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Abstract

We prove in this paper that if G is a domain in the complex plane satisfying appropriate topological or geometrical conditions,
then there exists a large (dense or closed infinite-dimensional) linear submanifold of boundary-regular holomorphic functions on G

all of whose nonzero members are not continuable across any boundary point of G.
© 2007 Published by Elsevier Inc.
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1. Introduction

Throughout this paper, we assume that G is a domain in the complex plane C, that is, G is a nonempty connected
open subset of C. As usual, we denote by H(G) the class of holomorphic functions on G.

In 1884 Mittag–Leffler discovered that, given any domain G, there exists a function f ∈ H(G) having G as its
domain of holomorphy, see [13, Chapter 10]. Recall that G is said to be a domain of holomorphy for f if f is
holomorphic exactly on G, that is, f ∈ H(G) and f is analytically noncontinuable across the boundary ∂G of G or,
more precisely, for every a ∈ G, the radius of convergence ρ(f, a) of the Taylor series of f with center at a equals
the euclidean distance d(a, ∂G) between a and ∂G.

It is well known that H(G) becomes a Fréchet space when endowed with the topology of uniform convergence
on compacta; in particular, it is a Baire space. Recall that a Fréchet space is a completely metrizable locally convex
space. The symbol He(G) will stand for the subclass of functions which are holomorphic exactly on G. It is clear
that He(G) ⊂ {f ∈ H(G): f has no holomorphic extension to any domain containing G strictly}. In general, the last
inclusion is strict (take G := C \ (−∞,0] and f := the principal branch of the logarithm at G), but in many cases—
for instance, if G is a Jordan domain—both sets are equal. By a Jordan domain we understand as usual the bounded
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component of the complement of a Jordan curve, and a Jordan curve is a topological image in C of T = {z ∈ C:
|z| = 1}.

In 1933 Kierst and Szpilrajn [19] showed that at least for the unit disk D = {z ∈ C: |z| < 1} the property discovered
by Mittag–Leffler is generic, in the sense that He(D) is not only nonempty but even residual—hence dense—in H(D),
that is, its complement in H(D) is of first category. There is a rich bibliography of papers studying various extensions
and improvements of the Mittag–Leffler and Kierst-Szpilrajn theorems, see for instance [5, Section 4.3], [16,23]
[20, Proposition 5], [6], and further references in [6,20]. Recently, Kahane and the first author ([17, Theorem 3.1 and
following remarks] and [3, Theorem 3.1], see also [14, Proposition 1.7.6]) have observed that Kierst–Szpilrajn’s result
can be generalized as follows. As usual, N denotes the set of positive integers, and N0 := N ∪ {0}.

Theorem 1.1. Let G ⊂ C be a domain and X be a Baire topological vector space with X ⊂ H(G) such that the next
conditions hold:

(i) For every a ∈ G and every r > d(a, ∂G) there exists f ∈ X such that ρ(f, a) < r .
(ii) All evaluation functionals f ∈ X �→ f (k)(a) ∈ C (a ∈ G, k ∈ N0) are continuous.

Then He(G) ∩ X is residual in X.

Let us insert here some standard terminology. If S ⊂ C, then S0, S will denote, respectively, its interior and its
closure in C. Assume that G ⊂ C is a domain. Then A∞(G) denotes the space of holomorphic functions in G with
“highly boundary-regular behavior,” that is, A∞(G) = {f ∈ H(G): f (j) has a continuous extension to G for all
j ∈ N0}. It becomes a Fréchet space when it is endowed with the topology of uniform convergence of functions and
all their derivatives on each compact set K ⊂ G. A family of basic open sets for A∞(G) is that of subsets of the form
{f ∈ A∞(G): |f (n)(z)− g(n)(z)| < ε for all n = 0,1, . . . ,N and all z ∈ K} (g ∈ A∞(G), N ∈ N, ε > 0, K a compact
subset of G). If G is bounded, we can take K = G in the last subsets.

In view of Theorem 1.1, we can say that for many subspaces X of H(G)—including the full space X = H(G)

(see also Nestoridis’ paper [22] for this special case and for X = A(Ω), the Banach algebra of holomorphic functions
in Ω that are continuously extendable to Ω , where Ω is a domain bounded by a finite number of Jordan curves)—the
subset of holomorphically noncontinuable functions is topologically large.

