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Abstract. The existence of infinite dimensional closed linear spaces of holo-

morphic functions f on a domain G in the complex plane such that Tf has

dense images on certain subsets of G, where T is a continuous linear opera-
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1. Introduction

In this paper we are concerned with the existence of holomorphic functions that,
under the action of certain operators, have dense images on prefixed subsets of the
domain of definition. A classical interpolation theorem due to Weierstrass (see [17,
Chapter 15]) asserts that, if (an) is a sequence of distinct points in a domain G of
the complex plane C without accumulation points in G and (bn) ⊂ C, then there
is a holomorphic function f in G such that f(an) = bn for all n. In particular, if
we choose as (bn) an enumeration of all complex rational numbers, one obtain a
function f such that the sequence (f(an)) is dense in C. Equivalently, if A is a
subset of G that is not relatively compact, then there is a holomorphic function
f in G with dense image f(A). Kierst and Szpilrajn [15] started the study of this
kind of phenomenons under the point of view of the topological size, showing the
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residuality of the subset of such functions f for certain sets A. In [4] and [5],
holomorphic operators are introduced in this topic, see below. In this paper, we
try to find an additional linear structure –not only a topological structure– in the
set of functions with dense images when certain operators act on them.

Let us fix the notation that will be used along this paper. Firstly, N will be
the set of positive integers and N0 = N ∪ {0}. The symbol (nk) will stand for a
strictly increasing sequence in N0. If A is a subset of C then A, A0, ∂A denotes,
respectively, its closure in C, its interior in C, and its boundary in the extended
complex plane C∞ := C∪{∞}. As usual, D is the open unit disk {z ∈ C : |z| < 1}
and T = ∂D is the unit circle. If f is a complex valued function defined on a set
A ⊂ C, then ‖f‖A := supz∈A |f(z)|. If G is a domain (:= nonempty, connected
open subset) of C, then H(G) denotes the space of holomorphic functions on G. It
becomes a completely metrizable space (hence a Baire space) when it is endowed
with the compact open topology [14, pp. 238–239]. We denote by K(G) the family
of compact subsets K of G such that G\K has no non-relatively compact connected
components, and by K1(G) the subfamily of compacta K ⊂ G such that C \ K
is connected. It is always possible to construct an exhaustive sequence (Kn)n of
compact subsets of G –that is,

⋃
n∈N0

Kn = G and Kn ⊂ K0
n+1 for all n ∈ N0–

contained in K(G) [9]. If (An)n≥0 is a sequence of subsets of G, then it is said that
(An)n≥0 tends to ∂G provided that, given a compact subset K ⊂ C, there exists
n0 ∈ N0 such that K ∩An = ∅ for all n ≥ n0. The symbol NRC(G) will stand for
the family of all subsets of G which are not relatively compact in G.

In 1995, it was proved [4] that, if A ∈ NRC(G), then there are many functions
f ∈ H(G) such that f (j)(A) = C for every j ∈ N0, and in 2002, this result was
extended [8] by considering sums of infinite order differential operators and integral
operators instead of the differential operators Djf := f (j). In fact, it was proved
that for these operators T on H(G) the set

M(T, A) := {f ∈ H(G) : (Tf)(A) = C}
is residual (in fact, Gδ-dense). In [5], the study of this boundary behavior on plane
sets was translated to large classes of operators. Following [5], a –not necessarily
linear– continuous operator T : H(G) → H(G) is a dense-image operator (in short,
a DI operator) if the set M(T, A) is residual in H(G) for any A ∈ NRC(G). Hence,
we can say that the topological size of M(T, A) is large for these kinds of operators.

In this paper we are interested in the algebraic size of M(T,A), where now
T is continuous and linear. Our aim is to determine when M(T, A) is large also in
this sense, see below.

