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Abstract

We investigate the splitting of short exact sequences of the form

0 −→ X −→ Y −→ E −→ 0,

where E is the dual of a Fréchet Schwartz space and X, Y are PLS-spaces, like the spaces
of distributions or real analytic functions or their subspaces. In particular, we characterize
pairs (E,X) as above such that Ext1(E, X) = 0 in the category of PLS-spaces and apply
this characterization to many natural spaces X and E. We discover an extension of Vogt and
Wagner’s (DN)− (Ω) splitting theorem. These results are applied to parameter dependence
of linear partial differential operators and surjectivity on spaces of vector valued distributions.

1 Introduction

The aim of this paper is to study the splitting of short exact sequences of PLS-spaces and
its applications to parameter dependence of solutions of linear partial differential equations on
spaces of distributions (see Section 5, Theorem 5.5). We study the functor Ext1 for subspaces
of D ′(Ω) and duals of Fréchet Schwartz spaces. This is considered in the framework of the so-
called PLS-spaces (i.e., the smallest class of locally convex spaces containing all duals of Fréchet
Schwartz spaces and closed with respect of taking countable products and closed subspaces). It
contains important spaces appearing in analytic applications of linear functional analysis, like
spaces of distributions, spaces of real analytic or quasi analytic functions, spaces of holomorphic
or smooth functions; we refer the reader to the survey paper [9]. The crucial result of the
present paper (Theorem 3.1) is a characterization of the pairs (F, X), X a PLS-space, F a
Fréchet nuclear space, such that every short topologically exact sequence of PLS-spaces

(1) 0 −−−−→ X
j−−−−→ Y

q−−−−→ F ′ −−−−→ 0

splits (i.e., q has a linear continuous right inverse) or equivalently, such that Ext1PLS(F ′, X) = 0.
Topological exactness of (1) means that j is a topological embedding onto the kernel of the
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continuous and open surjection q. The characterization is given in terms of some inequality.
The proof is technical, complicated and based on the method of the functor Proj1 for spectra of
LB-spaces. The case when both X and F ′ are substituted by Fréchet spaces was characterized
long ago under assumptions that one space is nuclear or one space is a suitable sequence space.
In fact, necessity in that case is due to Vogt [38]; he also introduced a useful sufficient condition.
Sufficiency for both spaces being sequence spaces is due to Krone and Vogt [19]. Sufficiency
in other cases was an open problem for some time. A breakthrough was made by Frerick [13]
who proved the case of all nuclear Fréchet spaces and, finally, Frerick and Wengenroth proved
sufficiency in all cases for Fréchet spaces in [15]. The condition they all used was slightly different
from ours - a characterization even more similar to ours is given in [43, 5.2.5]. There have been
very few splitting results for PLS-spaces so far, see [11], [42], [20], [10, Theorem 2.3], [41], [4],
comp. [14] and [43, Sec. 5.3]. However, this is considered as an important problem in the
modern theory of locally convex spaces and their analytic applications; see [41].

In [4] we investigated the vanishing of Ext1PLS(F, X) for a nuclear Fréchet space F , while
in the present paper we attack the same question for the dual F ′. This is a different, much
more difficult problem. For instance, the reduction to the vanishing of the derived functor
Proj1 for spectra of LB-spaces was standard in [4], but now it requires several new ideas and
ingredients, among them a key observation due to Vogt in [41], see Lemma 3.3, proof of Theorem
3.4 (ii)⇔(iii). To avoid problems with local splitting we have to dualize the considered short
exact sequences and to study sequences of LFS-spaces (see the proof of Theorem 3.4).

Although our condition looks complicated it turns out to be evaluable. Indeed, we charac-
terize (Theorem 4.4, Cor. 4.5) PLS-spaces X such that Ext1PLS(Λr(α)′, X) = 0, where Λr(α)
is a stable power series space (like H(Dd)) or even C∞(U) ' ∏

Λr(α)). The characterizing
condition is of (Ω) type and is called (PA) . On the other hand, it turns out that if X has
(PA) and a nuclear Fréchet space F has (Ω) then Ext1PLS(F ′, X) = 0 (Theorem 4.1), this is the
proper extension of the (DN) -(Ω) splitting theorem [25, 30.1]. That is why the discovery of
(PA) as a suitable generalization of the condition (Ω) seems to be one of the main achievements
of the paper. It is even more striking if one looks at Proposition 5.4 and compare it with earlier
results on the property (Ω) of kernels of hypoelliptic operators (comp. [30], [35], [44, 2.2.6]).

The parameter dependence problem considers whether, for every linear partial differential
operator with constant coefficients P (D) : D ′(Ω) → D ′(Ω), Ω ⊆ Rd convex open, and every
family of distributions (fλ)λ∈U ⊆ D ′(Ω) depending smoothly C∞ (or holomorphically etc.) on
the parameter λ running through an arbitrary C∞-manifold U (or Stein manifold U etc.), there
is an analogous family (uλ)λ∈U with the same type of dependence on λ ∈ U such that

(2) P (D)uλ = fλ ∀ λ ∈ U.