In spite of the fact that, trivially, He(G) is not a linear manifold, we may wonder whether the set of noncon-
tinuable functions is, in addition, algebraically large, that is, whether He(G) ∩ X contains, except for zero, linear
manifolds which are “large” in some sense. Several results of such nature have been recently obtained in [3] in the
case G = D for a wide class of subspaces X of H(D) (including the space X = A∞(D); note also that Theorem 1.1
applies on A∞(D)), where “large” means either dense or closed infinite-dimensional. In [1] and—independently, with
a rather different proof—in [3] it is also proved the existence of a dense linear manifold as before, but only for the full
space H(G), where G is an arbitrary domain of C. (In fact, Aron, García and Maestre proved in [1] that, more gener-
ally, if G ⊂ C

N is a domain of holomorphy, then there are a dense subspace X ⊂ H(G) and an infinite-dimensional
closed subspace Y ⊂ H(G) such that every f ∈ (X ∪ Y) \ {0} cannot be holomorphically extended across ∂G.)

As for the subspaces of H(G), the space A∞(G) seems to be the most interesting case, because its members behave
“very well” near the boundary and therefore their nonextendability across ∂G is less likely. Consequently, a natural
question arises:

If G ⊂ C is a bounded domain, are there “large” manifolds M ⊂ A∞(G) satisfying M \ {0} ⊂ He(G)?

The aim of this paper is to provide positive answers to the last question. Appropriate conditions are to be imposed
on the domain G. In Section 2 the existence of dense manifolds will be dealt with, while in Section 3 we will be
concerned with closed infinite-dimensional manifolds. The way of the proofs—via universality and Faber series—
is rather different from that in [3]. Finally, it is proved in Section 4 by an elementary approach that if ∂G does not
contain isolated points and X is a subspace of H(G) satisfying mild conditions, then there are also infinite-dimensional
manifolds of functions in X having G as its domain of holomorphy.

Before going on, we point out that the results contained in this paper could be presented by using the new termi-
nology of “spaceability” and of “algebraic genericity,” introduced recently by Gurariy and Quarta [12] and Bayart [2],
Please cite this article in press as: L. Bernal-González et al., Large linear manifolds of noncontinuable boundary-regular holomorphic functions,
J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007.10.014
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respectively. Specifically, if A is a subset of a topological vector space X, then A is said to be spaceable (respectively
algebraically generic) if A contains, except for zero, some closed infinite-dimensional (respectively some dense) linear
submanifold of X.

2. Dense linear manifolds

Before establishing the main result of this section, we need a number of concepts and assertions of topological
nature or of universality theory. See the surveys [10] and [11] for a good updated account on universality theory.

Observe first that even in the case of a bounded simply connected domain G the set A∞(G) ∩ He(G) may well be
empty; consider for instance G = D \ [0,1] (indeed, a holomorphic function in D \ [0,1] which is continuous on its
boundary is automatically holomorphic in D). Consequently, some topological or geometrical conditions should be
imposed on G in order to get noncontinuability.

Assume that G ⊂ C is a domain. Then G is said to be

(a) bounded whenever there is M ∈ (0,+∞) such that |z| � M for all z ∈ G;
(b) simply connected whenever C∞ \ G is connected in the one-point compactification C∞ := C ∪ {∞} of C;
(c) regular whenever G = G0;
(d) a Carathéodory domain whenever G is bounded, simply connected and, in addition, ∂G = ∂G∞, where G∞ is

the unbounded component of C \ G;
(e) a finite-length domain whenever its points can be arc-connected boundedly, that is, there is M ∈ (0,+∞) such

that for any pair a, b of points of G there exists a curve γ ⊂ G joining a to b for which length(γ ) � M ;
(f) a CCC-domain whenever C∞ \ G, the complement of its closure, is connected.

The next examples illustrate the relationships among the notions defined above. By clos∞(A) we denote the closure
of a set A ⊂ C∞ in C∞.

Examples 2.1.

1. Evidently, if G is bounded, then G is simply connected (a CCC-domain, respectively) if and only if C \ G is
connected (C \ G is connected, respectively).

2. Every Carathéodory domain is (bounded, simply connected and) regular. Otherwise, G would be strictly included

in G0, so A := (∂G) ∩ G0 
= ∅. But A ∩ C \ G = ∅, so A ∩ ∂(C \ G) = ∅. Therefore A ∩ ∂G∞ = ∅, hence
∂G 
= ∂G∞, a contradiction. The “crescent moon” G := {z: |z+1| < 2}\D is a bounded regular simply connected
domain which is neither a Carathéodory domain nor a CCC-domain.