Assume that G ⊂ C is a simply connected domain, and denote by I the
identity operator on H(G). Let (ϕn) ⊂ Aut (G) := {automorphisms of G} be a
run-away sequence, that is, for any compact subset K ⊂ G there is m ∈ N with
K ∩ ϕm(K) = ∅. In 1995, Montes and the first author [7] showed the existence
of an infinite-dimensional closed linear subspace F of H(G) such that for any
f ∈ F \ {0} the set {f ◦ ϕn : n ∈ N} is dense in H(G). In particular, one
obtains that for every prescribed set A ∈ NRC(G) there exists a subspace F as
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above such that F \ {0} ⊂ M(I, A). To see this, observe that, for any sequence
(an) ⊂ A with an → t ∈ ∂G and any z0 ∈ G, there exists a run-away sequence
(ϕn) ⊂ Aut (G) with ϕn(z0) = an (n ∈ N). Indeed, the case G = D, z0 = 0 is
clear, just by considering ψn(z) = (z + an)/(1 + anz); then (ψn) ⊂ Aut (D) is
run-away because limn→∞ |an| = |t| = 1 (see [6]). For the general case it suffices
to take ϕn = h−1 ◦ψn ◦h, where h : G → D is an isomorphism with h(z0) = 0 and
(ψn) ⊂ Aut (D) is run-away with ψn(0) = h(an) (n ∈ N).

Unfortunately, if G ⊂ C is a domain with finite connectedness such that its
complement has more than two components then it supports only finitely many au-
tomorphisms [13], so there are no run-away sequences. Hence the above reasoning
does not work in general.

These facts motivate the following natural question: If G ⊂ C is any domain,
T is a continuous linear operator on H(G) and A ∈ NRC(G), does an infinite-
dimensional closed subspace F of H(G) exist satisfying F \ {0} ⊂ M(T,A)?

In the Section 2 of this paper we will provide general and, in some sense,
minimal conditions on T for the existence of such a subspace F , even without loss
of residuality for each M(T,A), see Theorems 2.2–2.3. Several classical examples
–including differential, composition and multiplication operators– will be analyzed
in Section 3.

2. Existence of large subspaces

Firstly, we need to introduce a sort of “continuity near the boundary” for
operators, compare with [5, Condition (P) before Theorem 3.4].

Definition 2.1. We say that a continuous linear operator T : H(G) → H(G) is
boundary pointwise stable if and only if the following property holds: For each
compact set K ⊂ G there exists a compact subset L ⊂ G such that for each
point a ∈ G \ L and each positive number ε > 0 there are a set B ∈ K1(G) with
B ⊂ G \ K and a number δ > 0 such that, if f ∈ H(G) and ‖f‖B < δ, then
|Tf(a)| < ε.

For instance, using Cauchy’s integral formula for derivatives it is easy to
verify that the derivative operator D (Df := f ′) is boundary pointwise stable; see
Section 3 for more examples. Note that the notion of stability in [5, Condition (P)]
is slightly more restrictive (the set B is a closed ball there) than the one defined
here, but it is easy to check that all results in [5] hold with this new definition.

We are now ready to state the first of our main results.

Theorem 2.2. Let G ⊂ C be a domain, T : H(G) → H(G) a continuous linear
operator and A ∈ NRC(G). Suppose that T satisfies the following conditions:

(A) T is boundary pointwise stable.
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(B) For every compact subset K ⊂ G there exist a point a ∈ A\K and a function
h ∈ H(G) such that Th(a) 6= 0.

Then there exists an infinite-dimensional closed linear subspace F of H(G) with
F \ {0} ⊂ M(T, A).

Proof. Firstly, we fix a dense subset (qn)n≥0 of C, a sequence (%m)m≥0 of positive
numbers such that

∑
m≥0 %m < 1, and an exhaustive sequence of compact subsets

(Kk)k≥0 ⊂ K(G). Without loss of generality we can assume that D ⊂ K0 ⊂ G.
Fix also a bijective mapping i : (m,n) ∈ N2

0 7→ i(m,n) ∈ N0 such that i is
nondecreasing in m and n. Finally we define the sequence (pi)i≥0 as pi(m,n) = qn

for all m ≥ 0.
1. Given M0 := K0, let L0 be the compact subset given by the stability of T .