Let us recall that (fλ) depends holomorphically (smoothly) on λ ∈ U if for every test function
ϕ, λ 7→ 〈fλ, ϕ〉 is holomorphic (C∞-smooth). This problem has been extensively studied, even
in a much more general setting (for instance, if P (D) depends on λ as well); see [21], [22], [33],
[3], [2], comp. introduction of [4]. Using tensor product techniques the parameter dependence
is equivalent to the problem of surjectivity of P (D) on the spaces of vector valued distributions
D ′(Ω, F ), where, e.g., F = C∞(U) (for smooth dependence) or F = H(U) (for holomorphic
dependence). Our splitting results implies a positive solution for any Fréchet space F with
property (Ω) (Theorem 5.5), for instance, F ' H(U), C∞(U), Λr(α), C∞[0, 1], etc., see [25,
29.11]. Our method is potentially applicable to arbitrary surjective linear continuous operators
T : D ′(Ω) → D ′(Ω) and even to more general spaces than D ′.

In this applications of splitting results, the crucial point is whether ker P (D) has (PA) ,
which we prove by some trick (see Proposition 5.4 and Theorem 5.1). For more applications of

2



our splitting result for spaces of real analytic functions and Roumieu quasianalytic classes of
ultradifferentiable functions see the forthcoming paper [5].

The paper is organized as follows. Section 2 contains preliminaries and notation. In Section 3
we prove the main splitting theorem. In Section 4 we apply it for some natural spaces, especially,
sequence spaces, we introduce conditions (PA) and (PA) and give examples and applications.
In Section 5 we apply our theory to the parameter dependence problem.

The authors are very indebted to V. Palamodov for deep remarks on Theorem 5.1.

2 Preliminaries

In the present section we collect some basic notation which is very similar to the one used in [4].
By an operator we mean a linear continuous map. By L(Z, Y ) we denote the set of all

operators T : Z −→ Y . If A ⊆ Z and B ⊆ Y , then W (A,B) := {T ∈ L(Z, Y ) : T (A) ⊆ B}.
A locally convex space X is a PLS-space if it is a projective limit of a sequence of strong

duals of Fréchet -Schwartz spaces (i.e., LS-spaces), see survey paper [9]. If we take strong
duals of nuclear Fréchet spaces instead (i.e., LN-spaces) then X is called a PLN-space. Every
closed subspace and every Hausdorff quotient of a PLS-space is a PLS-space, [11, 1.2 and 1.3].
Every PLS-space is automatically complete and Schwartz, PLN-spaces are even nuclear. Every
Fréchet-Schwartz space is a PLS-space and every strongly nuclear Fréchet space is a PLN-space.

Every PLS-space X satisfies X = projN∈N indn∈N XN,n, XN,n are Banach spaces, XN :=
indn∈N XN,n denotes the locally convex inductive limit with compact linking maps, and
projN∈N XN denotes the topological projective limit of a sequence (XN )N∈N. The linking maps
will be denoted by iKN : XK → XN and iN : X −→ XN . If iNX = XN for each N sufficiently
big then we call the spectrum (XN ) reduced. We denote the closed unit ball of XN,n by BN,n

and its polar in X ′
N by UN,n. In E = indn∈N En we always denote by Bn the unit ball of the

Banach space (En, ||.||n), by Un its polar in E′
n and by jn

m : En → Em the injective compact
linking map. Without loss of generality we assume that for every M ≥ N , m ≥ n

iMN (BM,n) ⊆ BN,n, BN,n ⊆ BN,m, Bn ⊆ Bm.

This notation will be kept throughout the paper. We will use in the category of PLS-spaces the
notions of pull-back and push-out as described, for instance, in [43, Def. 5.1.2], comp. [11].

Let A = (aN,n(j)) be a matrix of non negative elements satisfying the following conditions:
(i) aN,n+1(j) ≤ aN,n(j) ≤ aN+1,n(j); (ii) ∀ j ∃ N ∀ n aN,n(j) > 0; (iii) limj→∞

aN,n+1(j)
aN,n(j) = 0.

We define the Köthe type PLS-sequence spaces Λp(A) for 1 ≤ p < ∞,

Λp(A) := {x = (x(j)) : ∀ N ∈ N ∃ n ∈ N : ‖x‖N,n < ∞},

where ‖x‖N,n :=
(∑

j |x(j)|paN,n(j)
)1/p

. The definition for p = ∞ is analogous. Clearly,
Λp(A) = projN∈N indn∈N lp(aN,n), where lp(aN,n) denotes the weighted lp-space equipped with
the norm ‖ · ‖N,n. The condition (iii) implies that Λp(A) is a PLS-space. Every PLS-sequence
space Λp(A) is isomorphic to a countable product of spaces for a matrix with strictly positive
elements. Λp(A) is even a PLN-space if instead of (iii), we assume (iv)

∑
j

aN,n+1(j)
aN,n(j) < ∞.