3. The punctured plane C \ {0} is a CCC-domain which is not simply connected.
4. Every finite-length domain is bounded. A bounded domain which is either starlike or with rectifiable boundary is

a finite-length domain.
5. Due to the Jordan curve theorem, every Jordan domain is a bounded regular CCC-domain. The set G := {z =

x + iy: 0 < x < 1, |sin(1/x)| < y < 2} is a bounded regular CCC-domain that is not a Jordan domain.
6. The slit disk D \ [0,1] is a simply connected CCC-domain which is not regular. Nevertheless, every regular CCC-

domain G is simply connected. Indeed, C∞\G = C∞\G0 = C∞\(C\C \ G) = {∞}∪C \ G = clos∞(C∞\G),
and the last set is connected in C∞ because C∞ \ G is connected.

7. Every bounded regular CCC-domain G is a Carathéodory domain. Indeed, G is simply connected because of

Example 6. Moreover, since C \G is connected we have ∂G∞ = ∂(C \G) = ∂G = G∩ C \ G = G∩ (C \G0) =
G ∩ (C \ G) = G ∩ C \ G = ∂G. An “outer snake” (see [8, pp. 17–18]) is an example of a Carathéodory domain
which is not a CCC-domain.

The following auxiliary result can be deduced by using arguments similar to those of the last part of the proof of
Theorem 4 in [21].

Lemma 2.2. Assume that G ⊂ C is a finite-length CCC-domain. Then the set of polynomials is dense in A∞(G).
Please cite this article in press as: L. Bernal-González et al., Large linear manifolds of noncontinuable boundary-regular holomorphic functions,
J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007.10.014
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Let X, Y be two topological vector spaces and Tn : X → Y (n ∈ N) be a sequence of continuous linear mappings.
Then the sequence (Tn) is called universal (or hypercyclic) provided that there is a vector x0 ∈ X—called universal
or hypercyclic for (Tn)—whose orbit {Tnx0: n ∈ N} under (Tn) is dense in Y . By HC((Tn)) it is denoted the set of
hypercyclic vectors for (Tn). If HC((Tn)) is dense in X, then (Tn) is called densely hypercyclic. Finally, (Tn) is said to
be densely hereditarily hypercyclic whenever (Tnk

) is densely hypercyclic for every (strictly increasing) subsequence
(nk) ⊂ N.

A useful characterization of the dense hypercyclicity is the next Birkhoff transitivity property (see [10]).

Lemma 2.3. Let X and Y be two topological vector spaces such that X is Baire and Y is metrizable and separable.
Assume that Lj : X → Y (j ∈ N) is a sequence of continuous linear mappings. Then (Lj ) is densely hypercyclic if
and only if given nonempty open subsets U ⊂ X, V ⊂ Y there exists m ∈ N such that Lm(U) ∩ V 
= ∅.

The following crucial result can be found in [4, Theorem 3.1].

Lemma 2.4. Let X and Y be two metrizable topological vector spaces such that X is Baire and separable. Assume that,
for each k ∈ N, T

(k)
n : X → Y (n ∈ N) is a densely hereditarily hypercyclic sequence of continuous linear mappings.

Then there is a dense linear submanifold M ⊂ X such that

M \ {0} ⊂
⋂
k∈N

HC
((

T (k)
n

))
.

The next elementary statement tells us that a dense subset of a domain is enough to describe a domain of holomor-
phy.

Lemma 2.5. Let G ⊂ C be a domain and f ∈ H(G). Assume that S is a dense subset of G. Then f ∈ He(G) if and
only if ρ(f, a) = d(a, ∂G) for all a ∈ S.

Proof. Just take into account that ρ(f, b) � ρ(f, a) − |a − b| for all pair of points a, b ∈ G. �
Now we provide a workable sufficient condition for nonextendability across a point, in the case of a regular domain.

By S(f,n, a)(z) we denote the value at z of the partial sum of order n of the Taylor series of f with center at a

(f ∈ H(G), n ∈ N0, a ∈ G, z ∈ C). As usual, B(a, r) (B(a, r), respectively) denotes the open (closed, respectively)
ball with center a and radius r (a ∈ C, r > 0).