By (B) and the exhaustivity of (Kk), there exist k0 ∈ N0, a point a0 and a function
h0 ∈ H(G) such that a0 ∈ A\Kk0 ⊂ G\L0 and Th0(a0) 6= 0. Let ε0 := 1. By (A),
there exist a compact set B0 ⊂ G \M0 with B0 ∈ K1(G) and a δ0 > 0 such that
for each function f ∈ H(G) we have that ‖f‖B0 < δ0 implies |Tf(a0)| < ε0 = 1.

Now, we proceed by induction to construct sequences (δn)n≥0 ⊂ (0, +∞),
(kn)n≥0 ⊂ N0, (Bn)n≥0 ⊂ K1(G), (an)n≥0 ⊂ A and (hn)n≥0 ⊂ H(G). Assume that
δ0, δ1, . . . , δn−1, k0, k1, . . . , kn−1, B0, B1, . . . , Bn−1, a0, a1, . . . , an−1, h0, h1, . . . , hn−1

have been already determined, and let Mn be the compact set Mn := Kn ∪(⋃n−1
j=0 Bj

)
. Let Ln be the compact subset given by the stability condition as

applied on Mn. Again by (B) and the exhaustivity of (Kj), there exist kn ≥ kn−1,
a point an and a function hn ∈ H(G) satisfying an ∈ A \ Kkn ⊂ G \ Ln and
Thn(an) 6= 0. Let εn := 1/2n. By (A), there exist a set Bn ⊂ G \ Mn with
Bn ∈ K1(G) and a δn ∈ (0, δn−1) such that, for each function f ∈ H(G),

‖f‖Bn < δn =⇒ |Tf(an)| < 1
2n

. (2.1)

Now, we define gn(z) :=
pn

Thn(an)
· hn(z) (z ∈ G). Then gn ∈ H(G); and

Tgn(an) = pn for all n ≥ 0.

2. Consider the set M := D ∪
(⋃∞

j=0 Bj

)
. Observe that, by construction,

the sets B1, B2, . . . , Bn, . . . are closed, pairwise disjoint, tend to ∂G and belong to
K1(G). From this, we derive that M is a relatively closed subset of G and that G∞\
M is connected and locally connected in G∞, the one-point compactification of G.
Furthermore, since (Mn) is exhaustive –because (Kn) is– and Bn ⊂ G\Mn (n ≥ 0),
we conclude that for every compact subset K ⊂ G there exists a neighborhood
V of the infinity point of G∞ such that no component of M intersects both K
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and V . On the other hand, given m ∈ N, the functions εm : M → (0, +∞) and
Fm : M → C defined as

εm(z) =





%m if z ∈ D
δi(m,n) if z ∈ Bi(m,n) and n ∈ N0

%mδi(k,n) if z ∈ Bi(k,n) and k, n ∈ N0 with k 6= m,

Fm(z) =





zm if z ∈ D
gi(m,n)(z) if z ∈ Bi(m,n) and n ∈ N0

0 if z ∈ Bi(k,n) and k, n ∈ N0 with k 6= m,

are continuous on M . In addition, Fm is holomorphic in M0. Hence, the Nerse-
sjan tangential approximation theorem (see [11, p. 157] or [16]) guarantees the
existence of a function fm ∈ H(G) such that

|fm(z)− Fm(z)| < εm(z) for all z ∈ M.