If aN,n(j) := exp(rNαj − snβj) where αj ,βj > 0 such that αj +βj →∞ and rN ↗ r, sn ↗ s
then we call the corresponding Köthe type space Λ(A) to be PLS-type power series space and
denote by Λr,s(α, β). It suffices to consider only r, s = 0,∞, comp. [39]. For Λr(α) see [25].

For further information from functional analysis see [25] ((DN) - (Ω) invariants are explained
there) and [18], for the theory of PDE see [16]. For the modern theory of locally convex inductive
limits see [1]. More details about notation can be seen in [4].
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3 Splitting of short exact sequences

We will consider pairs (E, X) satisfying one of the following standard assumptions:

(a) X is a PLN-space;

(b) X is a Köthe type PLS-space, X = Λ∞(A);

(c) E is an LN-space;

(d) E is a Köthe coechelon LS-space of order 1, X = k1(v).

Now, we formulate the main theorem (known for E, X both DFS-spaces see [43, 5.2.5]):

Theorem 3.1 Let X be an ultrabornological PLS-space, a reduced projective limit
X = projN∈N XN of LS-spaces XN = indn∈N XN,n. Let E = ind νEν be an LS-space (an
injective inductive limit). Assume that the pair (E, X) satisfies assumptions (b) or (c) or (d)
above, then the following assertions are equivalent:

(1) Ext1PLS(E,X) = 0;

(2) the pair (E,X) satisfies the condition (G), i.e.,

∀ N, ν ∃ M ≥ N, µ ≥ ν ∀ K ≥ M, κ ≥ µ ∃ n ∀ m ≥ n ∃ k ≥ m,S

∀ y ∈ X ′
N , x ∈ Eν : ‖y ◦ iMN ‖∗M,m‖jν

µx‖µ ≤ S
(‖y‖∗N,n‖x‖ν + ‖y ◦ iKN‖∗K,k‖jν

κx‖κ

)
;

(3) the pair (E,X) satisfies the condition (Gε), i.e.,

∀ N, ν ∃ M ≥ N, µ ≥ ν ∀ K ≥ M, κ ≥ µ ∃ n ∀ m ≥ n, ε > 0 ∃ k ≥ m,S

∀ y ∈ X ′
N , x ∈ Eν : ‖y ◦ iMN ‖∗M,m‖jν

µx‖µ ≤ ε‖y‖∗N,n‖x‖ν + S‖y ◦ iKN‖∗K,k‖jν
κx‖κ;

Ultrabornologicity of X follows from (G). We conjecture that 3.1 holds also in case (a).
We recall tools from the homological theory of locally convex spaces; a nice presentation of

the theory is contained in lecture notes [43], comp. [4]. If (XN , iKN ) is a projective spectrum of
locally convex spaces, the so-called fundamental resolution is defined as an exact sequence:

0 −−−−→ X −−−−→ ∏
N∈NXN

σ−−−−→ ∏
N∈NXN ,

where X is the projective limit of the spectrum and σ((xN )) = (iN+1
N xN+1 − xN ). We define

Proj1 (XN ) :=
∏

N∈N
XN/ im σ.

The value of Proj1 does not depend on the choice of a reduced spectrum of LS-spaces representing
X. Moreover, for PLS-spaces the following conditions are equivalent: (i) Proj1 X = 0; (ii) X is
ultrabornological; (iii) X is barreled; (iv) X is reflexive (see [43, 3.3.10]).

We apply the functor Proj1 to various spectra of spaces of operators. For example, if
X = projN∈N XN , then in the spectrum L(F,XN ) linking maps are defined as IK

N : L(F, XK) →
L(F, XN ), IK

N (T ) = iKN ◦ T and IN : L(F, X) → L(F, XN ), IN (T ) := iN ◦ T . For other cases the
linking maps are defined analogously.

Lemma 3.2 If X is a PLS-space, Proj1 X = 0 and Z is a Banach space, then
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(1) Proj1 L(Z, XN ) = 0 if X = Λ∞(A);

(2) Proj1 L(X ′
N , Z) = 0 if X = Λ∞(A);

(3) Proj1 L(X ′
N , Z) = 0 if Z = l∞;

(4) Proj1 L(X ′
N , Z) = 0 if X is a PLN-space.

Proof: Since Λ∞(A) is isomorphic to a countable product of spaces of the same type for a
strictly positive matrix, we may assume that all the elements in A are strictly positive.

(1): By [43, 3.2.18], Proj1 X = 0 implies:

∀ N ∃ M ≥ N ∀ K ≥ M ∃ n ∀ m ≥ n, ε > 0 ∃ k ≥ m,S ∀ i :

aM,m(i) ≥ min
(
ε−1aN,n(i), S−1aK,k(i)

)
.

Since XN is a coechelon Köthe sequence space k∞(v), we may treat elements of L(Z, XN ) as
sequences of functionals (fi) ⊆ Z ′ and after that identification

W (B, BN,n) = {(fi) : sup
i
‖fi‖aN,n(i) ≤ 1},

where B and BN,n denote as usual the unit balls in Z and XN,n respectively. We will show that

W (B, BM,m) ⊆ εW (B,BN,n) + SW (B, BK,k).