Lemma 2.6. Assume that a ∈ G, that f ∈ H(G) and that T is a dense subset of C \ G, where G is a regular domain
of C. Suppose that for each b ∈ T the set {S(f,n, a)(b): n ∈ N} is dense in C. Then ρ(f, a) = d(a, ∂G).

Proof. Assume, by way of contradiction, that ρ(f, a) > d(a, ∂G). Choose any r > 0 with d(a, ∂G) < r < ρ(f, a).
Since G is regular, we have that B(a, r) ∩ (C \ G) 
= ∅. But the density of T in C \ G yields the existence of a point
b ∈ T ∩ B(a, r). Therefore the sequence (S(f,n, a)(b)) must be convergent, which contradicts the hypothesis. �

We first establish that the set of boundary-regular noncontinuable functions is topologically large.

Proposition 2.7. If G ⊂ C is a regular domain, then He(G) ∩ A∞(G) is residual in A∞(G).

Proof. If G = C the statement is trivial, so we can assume G 
= C. Fix a point a ∈ G and a number r > d(a, ∂G).
Since G is regular, the set B(a, r) \ G is not empty, so it contains some point b. Take f (z) := (z − b)−1. Then
f ∈ X := A∞(G) and ρ(f, a) = |a − b| < r . Therefore X satisfies condition (i) of Theorem 1.1 and, since compact
convergence implies pointwise convergence, it also satisfies (ii), which concludes the proof. �
Remark 2.8. The statement of the last proposition has been obtained by the first author in [3, Remark 5.2.2] but only
for Jordan domains, as a consequence of Theorem 1.1 and of a strong result due to J. Siciak [26] about noncontinua-
bility in an N -dimensional setting. Hence our result is more general and its proof is easier. It must be also pointed out
Please cite this article in press as: L. Bernal-González et al., Large linear manifolds of noncontinuable boundary-regular holomorphic functions,
J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007.10.014
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that in 1980 J. Chmielowski [6, Proposition 6] had already discovered—again as a consequence of an N -dimensional
result—that He(G) ∩ A∞(G) 
= ∅ for any regular domain G ⊂ C. Finally, Nestoridis [22, Theorem 5.4], by a nice
proof using universal Taylor series, has recently shown the same conclusion as Chmielowski, at least for domains in C

bounded by a finite number of disjoint Jordan curves.

We are now ready to state our main result in this section. This is achieved in the next theorem, where “many”—in an
algebraic sense—noncontinuable boundary-regular functions are obtained, just by imposing appropriate topological
or geometrical hypotheses on the domain.

Theorem 2.9. Assume that G ⊂ C is a regular finite-length CCC-domain. Then there exists a dense linear manifold M

in A∞(G) such that M \ {0} ⊂ He(G).

Proof. Since A∞(G) is complete, it is a Baire metrizable space. From Lemma 2.2 we have that the set P of polyno-
mials is dense in A∞(G). In turn, the polynomials whose coefficients have rational real and imaginary parts are dense
in P , hence A∞(G) and, of course, C are Baire metrizable separable spaces.

Let us choose countable dense subsets S, T of G, C \ G, respectively. For each pair (a, b) ∈ S × T , let us consider
the sequence of mappings

T (a,b)
n : f ∈ A∞(G) �→ S(f,n, a)(b) =

n∑
k=0

f (k)(a)

k! (b − a)k ∈ C (n ∈ N).

It is clear that each T
(a,b)
n is linear and continuous.

Fix a pair (a, b) ∈ S × T as well as a strictly increasing sequence (nk) contained in N. Consider the sequence
Lj : A∞(G) → C (j ∈ N) defined as Lj = T

(a,b)
nj

. Fix also respective nonempty open subsets U ⊂ A∞(G) and
V ⊂ C. Note that G is bounded. Then there exist ε > 0, N ∈ N, c ∈ C, g ∈ A∞(G) for which{

f ∈ A∞(G):
∣∣f (n)(z) − g(n)(z)

∣∣ < ε for all z ∈ G and all n = 0,1, . . . ,N
} ⊂ U (1)

and

B(c, ε) ⊂ V. (2)

Recall that G is CCC and finite-length. By the denseness of P in A∞(G), there is a polynomial h such that∣∣h(n)(z) − g(n)(z)
∣∣ <

ε

2
for all z ∈ G and all n = 0,1, . . . ,N. (3)

Consider a simply connected domain G1 and r > 0 satisfying G1 ⊃ G (this is possible because G has no holes) and
G1 ∩ B(b, r) = ∅. Let Ω := G1 ∪ B(b, r), which is a simply connected open set. Define the function F : Ω → C as

F(z) =
{

h(z) if z ∈ G1,

c if z ∈ B(b, r).