Thus, we have to our disposal a sequence of functions (fm)m≥0 ⊂ H(G)
satisfying the next properties:

‖fm(z)− zm‖D < %m for all m ≥ 0 (2.2)

‖fm(z)− gi(m,n)(z)‖Bi(m,n) < δi(m,n) for all m,n ≥ 0 and (2.3)

‖fm(z)‖Bi(k,n) < %mδi(k,n) for all m,n ≥ 0 and all k 6= m. (2.4)

From (2.1), (2.3), (2.4), and taking in mind that T (fm − gi(m,n))(ai(m,n)) =
Tfm(ai(m,n)) − Tgi(m,n)(ai(m,n)) = Tfm(ai(m,n)) − pi(m,n) = Tfm(ai(m,n)) − qn,
we obtain

|Tfm(ai(m,n))− qn| < 1
2i(m,n)

≤ 1
2n

(m,n ≥ 0) (2.5)

and
|Tfm(ai(k,n))| <

%m

2i(k,n)
≤ %m

2n
(m,n ≥ 0, k 6= m). (2.6)

Note that in the last inequality the homogeneity of T has also been used.

3. Let E be the linear span of (fm)m≥0 and denote by F its closure in H(G).
Obviously F is a closed linear subspace of H(G).

From the property (2.2) and by using a well known basis perturbation the-
orem (see [10, p. 46]) as in [7, Second step of the proof of Theorem 1.2] it
can be shown that (fm)m is a basic sequence in L2(T), the Hilbert space of
all square-integrable complex functions on T endowed with the norm ‖f‖2 :=(

1
2π

∫ 2π

0
|f(eit)|2dt

)1/2

. Therefore the functions fm are linearly independent, so F

is an infinite-dimensional vector space. In addition, (fm)m≥0 is equivalent to the
basic sequence (zm)m≥0. In particular, the linear mapping S :

∑∞
m=0 cmfm ∈ X 7→
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∑∞
m=0 cmzm ∈ Y is a topological isomorphism. Here X and Y are, respectively,

the closure in L2(T) of the linear span of (fm) and of (zm).
Our goal is to prove that F \ {0} ⊂ M(T, A). Let f ∈ F \ {0} and let

f =
∞∑

m=0

αmfm its representation on L2(T). As f 6= 0, there exists some k ≥ 0

such that αk 6= 0, in fact we can suppose that αk = 1 because if f ∈ M(T,A) then
λf ∈ M(T, A) for all λ ∈ C \ {0}.

Since F = E, there is a sequence

(
hl :=

Nl∑
m=0

α(l)
m fm

)

l≥0

⊂ E converging to f

in H(G) and we always can assume that α
(l)
k = 1 (l ≥ 0). Indeed, if this where not

the case, we would decompose hl = h∗l +(α(l)
k − 1)fk; then each h∗l has the desired

property for its kth-coefficient and h∗l → f in H(G) because (α(l)
k − 1)fk → 0

(l → ∞) compactly, which in turn is true since (fm)m is a basis of L2(T), from
where one derives in particular that α

(l)
k → αk = 1 (l →∞). As Bi(k,n) is compact,

there is an integer l ≥ 0 such that ‖hl− f‖Bi(k,n) < δi(k,n), hence, by (2.1) and the
linearity of T , we have

|Thl(ai(k,n))− Tf(ai(k,n))| <
1

2i(k,n)
≤ 1

2n
.

Then, by (2.5), (2.6) and the triangle inequality,

|Tf(ai(k,n))− qn| ≤ |Tf(ai(k,n))− Thl(ai(k,n))|+ |Thl(ai(k,n))− qn|

≤ 1
2n

+ |Tfk(ai(k,n))− qn|+
Nl∑

m=0
m6=k

|α(l)
m Tfm(ai(k,n))|

≤ 1
2n

+
1
2n

+
Nl∑

m=0
m 6=k

|α(l)
m |%m

1
2n

=
C

2n
,

where C is a finite constant (to be determined later) not depending on n. Hence

lim
n→∞

(
Tf(ai(k,n))− qn

)
= 0.

Finally, (qn) is a dense subset of C, so {Tf(ai(k,n)) : n ∈ N} (⊂ (Tf)(A)) is also
dense and we have that f ∈ M(T, A), as desired.