Let (fi) ∈ W (B, BM,m). We take gi := fi if S−1aK,k(i) ≥ ε−1aN,n(i) and 0 otherwise. Then

‖gi‖aN,n(i)
ε

≤ ‖gi‖aM,m(i) ≤ 1.

Therefore (gi) ∈ εW (B, BN,n) and analogously (fi − gi) ∈ SW (B,BK,k). Apply [43, 3.2.14].
(2): The proof is analogous to that of (1).
(3): L(X ′

N , Z) = l∞(XN ) and the result follows from [43, 3.3.11 and 3.3.16].
(4): This is [2, Lemma 3.5]. 2

Lemma 3.3 (see [41, Lemma 3.1]) Let X be a PLS-space and E be an LS-space satisfying one
of the assumptions (a) — (d). If H = E′ and

(3) 0 −−−−→ H
j−−−−→ F

q−−−−→ G −−−−→ 0

is a short exact sequence of Fréchet spaces, then we have the following exact sequence:

0 −→ L(X ′,H) −→ L(X ′, F ) −→ L(X ′, G) −→
−→ Proj1 L(X ′

N ,HN ) −→ Proj1 L(X ′
N , FN ) −→ Proj1 L(X ′

N , GN ) −→ 0.

Proof: This is [43, 3.1.5] applied to spectrum of short exact sequences

0 −−−−→ L(X ′
N ,HN ) −−−−→ L(X ′

N , FN ) −−−−→ L(X ′
N , GN ) −−−−→ 0.

2

Now, we are ready to reduce the splitting problem to the vanishing of Proj1 .

Theorem 3.4 Let X be a PLS-space with Proj1 X = 0 and let E be an LS-space satisfying one
of the conditions (a) — (d) then the following assertions are equivalent:
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(i) Ext1PLS(E,X) = 0;

(ii) Proj1 L(X ′, E′
N ) = 0;

(iii) Proj1 L(X ′
N , E′

N ) = 0.

Proof: (i)⇒(ii): Note, that X is ultrabornological, X ′ a complete LFS-space. For any
operator T : X ′ → ∏

E′
n, we get twice the pull-back of the fundamental resolution of E′:

(4)

0 −−−−→ E′ −−−−→ ∏
E′

N
σ−−−−→ ∏

E′
N −−−−→ 0xid

x
xT

0 −−−−→ E′ j−−−−→ Y
q−−−−→ X ′ −−−−→ 0xid

x
xi′N

0 −−−−→ E′ jN−−−−→ YN
qN−−−−→ X ′

N −−−−→ 0.

We will show in few steps that Y is a complete LFS-space. Completeness, metrizability and
to be a Schwartz space are the three space properties (see[8, Th. 2.3.3], [32, Th. 3.7]), thus
Y is complete and YN is a Fréchet Schwartz space. Since X ′ =

⋃
X ′

N also Y =
⋃

YN and,
by Grothendieck factorization theorem, every bounded set in X ′ (in Y ) is bounded in some
X ′

N (YN , resp.). Since E′ is a Fréchet Schwartz space, it is quasinormable. By [25, 26.17], qN

lifts bounded sets and, consequently, also q lifts bounded sets. We have proved that LFS-space
Y u = indN∈N YN is the ultrabornological space associated to Y . Then

0 −−−−→ E′ j−−−−→ Y u q−−−−→ X ′ −−−−→ 0

is topologically exact since E′ and X ′ are ultrabornological. By Roelcke’s lemma [31], Y = Y u

topologically, so Y is reflexive by [25, 24.19]. By duality and Ext1PLS(E, X) = 0, we get splitting
of the middle row in (4) and lifting of T . Thus Proj1 L(X ′, E′

N ) = 0.
(ii)⇒(i): Let us consider the following short topologically exact sequence of PLS-spaces:

(5) 0 −−−−→ X
j−−−−→ Y

q−−−−→ E −−−−→ 0.

Since Proj1 X = 0 and Proj1 E = 0, then [43, 3.1.5] implies that Proj1 Y = 0 and X, Y , E are
reflexive. By [11, Lemma 1.5], q lifts bounded sets, thus we get by duality and the push-out the
following diagram with topologically exact rows (E′, Y ′, X ′ are LFS-spaces):

(6)

0 −−−−→ E′
N −−−−→ Z

Q−−−−→ X ′ −−−−→ 0xi′N

x
xid

0 −−−−→ E′ q′−−−−→ Y ′ j′−−−−→ X ′ −−−−→ 0.

If the upper rows splits then i′N extends to Y ′ and we obtain the following commutative diagram:

0 −−−−→ E′ −−−−→ ∏
E′

N
σ−−−−→ ∏

E′
N −−−−→ 0xid

x
xT

0 −−−−→ E′ q′−−−−→ Y ′ j′−−−−→ X ′ −−−−→ 0.