Since h is a polynomial, F ∈ H(Ω). Then the Runge approximation theorem (see [8]) together with the Weierstrass
convergence theorem yield the existence of a polynomial f (extracted from a suitable sequence of polynomials con-
verging to F compactly in Ω) such that∣∣f (n)(z) − F (n)(z)

∣∣ <
ε

2
for all z ∈ K̃ and all n = 0,1, . . . ,N,

where K̃ := G ∪ {b} is a compact set contained in Ω . In particular,∣∣f (n)(z) − h(n)(z)
∣∣ <

ε

2
for all z ∈ G and all n = 0,1, . . . ,N, (4)

and ∣∣f (b) − c
∣∣ < ε. (5)

From (3), (4) and the triangle inequality we obtain that |f (n)(z) − g(n)(z)| < ε (z ∈ G, n ∈ {0,1, . . . ,N}). Hence,
by (1), f ∈ U . Furthermore, one gets from (5) that |S(f,nj , a)(b)− c| < ε for every j � m, where m ∈ N is such that
Please cite this article in press as: L. Bernal-González et al., Large linear manifolds of noncontinuable boundary-regular holomorphic functions,
J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007.10.014
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nm � degree(f ). Therefore Lmf ∈ V by (2). Consequently, Lmf ∈ Lm(U) ∩ V and an application of Lemma 2.3
yields that the sequence (Lj ) is densely hypercyclic. Then by Lemma 2.4—as applied to X := A∞(G) and Y := C—
there exists a dense linear submanifold M ⊂ A∞(G) satisfying

M \ {0} ⊂
⋂

(a,b)∈S×T

HC
((

T (a,b)
n

))
. (6)

But according to Lemma 2.6 if a function f belongs to any set HC((T
(a,b)
n )) for all b ∈ T (for fixed a ∈ G), then

ρ(f, a) = d(a, ∂G). And by Lemma 2.5 if this last property holds for any point a of the dense set S (in G), then
f ∈ He(G). Thus, the intersection that appears in (6) is included in He(G), which concludes the proof. �
3. Closed linear manifolds

In order to obtain large closed linear manifolds of noncontinuable boundary-regular functions some background
about Faber expansions is needed. For the basic results on Faber series and Faber transforms we refer the reader to
[7–9,15,25,27] and, more recently, [18].

Assume that G is a Jordan domain. We use g to denote the unique one-to-one function g ∈ H({w: |w| > 1}) such
that g({w: |w| > 1}) = C \ G and has expansion

g(w) = cw + c0 + c1

w
+ c2

w2
+ · · · (c > 0)

in a neighborhood of ∞. The constant c is called the logarithmic capacity of Ω . The Faber polynomials associated
with G are the polynomials Φn (n ∈ N0) determined by the following generating function relationship:

g′(w)

g(w) − z
=

∞∑
k=0

Φk(z)

wk+1
.

The operator F that takes a function f (w) := ∑∞
k=0 ckw

k ∈ H(D) and maps it to the (formal) Faber series (Ff )(z) :=∑∞
k=0 ckΦk(z) (z ∈ G) is called the Faber transform.
It is well known (see [25]) that if the boundary of G is an analytic curve, then the series Ff converges uniformly on

compact subsets of G to a function F ∈ H(G) and, in addition, the function g can be holomorphically and univalently
continued to some domain {|w| > r0} for some r0 ∈ (0,1). In this case, the Faber transform F : f ∈ H(D) �→ F ∈
H(G) is (linear and) continuous.

The proof of the main statement is based upon the three following auxiliary results, which can be found in [15,
Theorem 1], [18, Section 3] and [3, Theorem 4.3], respectively.

Lemma 3.1. Let G be a Jordan domain with analytic boundary and J be a subarc of ∂G. Let f ∈ H(D) and consider
its Faber transform F = Ff ∈ H(G). Then F has an analytic continuation across J if and only if f has an analytic
continuation across g−1(J ).

Lemma 3.2. Let G be a Jordan domain with analytic boundary. Then the Faber transform F : H(D) → H(G) is a
topological isomorphism such that F(A∞(D)) = A∞(G) and the restriction map F : A∞(D) → A∞(G) is also a
topological isomorphism.

