion derives from the closedness of S(f ). It follows that Chris-
tensen’s result implies Morgenstern–Darst’s result, but does not imply the residuality of PS . Finally, the author [6]
in 1987 (for complex functions) and Ramsamujh [29] in 1991 (for real or complex functions) obtained that PS is
residual, with proofs very different from that of Salzmann–Zeller.

Remarks 1.1.
1. Let f ∈ C∞(I ). The example (1) (note that g(n)(0) = 0 for all n � 0) shows that even the condition

ρ(f, x0) = +∞ is not enough for f to be analytic at x0. Nevertheless, if there is a neighborhood U of x0 such
that infx∈U ρ(f, x) > 0, then f is analytic at x0 [28]. The exact condition is: f is analytic at x0 if and only if

supn∈N(
‖f (n)‖U

n! )1/n < +∞ for some neighborhood U of x0 (see [25, Chapter 1]). Another sufficient condition is
furnished by Bernstein’s theorem [12, pp. 51–52]: If x0 ∈ I 0 and there exists a neighborhood U of x0 with either
f (n)(x) � 0 for all (x,n) ∈ U × N0 or (−1)nf (n)(x) � 0 for all (x,n) ∈ U × N0, then f is analytic at x0.

2. We may have f ∈ S with ρ(f, x) = +∞ at a dense set of points. For instance, in [1] it is exhibited a function
f ∈ S such that T (f, x0) is a polynomial at each diadic point x0 (see also [15]).

3. In [6], the author obtains the residuality of PS as a corollary of a more general statement, namely, given a pair
of sequences (an), (bn) ⊂ (0,+∞), the class of C∞-smooth functions f : I → C such that

lim inf
n→∞

(
an

∣∣f (n)(x)
∣∣) = 0 and lim sup

n→∞
(
bn

∣∣f (n)(x)
∣∣) = +∞ for all x ∈ I,

is residual. In other words, most smooth functions have sequences of derivatives that are “big and small everywhere.”
The result was inspired by Borel’s theorem asserting that, given a point x0 ∈ R and a sequence (cn) ⊂ R, there exists
a function f ∈ C∞(R) with f (n)(x0) = cn (n ∈ N0) [12, pp. 50–51].

4. Smooth nowhere analytic functions with additional properties have been constructed. For instance, Kim and
Kwon exhibited in 2000 [23] an increasing function f0 ∈ S . Incidentally, if we set F(x) := ∫ x

0 f0(t) dt , then we
obtain a convex function F ∈ S .

5. An interesting, trivial property of the class PS is its invariance under derivatives: If D : f ∈ C∞(I ) → f ′ ∈
C∞(I ) is the derivative operator, then D(PS) = PS = D−1(PS). The same holds for S .

Once established the big topological size of S , it is natural to wonder whether S possesses a big algebraic size.
The fact that S is not a linear manifold increases the interest in this matter. Precisely, under the terminology of Gurariy
and Quarta [21], we pose here the problem of the lineability of S in C∞(I ). If X is a topological vector space and
A is a subset of X, then the lineability λ(A) of A is defined as the maximum cardinality of the linear manifolds
M ⊂ X such that M \ {0} ⊂ A. A subset A ⊂ X is called lineable if A ∪ {0} contains an infinite-dimensional linear
manifold, that is, if λ(A) � card(N). Recall that dim(X) = χ (:= the cardinality of the continuum) if X is a complete
metrizable separable infinite-dimensional topological vector space (for instance, X = C∞(I )), so λ(A) � χ for every
subset A in such a space. The two (stronger than mere lineability) notions of spaceability and algebraic genericity
were introduced respectively in [21] and in Bayart’s paper [4]. A subset A ⊂ X is called spaceable (algebraically
generic, respectively) in X if A ∪ {0} contains a linear manifold M such that M is closed and infinite-dimensional
(such that M is dense in X, respectively). Examples of sets that are not linear manifolds but having some of the three
latter properties can be found in [2–5,7,8,14,16–19,30]. Among these references, we emphasize specially that Fonf,
Gurariy and Kadec [19] showed that the set of nowhere differentiable functions is spaceable (see [16] and [18] for
the weaker property of lineability). In fact, much more is true: L. Rodríguez-Piazza [30] proved that every separable
Banach space is isometric to a space of continuous nowhere differentiable functions.