By Proj1 L(X ′, E′
N ) = 0, T lifts. The lower row splits [11, 1.7], and, by duality, also (5) splits.
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We prove that the upper row in (6) splits. This is evident for (a), (c) or (d). In case (b)
X ′ is a direct sum of Köthe type LFS-spaces with l1-type “norms”. By [40, Prop. 5.1], every
summand is a projective limit of l1 Banach spaces and splitting of the upper row in (6) follows.

(ii)⇔(iii): The proof follows the idea of Vogt [41, Proposition 4.1]. We apply Lemma 3.3 to
the canonical resolution of H = E′:

0 −−−−→ H
i−−−−→ ∏

n∈NHn
σ−−−−→ ∏

n∈NHn −−−−→ 0,

where σ((xn)n∈N) := (in+1
n xn+1 − xn)n∈N and in+1

n : Hn+1 → Hn are linking maps. We define

Σ1 :
∏

n∈N

∏

N∈N
L(X ′

N ,Hn) →
∏

n∈N

∏

N∈N
L(X ′

N ,Hn),

Σ2 :
∏

N∈N
L(X ′

N ,
∏

n≤N

Hn) →
∏

N∈N
L(X ′

N ,
∏

n≤N

Hn);

Σ1((TN,n)N∈N,n∈N) := (TN+1,n ◦ IN
N+1 − TN,n)N∈N,n∈N,

Σ2((TN,n)N∈N,n≤N ) := (TN+1,n ◦ IN
N+1 − TN,n)N∈N,n≤N .

Here IN
N+1 : X ′

N → X ′
N+1 are the natural embeddings. Clearly the following diagram commutes:

∏
N∈N L(X ′

N ,
∏

n≤N Hn) Σ2−−−−→ ∏
N∈N L(X ′

N ,
∏

n≤N Hn)

A1

x A2

x
∏

n∈N
∏

N∈N L(X ′
N ,Hn) Σ1−−−−→ ∏

n∈N
∏

N∈N L(X ′
N ,Hn),

where the vertical arrows are the natural projections. Let us observe that A1 and A2 are
surjective, thus A2(im Σ1) = im Σ2. Therefore A2 induces a surjective map

Ã2 :

(∏

n∈N

∏

N∈N
L(X ′

N ,Hn)

)
/ im Σ1 →


 ∏

N∈N
L(X ′

N ,
∏

n≤N

Hn)


 / im Σ2.

Hence Proj1 L(X ′
N ,

∏
n≤N Hn) =

(∏
N∈N L(X ′

N ,
∏

n≤N Hn)
)

/ im Σ2 is a surjective image of(∏
n∈N

∏
N∈N L(X ′

N ,Hn)
)
/ im Σ1. Moreover, im Σ1 is a product of images of maps:

∏

N∈N
L(X ′

N ,Hn) →
∏

N∈N
L(X ′

N ,Hn), (TN,n)N∈N 7→ (TN+1,n ◦ IN
N+1 − TN,n)N∈N,

thus (∏

n∈N

∏

N∈N
L(X ′

N ,Hn)

)
/ im Σ1 =

∏

n∈N
Proj1 L(X ′

N , Hn).

By Lemma 3.2, Proj1 L(X ′
N ,Hn) = 0 and thus Proj1 L(X ′

N ,
∏

n≤N Hn) = 0. Therefore, by
Lemma 3.3, we have the following exact sequence where Σ0((Tn)n∈N) := (in+1

n Tn+1 − Tn)n∈N:

0 −−−−→ L(X ′,H) −−−−→ ∏
n∈N L(X ′,Hn) Σ0−−−−→ ∏

n∈N L(X ′,Hn) −−−−→
−−−−→ Proj1 L(X ′

N ,HN ) −−−−→ 0,

Thus
Proj1 L(X ′,HN ) '

∏

n∈N
L(X ′, Xn)/ im Σ0 ' Proj1 L(X ′

N , HN ) 2

The proof of the next lemma follows from duality and [4, Lemma 4.5].

7



Lemma 3.5 (a) Let E be an arbitrary LS-space, E = indn∈N En. Suppose that a, c ≥ 0, b > 0,
n ≤ m ≤ k and

(7) ∀ x ∈ En a‖jn
mx‖m ≤ b‖x‖n + c‖jn

k x‖k

then
a(jn

m)′(B◦
m) ⊆ 3bB◦

n + 2c(jn
k )′(B◦

k).

(b) Let X be an arbitrary PLS-space, X = projN∈N indn∈N XN,n, with a reduced spectrum.
Suppose that N ≤ M ≤ K, n ≤ m ≤ k, a, b, c ≥ 0 and

(8) ∀ y ∈ X ′
N a‖y ◦ iMN ‖∗M,m ≤ b‖y‖∗N,n + c‖y ◦ iKN‖∗K,k

then
aiMN (BM,m) ⊆ 2bBN,n + 2ciKN (BK,k).