Lemma 3.3. Let X be a Baire topological vector space with X ⊂ H(D) satisfying the following conditions:

(i) For every a ∈ D and every r > d(a, ∂D) there exists f ∈ X such that ρ(f, a) < r .
(ii) All evaluations functionals f ∈ X �→ f (k)(a) ∈ C (a ∈ G; k ∈ N0) are continuous.

(iii) X is stable under projections, that is, given Q ⊂ N0 and f (z) := ∑∞
n=0 anz

n ∈ X, the function PQf (z) :=∑
n∈Q anz

n also belongs to X.

Then there is an infinite-dimensional closed linear manifold M0 ⊂ X such that M0 \ {0} ⊂ He(D).
Please cite this article in press as: L. Bernal-González et al., Large linear manifolds of noncontinuable boundary-regular holomorphic functions,
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Finally, we state our main result in this section.

Theorem 3.4. Assume that G ⊂ C is a Jordan domain with analytic boundary. Then there exists a closed infinite-
dimensional linear manifold M ⊂ A∞(G) such that M \ {0} ⊂ He(G).

Proof. Since uniform convergence is stronger than pointwise convergence, the Fréchet (so Baire) space X := A∞(D)

satisfies the condition (ii) of Lemma 3.3. As for (iii), it is also fulfilled because a function f (z) := ∑∞
n=0 anz

n is
in A∞(D) if and only if each sequence (nkan) (k ∈ N) is bounded. The condition (i) is true for A∞(D) by the
same argument given in the proof of Proposition 2.7. Consequently, there exists an infinite-dimensional closed linear
manifold M0 ⊂ A∞(D) for which M0 \ {0} ⊂ He(D).

Define M := F(M0). According to Lemma 3.2, the set M is an infinite-dimensional closed linear submanifold
of A∞(G). Finally, consider a function F ∈ M \{0}. Then there is a (unique) function f ∈ M0 \{0} such that F = Ff .
Suppose, by way of contradiction, that F /∈ He(G). Therefore there would exist a subarc J ⊂ ∂G with the property that
F has an analytic continuation across J . Hence, by Lemma 3.1, the function f would have an analytic continuation
across the subarc g−1(J ) ⊂ ∂D, which is absurd since M0 \ {0} ⊂ He(D). �
Remark 3.5. Alternatively, we can see that condition (i) of Lemma 3.3 holds for A∞(D) by showing that A∞(D) ∩
He(D) 
= ∅. And this is true since the function f (z) := ∑∞

n=0 an exp(−√
n)zn, where

an =
{

1 if n is a power of 2,

0 otherwise

belongs to that intersection, see [24, Chapter 16].

4. Large manifolds in vector spaces

In view of Theorems 2.9 and 3.4, one may wonder whether given a vector subspace X (not necessarily topologized)
of H(G), there exists a large submanifold M ⊂ X consisting, except for zero, of functions which are holomorphically
nonextendable across ∂G, where this time “large” carries a purely algebraic sense, that is, it means “of infinite dimen-
sion.” With a rather elementary proof, we have found a positive answer for rather general domains G. By H(G) we
denote the class of functions f which are holomorphic in some domain Ω = Ωf ⊃ G.

Theorem 4.1. Let G ⊂ C be a domain whose boundary does not contain isolated points and X be a vector space
over C with X ⊂ H(G) satisfying the following conditions:

(a) X ∩ He(G) 
= ∅.
(b) There is a nonconstant function ϕ ∈ H(G) such that ϕX ⊂ X.

Then there exists an infinite-dimensional linear manifold M ⊂ X such that M \ {0} ⊂ He(G).

Proof. Choose f ∈ X ∩ He(G) and consider the function ϕ provided by (b). Then there is a domain Ω ⊃ G such that
ϕ ∈ H(Ω). Moreover, ϕnf ∈ X (n ∈ N0), so (P ◦ ϕ)f ∈ X for every (holomorphic) polynomial P because X is a
vector space. Let us define

M := {
(P ◦ ϕ)f : P is a polynomial

}
.