In this paper, we turn our attention to analogous results for smooth functions. Our main aim is to establish the
algebraic genericity of the class PS (so of S) in C∞(I ), see Section 2. In Section 3, we also state that S has maximal
lineability, that is, λ(S) = χ . In the complex case, it is even obtained that λ(PS) = χ . Furthermore, we focus our
interest on the “algebraic status” of the class of smooth functions within the space of real continuous functions. The
set D(I ) of everywhere differentiable functions on I is linear and hence lineable (in fact, D(I ) is algebraically generic,
Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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because it contains all polynomials). But Gurariy proved in [16] that this cannot be improved: D(I ) is not spaceable
in C(I). This implies, trivially, that C∞(I ) is not spaceable in C(I). Nevertheless, the situation is this time very
different if we replace I by I 0 = (0,1). In fact, we will prove in Section 4 that the space C∞(I 0) is spaceable in
C(I 0).

2. Algebraic genericity of PS

In order to establish the existence of large linear manifolds in PS , we need the following auxiliary result, which
asserts the existence of smooth functions with successive derivatives as big as desired. In fact, we obtain topological
genericity by using a Baire category approach.

Lemma 2.1. Let (cn) ⊂ (0,+∞) be a sequence of positive real numbers, and M be an infinite subset of N0. Then the
set

M
(
(cn),M

) := {
f ∈ C∞(I ): there are infinitely many n ∈ M such that max

{∣∣f (n)(x)
∣∣, ∣∣f (n+1)(x)

∣∣} > cn

for all x ∈ I
}

is residual in C∞(I ).

Proof. Let (cn), M be as in the hypothesis. The assertion of the lemma is equivalent to say that the set A := C∞(I ) \
M((cn),M) is of first category. To prove this, observe that A = ⋃

N∈M AN , where AN := ⋂
k>N,k∈M Bk and

Bk := {
f ∈ C∞(I ): there exists x = x(f ) ∈ I such that max

{∣∣f (k)(x)
∣∣, ∣∣f (k+1)(x)

∣∣} � ck

}
.

Now, each map

Φk : (f, x) ∈ C∞(I ) × I 
→ max
{∣∣f (k)(x)

∣∣, ∣∣f (k+1)(x)
∣∣} ∈ [0,+∞) (k ∈ N0)

is continuous. Therefore the set Φ−1
k ([0, ck]) is closed in C∞(I )×I . Consequently, its projection on C∞(I ) is closed,

because it is a projection that is parallel to I , which is compact. But such projection is precisely Bk , so Bk is closed.
Since AN is an intersection of certain sets Bk , we obtain that each AN is also closed. It follows that A is an Fσ set.

It is enough to show that each AN has empty interior. By way of contradiction, let us assume that A0
N �= ∅. Then

there would exist a basic neighborhood U(g,α,m) := {h ∈ C∞(I ): pj (h − g) < α for all j = 0,1, . . . ,m} such that
U(g,α,m) ⊂ AN , for certain g ∈ C∞(I ), α > 0 and m ∈ N. By the density of the set of polynomials in C∞(I ), there
are a polynomial P , a number ε ∈ (0,1) and a positive integer n with U(P, ε,n) ⊂ U(g,α,m), so

U(P, ε,n) ⊂ AN. (2)

Let us choose k ∈ M with k > max{n,N, degree (P )}, and let

b := (1 + ck)

(
4

ε

)
.

So b > 1. Now, we define the function

f (x) := P(x) + ε sin(bx)

2bn
.

Note that the absolute value of the mth-derivative of the function ϕ(x) := sin(bx) is bm|sin(bx)| (if m is even) or
bm| cos(bx)| (if m is odd). Then we have, for every j ∈ {0,1, . . . , n}, that

pj (f − P) = sup
x∈I

∣∣∣∣εϕ(j)(x)

2bn

∣∣∣∣ � ε

2
bj−n � ε

2
< ε.

Thus, f ∈ U(P, ε,n). On the other hand, we have for any x ∈ I that either |sin(bx)| � 1/2 or |cos(bx)| � 1/2, because
of the basic law sin2 t + cos2 t = 1. Fix x ∈ I . Then we can select for each j ∈ N0 one number m(j) ∈ {j, j + 1} such
that |ϕ(m(j))(x)| � bm(j)/2. Consequently,
Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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max
{∣∣f (k)(x)

∣∣, ∣∣f (k+1)(x)
∣∣} �

∣∣f (m(k))(x)
∣∣ =

∣∣∣∣P (m(k))(x) + ε

2bn
ϕ(m(k))(x)

∣∣∣∣ =
∣∣∣∣ ε

2bn
ϕ(m(k))(x)

∣∣∣∣
� ε

4
bk−n � ε

4
b = 1 + ck > ck.

To summarize, we have found k ∈ M with k > N such that max{|f (k)|, |f (k+1)|} > ck on I , a contradiction
with (2). �
Remarks 2.2.