It remains only to determine the constant C above. Since (hl) tends to f

uniformly on compacta in G as l → ∞, we have that, in particular, hl → f

uniformly on D, hence hl → f in L2(T), so S(hl) → S(f) in L2(T). Therefore the
sequence (S(hl))l≥0 is bounded in L2(T), or equivalently, there exists a constant

M ∈ (0, +∞) such that
(∑∞

m=0 |α(l)
m |2

)1/2

≤ M for all l ∈ N0, where we have set
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α
(l)
m := 0 for m > Nl. Thus, we get

Nl∑
m=0
m 6=k

|α(l)
m |%m ≤

( ∞∑
m=0

|α(l)
m |2

)1/2 ( ∞∑
m=0

%2
m

)1/2

≤ M

∞∑
m=0

%m ≤ M (l ∈ N0).

Consequently, it is enough to choose C := M + 2, and we are done. ¤

As a consequence of Theorem 2.2 we obtain the next general statement, in
which it is asserted that, under pointwise stability, the properties “M(T, A) is not
empty”, “M(T,A) is topologically large”, “M(T,A) is algebraically large” (for
any A ∈ NRC(G)) are equivalent. In addition, it is provided a condition –see (a)
below– that is easy to check and is equivalent to the mentioned ones.

Theorem 2.3. Let G ⊂ C be a domain and let T : H(G) → H(G) be a continuous
linear operator that is boundary pointwise stable. Then the following conditions are
equivalent:

(a) T collapses at no point outside some compact set, that is, there is a compact
subset K ⊂ G with the property that for every a ∈ G\K there exists h ∈ H(G)
such that Th(a) 6= 0.

(b) For every A ∈ NRC(G), there exists an infinite-dimensional closed linear
subspace F of H(G) with F \ {0} ⊂ M(T, A).

(c) For every A ∈ NRC(G), the set M(T, A) is not empty.
(d) The operator T is dense-image.

Proof. It is trivial that (b) implies (c) and that (d) implies (c). That (c) implies
(d) is due to [5, Theorem 3.4].

Assume now that (c) holds and, by way of contradiction, that (a) is not true.
Then we can select an increasing exhausting sequence (Kn)n≥0 of compact sets
in G as well as a sequence of points (an)n≥0 such that an ∈ G \ Kn (n ≥ 0)
and Th(an) = 0 for all h ∈ H(G). In particular, for A := {an : n ∈ N0} and
h ∈ M(T, A), we would have Th(A) = {0}, which is absurd. Thus, (c) implies (a).

Finally, suppose that (a) is true, that is, there is a compact set K0 ⊂ G such
that, for every a ∈ G \K0, there exists a function h ∈ H(G) with Th(a) 6= 0. Fix
a set A ∈ NRC(G) and a compact set K ⊂ G. Since K0 ∪K is compact, we have
that there exists at least one point a ∈ A \ (K0 ∪K). Then a ∈ G \K0, so we can
find h ∈ H(G) with Th(a) 6= 0. Moreover, a ∈ A\K, so condition (B) in Theorem
2.2 is fulfilled. Since T is boundary pointwise stable, from the mentioned theorem
we obtain (b). ¤

Theorem 2.3 motivates the following definition.
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Definition 2.4. We say that a linear continuous operator T on H(G) has large dense
images, or that T is an LDI operator, if for each A ∈ NRC(G) the set M(T, A) is
residual and contains, except for the zero function, an infinite-dimensional closed
linear subspace F of H(G).

Remarks 2.5. 1. The condition (a) in Theorem 2.3 is easily satisfied. For instance,
it suffices that the range of T contains the constants.
2. The notion of LDI operator can be stated, equivalently, in terms of sequences,
as follows: T is an LDI operator if and only if for each sequence (an)n ⊂ G tending
to ∂G the set M(T, (an)n) is residual and there exists an infinite-dimensional
closed subspace F such that F \ {0} ⊂ M(T, (an)n). Just take into account that
M(T, B) ⊂ M(T,A) if B ⊂ A and that every set A ∈ NRC(G) contains a sequence
tending to the boundary.
3. In the terminology of the recent paper [12] (see also [1] and [2]), an operator T

on H(G) is LDI if and only if, for every A ∈ NRC(G), the set M(T,A) is residual
and spaceable.