It is clear that M is a linear submanifold of X. Let us show that M has infinite dimension. For this, since M is the
linear span of the functions ϕnf (n ∈ N0), it is enough to prove that such functions are linearly independent. Assume,
by way of contradiction, that this is not the case. Then there exists a nonzero polynomial P with (P ◦ ϕ)f ≡ 0 on G.
Since H(G) is an integral ring—and, clearly, f 
≡ 0—we get P ◦ ϕ ≡ 0 on G. Therefore P vanishes on the nonempty
open (due to the Open Mapping Theorem, because ϕ is not constant) set ϕ(G). Hence, from the Analytic Continuation
Principle, P ≡ 0, which is absurd.

To conclude the proof, it must be shown that each function F ∈ M \ {0} is in He(G). Indeed, for such a function F

there exists a nonzero polynomial P with F = (P ◦ ϕ)f . Suppose, by way of contradiction, that F /∈ He(G). Let
Please cite this article in press as: L. Bernal-González et al., Large linear manifolds of noncontinuable boundary-regular holomorphic functions,
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us denote by Sz0 the sum of the Taylor series of F with center at z0. Then there are a point a ∈ G and a number
r > d(a, ∂G) such that Sa ∈ H(B(a, r)). Of course, Sa = (P ◦ ϕ)f in B(a, |a − b|), where b is a point on ∂G such
that |a − b| = d(a, ∂G). Therefore there are a point c ∈ ∂G and a number ε > 0 with B(c, ε) ⊂ Ω ∩ B(a, r) and
P(ϕ(z)) 
= 0 for all z ∈ B(c, ε); indeed, Ω ∩ B(a, r) is a neighborhood of b, the point b is not isolated in ∂G (by (a)),
and the set of zeros of P ◦ ϕ in Ω is discrete in Ω . Now, take a point ζ ∈ B(c, ε/2) ∩ G. Then B(ζ, ε/2) ⊂ B(c, ε) ⊂
B(a, r) and P(ϕ(z)) 
= 0 for all z ∈ B(ζ, ε/2). The function Sζ equals F in a neighborhood of ζ , whence Sζ /(P ◦ ϕ)

equals f in a neighborhood of ζ . But Sζ ∈ H(B(ζ, ε/2)), hence also Sζ /(P ◦ϕ) ∈ H(B(ζ, ε/2)). Finally, we get from
the nonextendability of f that

ε

2
> d(ζ, c) � d(ζ, ∂G) = ρ(f, ζ ) = ρ

(
Sζ

P ◦ ϕ
, ζ

)
� ε

2
,

which is the sought-after contradiction. �
Observe that property (a) of the last theorem is fulfilled if, for instance, condition (i) of Theorem 1.1 holds (this

condition is purely algebraic in relation to X) and if, in addition, X can be endowed with a vector topology for which
X is Baire and condition (ii) of Theorem 1.1 is satisfied.

We finish this paper with the following consequence of Theorem 4.1, that complements Theorem 2.9.

Corollary 4.2. If G ⊂ C is a regular domain, then A∞(G) ∩ He(G) contains, except for zero, an infinite-dimensional
linear manifold.

Proof. Since G is regular, one gets that ∂G does not contain isolated points and, moreover, the condition (a) of
Theorem 4.1 is satisfied by Proposition 2.7. Finally, for the space A∞(G) and for every domain G it holds the
“multiplier condition” (b) of Theorem 4.1: simply choose ϕ(z) ≡ z. �
Remark 4.3. The proof of Theorem 4.1 also provides a new proof of Theorem 2.9. Indeed, as in the proofs of
Theorem 4.1 and Corollary 4.2, one defines the set M with ϕ(z) = z, that is, M = {Pf : P a polynomial}. It is enough
to show that M itself is dense in A∞(G). Note that, under the conditions of Theorem 2.9, G is bounded. Hence by
adding, if necessary, an adequate constant to f , one can assume that f is zero-free on G, so 1/f ∈ A∞(G). In view of
Lemma 2.2, the set of polynomials in dense in A∞(G). Fix g ∈ A∞(G). Then g/f belongs to A∞(G). Therefore there
exists a sequence (Pn) of polynomials with P

(N)
n → (g/f )(N) (n → ∞) uniformly on G for each N ∈ N0. Fix N ∈ N0.

By Leibniz’s rule, we have (under the convention
(
N
0

) = 1 even if N = 0) that (Pnf )(N) = ∑N
j=0

(
N
j

)
P

(j)
n f (N−j) →∑N

j=0

(
N
j

)
(g/f )(j)f (N−j) = ((g/f )f )(N) = g(N) (n → ∞) uniformly on G, which proves the density of M .
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