1. Lemma 2.1 holds in both cases K = R or C. If, specially, K = C, then the last proof works by replacing ϕ(x) :=
sin(bx) by ϕ(x) := exp(ibx). Hence we obtain a slightly stronger result in this case, namely, for each sequence
(cn) ⊂ (0,+∞), the set {f ∈ C∞(I ): there are infinitelymany n ∈ M such that |f (n)(x)| > cn for all x ∈ I } is residual
in C∞(I ). It is even possible to construct an explicit function f ∈ C∞(I ) satisfying |f (n)(x)| > cn (n ∈ N, x ∈ I ) if
K = C: Take f (x) = ∑∞

k=1 b1−k
k exp(ibkx), where bk = 2 + ck +∑k−1

j=1 b
k+1−j
j (the last sum is defined as 0 if k = 1),

see [6, Lemma]. If K = R or C, then with the same approach of this reference one can obtain an explicit function
F ∈ C∞(I ) satisfying max{|F (n)|, |F (n+1)|} > cn (n ∈ N) on I : It is enough to take F(x) = ∑∞

k=1 b1−k
k sin(bkx),

where bk = 2(2 + ck + [ck−1 + ∑k−1
j=1 b

k+1−j
j ]) (the term within the square brackets is defined as 0 if k = 1). This

function could be used to furnish an alternative second part of the proof of Lemma 2.1. Indeed, if Q is the set of all
polynomials, then Q is dense in C∞(I ), so the set F +Q of its F -translates is also dense. But the last set is contained
in the Gδ set M((cn),M). Thus, M((cn),M) is a dense Gδ set, so residual.

2. The first result of the preceding remark completely fails to hold for K = R. In fact, for certain sequences (cn),
the set A := {f ∈ C∞(I ): there are infinitely many n ∈ N such that |f (n)(x)| > cn for all x ∈ I } can even be empty.
To see this, fix f ∈ C∞(I ), n ∈ N0 and c ∈ (0,+∞), and suppose that |f (n)(x)| > c for any x ∈ I . We claim that there
exists an interval J ⊂ I of length 1/4n such that |f (x)| � c/4n. Let us prove this fact by induction on n. Observe
that the result is clear for n = 0. Suppose that it has been proved for n − 1, and let us prove it for n. Without less
of generality, we may suppose f (n)(x) > c for any x ∈ I . Integrating, we get f (n−1)(x) − f (n−1)(y) � c(x − y) for
any x � y in I . On the one hand, if f (n−1) does not vanish on I , we may suppose it is positive. Thus, when x � 1/2,
we obtain f (n−1)(x) � f (n−1)(x) − f (n−1)(0) � c(x − 0) � c/2. On the other hand, if f (n−1) vanishes on I , say
at x0, then there exists an interval J ⊂ I of size 1/4 such that |x0 − x| � 1/4 for all x ∈ J . Hence |f (n−1)(x)| =
|f (n−1)(x) − f (n−1)(x0)| � c|x − x0| � c/4 (x ∈ J ). The claim now follows by induction hypothesis. In particular,
for cn = 8n, the set A is empty.

3. To demonstrate Lemma 2.1, we had primarily tried to follow the elegant approach of the proof of Theorem 1
in [29], where it is asserted the residuality of PS in C∞(I ). But there is a gap in the final part of it (with the notation
of [29], it is there needed to exhibit for every x0 ∈ I a number m with |g(m)(x0)| > Mmm!, not only for a point x0
furnished by a function f ∈ F(M)). Nevertheless, the residuality of PS (already proved in [32], as mentioned in
Section 1) is, of course, true: Choose M = N and cn = (n + 1)!(n + 1)n+1 in Lemma 2.1.

We are now ready to state the main result of this section, namely, the existence of dense linear manifolds of smooth
functions having Pringsheim singularities everywhere. As a matter of fact, the same holds for smooth functions having
derivatives of large orders as big as desired at all points.

Theorem 2.3.

(a) Let (cn) be a sequence in (0,+∞). Then the set

A((cn)) :=
{
f ∈ C∞(I ): lim sup

n→∞
|f (n)(x)|

cn

= +∞ for all x ∈ I

}
is algebraically generic in C∞(I ).

(b) The set PS is algebraically generic in C∞(I ).

Proof. Part (b) derives from (a) simply by taking cn := n!nn.
Let us prove (a). Since the set of all polynomials is dense in C∞(I ), this metric space is separable, so second-

countable. It follows that one can find a countable open basis {Vn: n ∈ N} for its topology. Let M0 := N and dn :=

Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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max{cn, cn+1} (n � 0). According to Lemma 2.1, the set M((n(1 + dn)),M0) is residual, hence dense. This allows
us to choose a function

f1 ∈ M
((

n(1 + dn)
)
,M0

) ∩ V1.