3. Examples of LDI operators

1. Let G ⊂ C be a domain. If Φ(z) =
∑

n≥0 anzn is an entire function of subexpo-
nential (exponential) type, that is, limn→∞(n!|an|)1/n = 0 (lim supn→∞(n!|an|)1/n

< +∞, resp.), then Φ(D) =
∑

n≥0 anDn defines a continuous linear operator on
H(G) (H(C), resp.) [3, §6.4], where D0 = I. By using Cauchy’s estimates we can
show that Φ(D) is boundary pointwise stable (take L = K in Definition 2.1, and
choose as B a small closed disk around a); and it is clear that if Φ 6≡ 0 then the
range of Φ(D) contains all constants. Hence, by Theorem 2.3 and Remark 2.5.1
we obtain the following.

Theorem 3.1. If Φ 6≡ 0 is an entire function of subexponential type and G ⊂ C is
a domain, then the differential operator Φ(D) is LDI. If G = C, then the same
holds even if Φ is of exponential type.

In particular, if Φ(z) ≡ 1 (Φ(z) ≡ z, Φ(z) ≡ ebz with b ∈ C \ {0}, resp.), we
obtain that the identity operator I (the differential operator D, the translation
operator τbf(z) := f(z + b), resp.) has large dense images (in the translation case,
we are assuming that G = C). In the case that G ⊂ C is a domain such that
b + G = G (for instance, G = {z : |=z| < r}, b ∈ R) we can show that τb is
boundary pointwise stable, just by taking L = −b+K, δ = ε and B ∈ K1(G) with
a + b ∈ B ⊂ G \K in Definition 2.1. And it is evident that all the constants are
in the range of τb. Hence, by Theorem 2.3, τb is an LDI operator. This can also be
derived from Theorem 3.2 or Theorem 3.5, see below.
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It is not possible to apply Theorem 2.3 to the antiderivative operator D−N
a

on H(G) (N ∈ N, a ∈ G, G simply connected) defined as D−N
a f = [the unique

function g ∈ H(G) such that DNg = f and g(a) = (Dg)(a) = · · · = (DN−1g)(a) =
0]. This is so because D−N

a is not boundary pointwise stable. We do not know
whether D−N

a is an LDI operator. Nevertheless, these operators are DI (see [5]
or [8]). The same problem arises if we consider the general case of the Volterra
operator Vϕ generated by an analytic function ϕ : G×G → C, namely, Vϕf(z) :=∫ z

a
ϕ(z, t)f(t)dt.

2. If ϕ ∈ H(G, G) := {f ∈ H(G) : f(G) ⊂ G}, then the composition opera-
tor defined as Cϕ : f ∈ H(G) 7→ f ◦ ϕ ∈ H(G) is a continuous linear operator.
We recall that a self-map ψ : X → X on a topological space X is said to be
proper whenever the preimage under ψ of any compact subset is again a compact
subset. This topological property characterizes the LDI composition operators, as
the following theorem shows.

Theorem 3.2. The composition operator Cϕ on H(G) is LDI if and only if ϕ is
proper. In particular, if G = C, we have that Cϕ is LDI if and only if ϕ is a
non-constant polynomial.