Proof of Theorem 3.1 (1)⇒(2): Let us observe that L(X ′
N , E′

N ) = indn∈N L(X ′
N,n, E′

N )
algebraically thus it has a natural LB-space topology. Then, by Theorem 3.4 and [43, 3.2.18, 1.
implies 3.] (the needed implication does not require LS-topology), we get

∀ N, ν ∃ M ≥ N, µ ≥ ν ∀ K ≥ M,κ ≥ µ ∃ n ∀ m ≥ n ∃ k ≥ m,S(9)

IM,µ
N,ν W (UM,m, Uµ) ⊆ S(IK,κ

N,ν W (UK,k, Uκ) + W (UN,n, Uν)),

where IM,µ
N,ν f := (jν

µ)′ ◦ f ◦ (iMN )′, Uµ = B◦
µ.

Fix y ∈ X ′
N and x ∈ Eν , x 6= 0. Since jν

µ is injective, ‖jν
µx‖µ > 0. There is ϕ ∈ Uµ:

(10) ϕ(jν
µx) > (1/2)‖jν

µx‖µ.

Take an arbitrary element ξ ∈ BM,m ⊆ XM and define

ξ ⊗ ϕ ∈ W (UM,m, Uµ) ⊆ L(X ′
M , E′

µ), (ξ ⊗ ϕ)(u) := 〈u, ξ〉ϕ for u ∈ X ′
M .

By (9),

(11) IM,µ
N,ν (ξ ⊗ ϕ) = SIK,κ

N,ν P + SQ,

where P ∈ W (UK,k, Uκ), Q ∈ W (UN,n, Uν). For y chosen before we have

IM,µ
N,ν (ξ ⊗ ϕ)(y) =

[
(jν

µ)′ ◦ (ξ ⊗ ϕ) ◦ (iMN )′
]
(y) = (jν

µ)′((ξ ⊗ ϕ)(y ◦ iMN )) = y(iMN ξ)(ϕ ◦ jν
µ)

SIK,κ
N,ν P (y) = S

[
(jν

κ)′ ◦ P ◦ (iKN )′
]
(y) = SP (y ◦ iKN ) ◦ jν

κ .

Evaluating both sides of (11) at fixed y ∈ X ′
N and applying it to fixed x ∈ Eν we obtain

y(iMN ξ)ϕ(jν
µx) = SP (y ◦ iKN )(jν

κx) + SQ(y)(x).

Since P ∈ W (UK,k, Uκ) and Q ∈ W (UN,n, Uν), by (10), we have:

(1/2)‖jν
µx‖µ|y(iMN ξ)| ≤ S(|P (y ◦ iKN )(jν

κx)|+ |Q(y)(x)|) ≤
≤ S(‖P (y ◦ iKN )‖∗κ‖jν

κx‖κ + ‖Q(y)‖∗ν‖x‖ν) ≤
≤ S(‖y ◦ iKN‖∗K,k‖jν

κx‖κ + ‖y‖∗N,n‖x‖ν).

Taking supremum over all ξ ∈ BM,m we get the conclusion for 2S instead of S.
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(2)⇒(3): Since E is a reflexive LS-space and E′ is quasinormable, we get from [24, Th. 7],

(12) ∀ ν̃ ∃ ν ≥ ν̃ ∀ κ, ρ > 0 ∃ D(ρ) ∀ x ∈ E ‖x‖ν ≤ ρ‖x‖ν̃ + D(ρ)‖x‖κ.

Moreover, since Proj1 X = 0 and X is a PLS-space, we can apply [43, 3.2.18] to get

(13)
∀ N ∃ M̃ ≥ N ∀ K ∃ ñ ∀ m ≥ ñ, γ > 0 ∃ k̃, C ∀ y ∈ X ′

N

‖y ◦ iM̃N ‖∗M̃,m
≤ C‖y ◦ iKN‖∗K,k̃

+ γ‖y‖∗N,ñ.

Then, by (G) we get:
(14)

∀ M̃, ν ∃ M ≥ M̃, µ ≥ ν ∀ K ≥ M,κ ≥ µ ∃ n ∀ m ≥ n ∃ k ≥ m,S

∀ y ∈ X ′
M̃
∀ x ∈ Eν : ‖y ◦ iM

M̃
‖∗M,m‖jν

µx‖µ ≤ S
(
‖y‖∗

M̃,n
‖x‖ν + ‖y ◦ iK

M̃
‖∗K,k‖jν

κx‖κ

)
.

We choose quantifiers as follows. For every ν̃ find ν ≥ ν̃ according to (12). Then for arbitrary
N find M̃ ≥ N from (13), apply (14) and find M ≥ M̃ , µ ≥ ν. Take arbitrary K,κ, then find n
by (14) and ñ ≥ n by (13). Take arbitrary m ≥ ñ and find k, S according to (14). Then choose
ε > 0 arbitrary and γ so small that Sγ ≤ ε/2. Using (13) find k̃ ≥ k and C. Choose ρ so small
that SCρ ≤ ε/2 and Sρ ≤ ε. Now, we prove (Gε). For a given y ∈ X ′

N we consider two cases:
(1) ‖y ◦ iM̃N ‖M̃,n ≤ ‖y ◦ iKN‖K,k̃; (2) otherwise.