Then there is an infinite subset M1 ⊂ M0 such that max{|f (n)
1 (x)|, |f (n+1)

1 (x)|} > n(1 + dn) for all n ∈ M1 and all

x ∈ I . Again by Lemma 2.1, the set M((n(1+dn)(1+‖f (n)
1 ‖I +‖f (n+1)

1 ‖I )),M1) is dense, so we can pick a function

f2 ∈ M
((

n(1 + dn)
(
1 + ∥∥f

(n)
1

∥∥
I
+ ∥∥f

(n+1)
1

∥∥
I

))
,M1

) ∩ V2.

An induction procedure leads us to the construction of a sequence of functions {fk: k ∈ N} ⊂ C∞(I ) and of a nested
sequence of infinite sets M0 ⊃ M1 ⊃ M2 ⊃ M3 ⊃ · · · satisfying, for all k ∈ N, x ∈ I , n ∈ Mk , that

fk ∈ Vk (3)

and

max
{∣∣f (n)

k (x)
∣∣, ∣∣f (n+1)

k (x)
∣∣} > n(1 + dn)

(
1 +

k−1∑
j=1

(∥∥f
(n)
j

∥∥
I
+ ∥∥f

(n+1)
j

∥∥
I

))
(4)

where the last sum is defined as 0 if k = 1.
Next, let us define

D := span
({fk: k ∈ N}).

It is derived form (3) that {fk: k ∈ N} is dense, so D is dense linear submanifold of C∞(I ). It remains to prove that
every function f ∈ D \ {0} belongs to A((cn)). To prove it, note that for such a function there exist N ∈ N and real
constants ak (k = 1, . . . ,N) such that aN �= 0 and f = a1f1 + · · · + aNfN . Since aN �= 0, we can find n0 ∈ N such
that n|aN | � ak for all n � n0 and all k = 1, . . . ,N − 1. If x ∈ I is fixed, by (4) we can select for each n ∈ MN one
value m(n) ∈ {n,n+1} such that |f (m(n))

N (x)| > n(1+dn)(1+∑N−1
j=1 (‖f (n)

j ‖I +‖f (n+1)
j ‖I )). It follows, for all x ∈ I

and all n ∈ MN with n � n0, that

|f (m(n))(x)|
dn

� 1

dn

|aN |∣∣f (m(n))
N (x)

∣∣ − 1

dn

N−1∑
k=1

|ak|
∣∣f (m(n))

k (x)
∣∣

� 1

dn

[
n|aN |(1 + dn)

(
1 +

N−1∑
k=1

(∥∥f
(n)
k

∥∥
I
+ ∥∥f

(n+1)
k

∥∥
I

)) −
N−1∑
k=1

|ak|
∥∥f

(m(n))
k

∥∥
I

]

� 1

dn

[
ndn|aN | +

N−1∑
k=1

(
n|aN | − |ak|

)∥∥f
(m(n))
k

∥∥
I

]
� n|aN |.

Hence limn→∞, n∈MN

|f (m(n))(x)|
cm(n)

= +∞ for each x ∈ I , because cm(n) � dn (n � 1). Consequently,

lim sup
n→∞

|f (n)(x)|
cn

= +∞ (x ∈ I ),

so f ∈ A((cn)). �
Remark 2.4. In the case K = C, we can use the version of Lemma 2.1 given in Remark 2.2.1 together with the

approach of the last proof to show a little more, namely, the set {f ∈ C∞(I ): lim supn→∞ infx∈I
|f (n)(x)|

cn
= +∞} is

algebraically generic for any sequence (cn) ⊂ (0,+∞). Consequently, the set{
f ∈ C∞(I ): lim sup

n→∞
inf
x∈I

( |f (n)(x)|
n!

)1/n

= +∞
}

—which is smaller that PS—is algebraically generic.
Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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We close this section by posing the following problem.

Question 1. Since each function in PS is everywhere differentiable, we have by [16] that PS is not spaceable in
C(I). But, is PS spaceable in C∞(I )?

3. Maximal lineability of S

From Theorem 2.3 it is derived, of course, the algebraic genericity of the class S . In particular, S is lineable:
λ(S) � card(N). The next theorem will prove that much more is true. Precisely, λ(S) = χ . In fact, an adequate
manifold can be found to guarantee simultaneously both properties of algebraic genericity and maximal lineability.

Theorem 3.1. There exists a linear submanifold D of C∞(I ) satisfying the following:

(a) D is dense in C∞(I ).
(b) dim(D) = χ .
(c) D \ {0} ⊂ S .