Proof. By the last example, the identity operator is LDI. On the other hand,
M(Cϕ, A) = M(I, ϕ(A)) for every A ⊂ G. But it is easy to see that for a continuous
self-map ϕ : G → G, it is proper if and only if ϕ(A) ∈ NRC(G) for every A ∈
NRC(G). The part ‘only if’ is trivial because M(T,B) is empty if B ⊂ G is
relatively compact in G. As for the case G = C, just take into account that the
Casorati-Weierstrass theorem prevents ϕ to be proper if it is transcendental. ¤

The conclusion of Theorem 3.2 holds specially when ϕ ∈ Aut (G). For instan-
ce, if r > 0, α ∈ [0, 2π) and we denote rD := {z ∈ C : |z| < r}, then the rotation
operator Rα defined on H(rD) as (Rαf)(z) = f(zeiα) is an LDI operator.

3. Let T be a linear continuous operator on H(G) and ψ ∈ H(G). Then the
generalized multiplication operator defined as

MψT : f(z) ∈ H(G) 7→ ψ(z)Tf(z) ∈ H(G)

is also a linear continuous operator. In particular case T = I, we obtain the
ordinary multiplication operator Mψ.

Theorem 3.3. Let T be a linear continuous operator on H(G) that is boundary
pointwise stable and satisfies the condition (a) of Theorem 2.3. Let ψ ∈ H(G) such
that the set Z(ψ) of zeros of ψ is finite. Then MψT is LDI.

Proof. Firstly, we prove that MψT is boundary pointwise stable. Let K ⊂ G be
a compact set and L be the compact subset given by the stability of T . Then
L̃ := L ∪ Z(ψ) ⊂ G is compact. Fix a ∈ G \ L̃ and ε > 0. Hence ψ(a) 6= 0. By
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stability, there exist a compact set B ∈ K1(G) with B ⊂ G \ K and a δ > 0
such that for each f ∈ H(G) with ‖f‖B < δ we have |Tf(a)| < ε/|ψ(a)|. Hence,
|MψTf(a)| = |ψ(a)| · |Tf(a)| < ε, whence MψT is boundary pointwise stable.

On the other hand, since Z(ψ) is finite and T satisfies the condition (a) of
Theorem 2.3, the operator MψT satisfies the same condition. Indeed, replace the
compact set K assigned to T by the compact set K ∪ Z(ψ). Then Theorem 2.3
concludes the proof. ¤

Corollary 3.4. Let ψ ∈ H(G), ψ 6≡ 0. Then Mψ is LDI if and only if Z(ψ) is finite.

Proof. That the finiteness of Z(ψ) implies that Mψ is LDI follows from Theorem
3.3 just by taking T = I. As for the converse, assume, by way of contradiction, that
Z(ψ) is infinite. Then Z(ψ) ∈ NRC(G), because ψ 6≡ 0. But M(Mψ, Z(ψ)) = ∅
and this contradicts the hypothesis. ¤

4. We finish this paper with two assertions involving composition, sum or
multiplication of operators. This allows to construct new operators with large
dense images from known ones.

Theorem 3.5. Assume that T , S : H(G) → H(G) are continuous linear operators,
in such a way that T is LDI and S is onto. Then TS is LDI. In particular, every
onto continuous linear operator is LDI.

Proof. It is evident that M(TS, A) = S−1(M(T,A)) for every set A ⊂ G, so the
residuality part is as in [5]. Assume now that A ∈ NRC(G). Then there exists
a infinite-dimensional closed linear space F ⊂ M(T,A) ∪ {0}. Then, by linearity
and continuity, S−1(F ) is a closed linear space contained in M(TS, A) ∪ {0}. If
S−1(F ) were finite-dimensional, then dim (S(S−1(F ))) = dim (F ) would be also
finite (note that F = SS−1(F ) because S is onto), which is a contradiction. This
proves the first part of the statement. The second part follows because the operator
T = I is LDI. ¤

Theorem 3.6. Let T, S : H(G) → H(G) be two linear continuous operators with T

LDI. Suppose that for each function f ∈ H(G) and each point t ∈ ∂G, there exists
lim
z→t

(Sf)(z) ∈ C (∈ C \ {0}). Then T + S (T · S, resp.) is LDI.

The proof is elementary and left to the interested reader.
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