Case (1). By (14) applied to y ◦ iM̃N ∈ X ′
M̃

, x ∈ Eν , using (12) we get:

‖y ◦ iMN ‖∗M,m‖jν
µx‖µ ≤ S

(
‖y ◦ iM̃N ‖∗M̃,n

‖x‖ν + ‖y ◦ iKN‖∗K,k‖jν
κx‖κ

)
≤

≤ S‖y ◦ iM̃N ‖∗M̃,n
(ρ‖x‖ν̃ + D(ρ)‖jν

κx‖κ) + S‖y ◦ iKN‖∗K,k‖jν
κx‖κ ≤

≤ ε‖y‖∗N,n‖x‖ν̃ + S(1 + D(ρ))‖y ◦ iKN‖∗K,k̃
‖jν

κx‖κ.

Case (2). Again, by (14), using first (13) and then (12), we obtain:

‖y ◦ iMN ‖∗M,m‖jν
µx‖µ ≤ S(‖y ◦ iM̃N ‖∗M̃,n

‖x‖ν + ‖y ◦ iKN‖∗K,k‖jν
κx‖κ) ≤

≤ Sγ‖y‖∗N,ñ‖x‖ν + SC‖y ◦ iKN‖∗K,k̃
‖x‖ν + S‖y ◦ iKN‖∗K,k‖jν

κx‖κ ≤
≤ Sγ‖y‖∗N,ñ‖x‖ν + SCρ‖y ◦ iKN‖∗K,k̃

‖x‖ν̃ + SCD(ρ)‖y ◦ iKN‖∗K,k̃
‖jν

κx‖κ +

+S‖y ◦ iKN‖∗K,k‖jν
κx‖κ.

Since ν ≥ ν̃, M̃ ≥ N , ñ ≥ n, we have ‖x‖ν ≤ ‖x‖ν̃ , ‖y ◦ iM̃N ‖∗M̃,n
≤ ‖y‖∗N,n ≤ ‖y‖∗N,ñ and

‖y ◦ iMN ‖∗M,m‖jν
µx‖µ ≤ ε‖y‖∗N,ñ‖x‖ν̃ + (SCD(ρ) + S)‖y ◦ iKN‖K,k̃‖jν

κx‖κ.

(3)⇒(1): By Theorem 3.4, it suffices to show that Proj1 L(X ′
N , E′

N ) = 0. By [43, 3.2.14], it
suffices to show that

(15)
∀ N ∃ M ≥ N ∀ K ≥ M ∃ n ∀ m ≥ n, ε > 0 ∃ k ≥ m,S

IM
N W (UM,m, UM ) ⊆ S(IK

N W (UK,k, UK)) + εW (UN,n, UN ),

where IM
N f := (jM

N )′ ◦ f ◦ (iMN )′. We will show it separately for the assumptions (b), (c) and (d).
Case (b): X = Λ∞(A) a Köthe type PLS-space. We assume first that a1,n(i) > 0 for each n.
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Let ei be the unit vector in X ′, then ‖ei‖∗N,n = 1/aN,n(i). Thus, by (Gε), for N = ν, K = κ
and M , µ chosen as the maximum of those two and denoted by M and for x ∈ EN , y = ei:

∀ N ∃ M ≥ N ∀ K ≥ M ∃ n ∀ m ≥ n, ε > 0 ∃ k ≥ m,S ∀ i ∈ N ∀ x ∈ EN

‖jN
Mx‖M

aM,m(i)
≤ ε

‖x‖N

aN,n(i)
+ S

‖jN
Kx‖K

aK,k(i)
.

By Lemma 3.5,

(16)
1

aM,m(i)
(jN

M )′(B◦
M ) ⊆ 3ε

aN,n(i)
B◦

N +
2S

aK,k(i)
(jN

K )′(B◦
K).

Now, we identify W (UM,m, UM ) ⊆ L(X ′
M , E′

M ) a space of vector valued sequences:

L(X ′
M , E′

M ) = {u = (u(i))i∈N ⊆ E′
M : ∃ m sup

i
aM,m(i)‖u(i)‖∗M < ∞}.

In particular, u = (u(i))i∈N ∈ W (UM,m, UM ) if and only if u(i) ∈ (aM,m(i))−1UM for every i.
By (16), taking some v(i) ∈ (aN,n(i))−1UN and w(i) ∈ (aK,k(i))−1UK we have

(jN
M )′(u(i)) = 3εv(i) + 2S(jN

K )′(w(i)) for each i ∈ N.

Define v ∈ W (UN,n, UN ) ⊆ L(X ′
N , E′

N ) and w ∈ W (UK,k, UK) ⊆ L(X ′
K , E′

K), by

v(x) := (v(i)x)i∈N, w(z) := (w(i)z)i∈N for x ∈ X ′
N , z ∈ X ′

K .