Proof. Let us fix a translation-invariant distance d defining the topology of C∞(I ). Fix also a function ϕ ∈ S . Let
{Pn}n�1 be an enumeration of the polynomials with coefficients in Q (if K = R) or in Q + iQ (if K = C). Then
{Pn}n�1 is a dense subset of C∞(I ). Consider, for each α ∈ R, the function eα(x) := exp(αx). The continuity of the
scalar multiplication in the topological vector space C∞(I ) allows to assign to each α > 0 a number εα > 0 such that
d(0, εαeαϕ) < 1/α. Denote ϕα := εαeαϕ and fn,α := Pn + ϕα (α > 0, n ∈ N). It follows that

d(Pn,fn,α) <
1

α
(α > 0, n ∈ N).

Now, let us define

D := span
({

fn,α: α ∈ [n,n + 1), n ∈ N
})

.

It is clear that D is a linear submanifold of C∞(I ). Our task is to show that D satisfies (a), (b) and (c).
Firstly, observe that D ⊃ {fn,n}n�1 and that the set {fn,n}n�1 is dense because {Pn}n�1 is and d(Pn,fn,n) <

1/n → 0 (n → ∞). Therefore D is also dense, which proves (a).
Before proving (b), we need to show that, for each nonempty subset A ⊂ R, the functions eα (α ∈ A) are linearly

independent. Suppose that this is not the case. Then there would exist a number N ∈ N, scalars c1, . . . , cN with cN �= 0
and values α1 < · · · < αN in A such that c1eα1 + · · ·+ cNeαN

= 0 on I . From the Analytic Continuation Principle, we
obtain that the last equality holds on the whole line R. We can suppose that N � 2. This implies

0 �= cN = −(
c1eα1−αN

(x) + · · · + cNeαN−1−αN
(x)

) → 0 as x → +∞,

which is absurd. This shows the claimed linear independence.
In order to demonstrate (b), it is enough to show that, for each polynomial P and any nonempty subset A ⊂ R,

the functions P + ϕα (α ∈ A) are linearly independent. Indeed, since D ⊃ {P1 + ϕα: α ∈ [0,1)}, we would have
dim(D) � card([0,1)) = χ , from which (b) follows. So, fix P and A as above. Assume, by way of contradiction, that
the functions P + ϕα (α ∈ A) are not linearly independent. Then there would exist N ∈ N, c1, . . . , cN with cN �= 0
and α1 < · · · < αN in A such that c1(P + ϕα1) + · · · + cN(P + ϕαN

) = 0 on I . Let ψ := c1εα1eα1 + · · · + cNεαN
eαN

.
Due to the linear independence of the functions eα and to the continuity of ψ , there is an open interval J ⊂ I such
that ψ(x) �= 0 for all x ∈ J . Therefore

ϕ(x) = − (
∑N

j=1 cj )P (x)

ψ(x)
(x ∈ J ).

Hence ϕ would be analytic on J . This is the desired contradiction.
Finally, we prove (c). Fix a function f ∈ D \ {0}. Suppose, again by way of contradiction, that f /∈ S .

Then S(f ) �= I and there exist numbers N ∈ N, m1, . . . ,mN ∈ N, scalars cj,k and values α(j, k) ∈ [j, j + 1)

(k = 1, . . . ,mj ; j = 1, . . . ,N) satisfying α(j,1) < · · · < α(j,mj ) for all j = 1, . . . ,N , cN,m �= 0 and f =

Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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∑N
j=1

∑mj

k=1 cj,k(Pj + ϕα(j,k)). The key point is that the values α(j, k) are pairwise distinct. Let us set h :=∑N
j=1

∑mj

k=1 cj,kεα(j,k)eα(j,k). By the claim proved above, this function is not identically zero on I . Also, thanks
to the Analytic Continuation Principle, the set Z of zeros of h in the compact interval I cannot be infinite. Then
I \ (S(f ) ∪ Z) is a nonempty relatively open subset of I . Consequently, there is an interval J ⊂ I where f is analytic
and h vanishes at no point. Moreover, we have f = Q + hϕ, where Q is the polynomial Q = ∑N

j=1(
∑mj

k=1 cj,k)Pj . It
is derived that

ϕ(x) = f (x) − Q(x)

h(x)

on J . But this would force the analyticity of ϕ on such interval, a contradiction. �
In the case K = C, it is possible to obtain maximal lineability for the class PS .

Theorem 3.2. Assume that K = C. Then λ(PS) = χ , that is, there exists a linear submanifold D of C∞(I ) satisfying
dim(D) = χ and D \ {0} ⊂ PS .

Proof. We follow the notation of the proof of Theorem 3.1. Fix a function f ∈ PS and consider

D := span
({f eα: α ∈ I }).

Obviously, D is a linear submanifold of C∞(I ). Let us show that dim(D) = χ . For this, it is enough to prove the
linear independence of the functions f eα (α ∈ I ). This follows from the following facts: the functions eα are linearly
independent, a finite linear combination of these functions is analytic, the set of zeros in I of an analytic function on
I is finite and, finally, a Pringsheim singular function cannot vanish identically on an interval.

Therefore, our task is to select f ∈ PS such that D \ {0} ⊂ PS . Let us define inductively a pair of suitable
sequences (cn), (bn) ⊂ (0,+∞). Firstly, set c1 := 4, b1 := 2 + c1. Assume now that, for some integer n � 2, the
numbers c1, . . . , cn−1, b1, . . . , bn−1 have already been determined. Then we define

cn := 4 + 2
n−1∑
k=1

bn+1−k
k + (2n)!(2n)2n + (2n)!n

n−1∑
k=1

ck,

bn := 2 + cn +
n−1∑
k=1

bn+1−k
k .

Note that bn > 2 for all n ∈ N.
Secondly, we define f as in the beginning of Remark 2.2.1, that is,

f (x) :=
∞∑

k=1

b1−k
k exp(ibkx).

Then f ∈ C∞(I ) and |f (n)(x)| > cn (n ∈ N, x ∈ I ) [6, Lemma]. Moreover, since cn > n!nn, we get ρ(f, x) = 0
(x ∈ I ), so f ∈ PS . On the other hand, we have for n ∈ N and x ∈ I that

∣∣f (n)(x)
∣∣ �

∣∣bn+1−n
n in exp(ibnx)

∣∣ +
∑
k �=n

∣∣bn+1−k
k ik exp(ibkx)

∣∣ = bn +
n−1∑
k=1

bn+1−k
k + (

1 + b−1
n+2 + b−2

n+3 + · · ·)

< bn +
n−1∑
k=1

bn+1−k
k + 2 = 4 + cn + 2

n−1∑
k=1

bn+1−k
k � 2cn.

Finally, fix g ∈ D \ {0}. Then there are N ∈ N, complex constants a1, . . . , aN and numbers α1 < α2 < · · · < αN

in I with h := ∑N
j=1 aj eαj

�≡ 0 and g = f h. Observe that

∣∣h(n)(x)
∣∣ � e

N∑
|aj | =: β (n ∈ N0, x ∈ I ).
Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
doi:10.1016/j.jmaa.2007.09.048
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Let x0 ∈ I , and let p ∈ N0 be the smallest integer such that h(p)(x0) �= 0 (p exists because h is analytic). Denote
γ := |h(p)(x0)|, c0 := ‖f ‖I , and fix n > 2p + 2βγ −1 (so n − p > 2βγ −1, 2n − 2p > n and (2n − 2p)! > n! �

(
n
k

)
for all k ∈ {0,1, . . . n}). From Leibniz’s formula, we arrive to

∣∣g(n)(x0)
∣∣ =

∣∣∣∣∣
(

n

p

)
f (n−p)(x0)h

(p)(x0) +
n−p−1∑

k=0

(
n

k

)
f (k)(x0)h

(n−k)(x0)

∣∣∣∣∣
� γ cn−p − 2β

n−p−1∑
k=0

(
n

k

)
ck

� γ

[
cn−p − (2n − 2p)!(n − p)

n−p−1∑
k=1

ck − (n − p)c0

]

� γ
[
(2n − 2p)!(2n − 2p)2n−2p − (n − p)c0

]
� γ

[
n!nn − nc0

]
.

Then ρ(g, x0) = 0. Consequently, g ∈PS , as desired. �
The following question arises naturally from the last two theorems.

Question 2. Is the conclusion of Theorem 3.1 true for PS instead of S? Or, at least, does λ(PS) = χ hold in the real
case?

4. Spaceability of C∞(I 0)

Along this section, we will consider the case K = R. We have already mentioned that D(I ) is not spaceable in
C(I) [16]. Consequently, C∞(I ) is not spaceable in C(I) either. This might suggest that the same negative result
holds if one replaces I by I 0. This is not the case, as Theorem 4.4 below shows. We point out—this time in a more
positive direction, see also our Remark 4.5.2—that Gurariy [17] proved the spaceability in C(I) of C(I) ∩ D(I 0).
This fact contributed to our interest in the subject.

Some background about the so-called Müntz spaces is needed. Let Λ = {λk}∞k=0 be an increasing sequence of
nonnegative numbers: 0 = λ0 < λ1 < λ2 < · · ·. Moreover, let M(Λ) = {tλk }∞k=0 be the sequence of the functions tλk

on I , and let [M(Λ)] be the closed linear span of M(Λ) in C(I). We call M(Λ) a Müntz sequence and [M(Λ)]
a Müntz space. Members of span(M(Λ)) are called Müntz polynomials. The Müntz–Szasz theorem (see [31]) as-
serts that [M(Λ)] = C(I) if and only if

∑∞
k=1 λ−1

k = +∞. So if
∑∞

k=1 λ−1
k < +∞, we obtain new Banach spaces

[M(Λ)] in C(I). A sequence Λ is called entire if λk ∈ N (k = 1,2, . . .), while it is called lacunary if λk+1/λk � q

(k = 1,2, . . .) for some q > 1. Note that if Λ is lacunary, then
∑∞

k=1 λ−1
k < +∞ and Λ satisfies the gap condition

infk(λk+1 − λk) > 0.
For the proof of Theorem 4.4 the following two auxiliary results will be used. They contain, respectively, a

Bernstein-type inequality and a Remez-type inequality, both of them in C(I) for Müntz polynomials. They can be
found, respectively, in Theorem 8.3.1 and Corollary 8.4.3 of [20].

Lemma 4.1. If Λ is lacunary, then there exists a constant c = c(Λ) ∈ (0,+∞) such that, for any f ∈ span(M(Λ)),
we have∣∣f ′(t)

∣∣ � c

1 − t
‖f ‖I for all t ∈ [0,1).

Lemma 4.2. Assume that Λ is such that
∑∞

k=1 λ−1
k < +∞ and infk(λk+1 − λk) > 0. Let K ⊂ I be a compact set

whose interior in I is nonempty. Then there is a constant c = c(Λ,K) ∈ (0,+∞) satisfying

‖f ‖[0,infK] � c‖f ‖K for all f ∈ span
(
M(Λ)

)
.

Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
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Let us introduce the successive derivatives for an entire sequence Λ = {0 = λ0 < λ1 < λ2 < · · ·}. The 1-derivative
sequence of Λ is defined as the sequence Λ(1) = {μk}∞k=0 given by μ0 := 0 and

μk :=
{

λk − 1 if λ1 > 1,

λk+1 − 1 if λ1 = 1

for k � 1. By induction, the N -derivative sequence of Λ is defined for N � 2 as Λ(N) := (Λ(N−1))(1). The terminology
is motivated by the fact that if P is a Müntz polynomial for Λ, then its N -derivative P (N) is a Müntz polynomial for
Λ(N). Observe that each Λ(N) is also an entire sequence. In addition, the inequality (λk+1 − 1)λk � λk+1(λk − 1)

shows that if Λ is lacunary, then every Λ(N) is also lacunary.
The following result is in the core of the proof of Theorem 4.4.

Lemma 4.3. If Λ is a lacunary entire sequence, then there are two mappings ω : N × K(I 0) → (0,+∞),
σ : N ×K(I 0) → K(I 0) such that∥∥f (n)

∥∥
K

� ω(n,K)‖f ‖σ(n,K) (5)

for all n ∈ N, all K ∈K(I 0) and all f ∈ span(M(Λ)).

Proof. Fix a sequence Λ as in the hypothesis, and let K ∈ K(I 0). Then there are a, b such that 0 < a < b < 1
and K ⊂ [a, b]. Choose any sequence {bn}∞1 with b < b1 < b2 < · · · < bn < · · · < 1, and define the mapping σ

by σ(n,K) := [a, bn]. Recall that each sequence Λ(n) is also entire and lacunary, and that f (n) ∈ span(M(Λ(n)))

whenever f ∈ span(M(Λ)).
Observe that if f ∈ span(M(Λ)), then fα ∈ span(M(Λ)) for every α ∈ (0,1), where fα(t) := f (αt). Indeed, if

f (t) = ∑∞
k=0 akt

λk , then fα(t) = ∑∞
k=0(akα

λk )tλk . By Lemma 4.1, there is a constant c1 ∈ (0,+∞), not depending
on g, such that∣∣g′(t)

∣∣ � c1

1 − t
‖g‖I

(
t ∈ [0,1), g ∈ span

(
M(Λ)

))
.

By taking g = fb1 , we get for all t ∈ [0,1) and all f ∈ span(M(Λ)) that

b1
∣∣f ′(b1t)

∣∣ � c1

1 − t
‖fb1‖I = c1

1 − t
‖f ‖[0,b1].

From Lemma 4.2, there is a constant c2 ∈ (0,+∞), depending on a, b1 (so on K) but not on f , such that

‖f ‖[0,a] � c2‖f ‖[a,b1].

Then ‖f ‖[0,b1] � c3‖f ‖[a,b1], where c3 := max{1, c2}. Therefore∥∥f ′(b1t)
∥∥ � c1c3

b1(1 − t)
‖f ‖[a,b1]

(
t ∈ [0,1)

)
.

By taking the supremum over t ∈ [a/b1, b/b1], we obtain

‖f ′‖K � ‖f ′‖[a,b] � c1c3

b1 − b
‖f ‖[a,b1] = ω(1,K)‖f ‖σ(1,K),

where we have set ω(1,K) := c1c3/(b1 − b).
Now, we proceed by induction. Since Λ(1) is lacunary, there is a constant c4 ∈ (0,+∞) not depending on f such

that

‖f ′′‖[a,b] � c4‖f ′‖[a,b1]
(
f ∈ span

(
M(Λ)

))
,

because D(span(M(Λ))) ⊂ span(M(Λ(1))). Now, we can make the translation of roles b → b1, b1 → b2, so obtaining
for some constant c5 ∈ (0,+∞) not depending of f that

‖f ′‖[a,b1] � c5‖f ‖[a,b2]
(
f ∈ span

(
M(Λ)

))
.

Let us define ω(2,K) := c4c5. By combining the last two inequalities, one arrives at

‖f ′′‖K � ‖f ′′‖[a,b] � c4c5‖f ‖[a,b ] = ω(2,K)‖f ‖σ(2,K)

(
f ∈ span

(
M(Λ)

))
.
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It is evident that this process can be continued for every derivative f (n). Consequently, the mappings ω, σ can be
constructed so that they satisfy the desired conclusion. �

Next, we state the main result in this section, namely, C∞(I 0) contains a closed (in C(I 0)) infinite-dimensional
manifold.

Theorem 4.4. The class C∞(I 0) is spaceable in C(I 0).

Proof. Choose any lacunary entire sequence Λ = {0 = λ0 < λ1 < λ2 < · · ·}. Define the set

F := closureC(I 0)

(
span

(
M(Λ)

))
.

Note that the closure is in C(I 0), not in C(I). It is clear that F is a closed linear submanifold of C(I 0). Since
the functions tλk are linear independent, we have that dim (F) = +∞. Hence our unique task is to prove that F ⊂
C∞(I 0).

From Lemma 4.3, there are two mappings ω : N ×K(I 0) → (0,+∞), σ : N ×K(I 0) → K(I 0) such that (5) holds
for all f ∈ span(M(Λ)). Fix a function f ∈F . Then there is a sequence (fj ) of Müntz polynomials such that fj → f

(j → ∞) uniformly on every set L ∈ K(I 0). Then (fj ) is a Cauchy sequence in the space C(I 0). In particular, given
ε > 0, n ∈ N and K ∈ K(I 0), there is j0 ∈ N such that

‖fj − fk‖σ(n,K) <
ε

ω(n,K)
(j, k � j0).

Therefore, by Lemma 4.3,∥∥f
(n)
j − f

(n)
k

∥∥
K

< ε (j, k � j0),

whence (f
(n)
j ) is a Cauchy sequence in C(I 0) for every n. It follows that for each n there exists a function gn ∈ C(I 0)

such that

f
(n)
j → gn (j → ∞)

uniformly on compact subsets of I 0. From the uniform convergence of (f ′
j ) to g1 and of (fj ) to f on each compact

subset of I 0, we get

fj (x) =
x∫

1/2

f ′
j (t) dt + fj (1/2) →

x∫
1/2

g1(t) dt + f (1/2) (j → ∞).

But the pointwise convergence of (fj ) to f yields

f (x) = f (1/2) +
x∫

1/2

g1(t) dt
(
x ∈ I 0).

Since g1 ∈ C(I 0), the fundamental theorem of calculus tells us that f is differentiable on I 0 and that f ′ = g1. Finally,
an induction procedure proves immediately the existence of all n-derivatives f (n) and that, in fact, f (n) = gn for all
n ∈ N. Consequently, f ∈ C∞(I 0), as desired. �
Remarks 4.5.

1. Via adequate diffeomorphisms, Theorem 4.4 can be stated for any open interval of R. In particular, by using the
C∞-smooth bijection ϕ : x ∈ I 0 
→ cotan(πx) ∈ R, we easily obtain the spaceability of C∞(R) in C(R).

2. In [20, pp. 80–81] it is proved that, if Λ = {0 = λ0 < λ1 < λ2 < · · ·} is a sequence with
∑∞

k=1 1/λk < +∞
and infk(λk+1 − λk) > 0, then [M(Λ)] is included in the class Cω(I 0) of analytic functions on I 0. Therefore C(I) ∩
Cω(I 0) (hence C(I) ∩ C∞(I 0)) is spaceable in C(I). This improves the result of [17] and raises the following
question, which finishes our paper.

Question 3. Is Cω(I 0) spaceable in C(I 0)?
Please cite this article in press as: L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. (2008),
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