Obviously, IM
N u = 3εv + 2SIK

N w which implies (15) with slightly changed S and ε.
In the general case, X = Λ∞(A) is a countable product of spaces for which we have proved

Ext1PLS(E, XS) = 0. This implies (1).
Case (c): E is an LN-space, i.e., a nuclear LS-space.
We assume that Eν is Hilbert and jν

ν+1 : Eν → Eν+1 is nuclear for every ν ∈ N. By Lemma
3.5 and (Gε) applied for ν = N + 2, κ = K + 2 > ν and M = µ we get:

(17)
∀ N ∃ M ≥ N ∀ K ≥ M ∃ n ∀ m ≥ n, ε > 0 ∃ k ≥ m,S ∀ x ∈ EN+2

‖jN+2
M x‖M iMN BM,m ⊆ ε‖x‖N+2BN,n + S‖jN+2

K+2x‖K+2i
K
NBK,k.

Let us choose orthonormal systems (ei)i∈N ⊆ EN+1 and (fi)i∈N ⊆ EK+1 such that

jN+1
K+1x =

∑

i

ai〈x, ei〉N+1fi ∀ x ∈ EN+1.

Let us fix ϕ ∈ W (UM,m, UM ) ⊆ L(X ′
M , E′

M ). For arbitrary u ∈ UM,m, i ∈ N we have

|ei ◦ (jN+1
M )′ ◦ ϕ(u)| = |ϕ(u)(jN+1

M (ei))| ≤ ‖jN+1
M (ei)‖M .

We have proved that iMN (ei ◦ (jN+1
M )′ ◦ ϕ) ∈ ‖jN+2

M (jN+1
N+2ei)‖M iMN BM,m. By (17),

(18) iMN (ei ◦ (jN+1
m )′ ◦ ϕ) = χi + iKn ψi,

where χi ∈ ε‖jN+1
N+2ei‖N+2BN,n, ψi ∈ S‖jN+2

K+2j
N+1
N+2ei‖K+2BK,k = S‖jN+1

K+2ei‖K+2BK,k. We
define two maps: first,

χ(u) :=
∑

i

χi(u)(jN
N+1)

′(e∗i )
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for u ∈ X ′
N where e∗i (x) := 〈x, ei〉N+1, x ∈ EN+1, second,

ψ(v) :=
∑

i

a−1
i ψi(v)(jK

K+1)
′(f∗i ),

where the sum runs over all i such that ai 6= 0, v ∈ X ′
K and f∗i (x) := 〈x, fi〉K+1 for x ∈ E′

K+1.
We will show that χ is a well-defined element of a multiple of W (UN,n, UN ). Fix x ∈ BN

and u ∈ UN,n. Then, by Schwartz inequality,

|χ(u)(x)| ≤
∑

i

|χi(u)||〈jN
N+1x, ei〉N+1| ≤ ε

∑

i

‖jN+1
N+2ei‖N+2|〈jN

N+1x, ei〉N+1|

≤ εσ(jN+1
N+2)‖jN

N+1x‖N+1 ≤ εσ(jN+1
N+2),

where σ denotes the Hilbert-Schmidt norm of operators. The above estimates imply that the
series in the definition of χ is convergent and

(19) χ ∈ εσ(jN+1
N+2)W (UN,n, UN ).

Fix v ∈ UK,k and z ∈ BK . Similarly as above we get

|ψ(v)(z)| ≤
∑

i

(ai)−1|ψi(v)||〈jK
K+1z, fi〉K+1| ≤ S

∑

i

(ai)−1‖jN+1
K+2ei‖K+2|〈jK

K+1z, fi〉K+1| ≤

≤ S
∑

i

‖jK+1
K+2fi‖K+2|〈jK

K+1z, fi〉K+1| ≤ Sσ(jK+1
K+2).

This implies that

(20) ψ ∈ Sσ(jK+1
K+2)W (UK,k, UK).

By (19) and (20), in order to prove (15) it suffices to show that IM
N ϕ = χ+IK

N ψ. This follows
from an easy consequence of (18):

(IM
N ϕ)(u)(x) = χ(u)(x) + (IK

N ψ)(u)(x) for every u ∈ X ′
N and x ∈ EN .

Case (d): E = k1(v) is a Köthe coechelon space, where ‖x‖ν :=
∑

i vν(i)|xi| and vν(i) > 0
for each ν, i ∈ N. Evaluating (Gε) for x = ei ∈ EN , where N = ν, K = κ and M = µ we obtain:

∀ N ∃ M ≥ N ∀ K ≥ M ∃ n ∀ m ≥ n, ε > 0 ∃ k, S ∀ y ∈ X ′
N ∀ i ∈ N :

‖y ◦ iMN ‖∗M,mvM (i) ≤ ε‖y‖∗N,nvN (i) + S‖y ◦ iKN‖∗K,kvK(i).

By Lemma 3.5 changing ε and S suitably we get:

(21) vM (i)iMN BM,m ⊆ εvN (i)BN,n + SvK(i)iKNBK,k.

Let f ∈ W (UM,m, UM ). Observe E′
M = l∞(1/vM ), then f(z) = (fi(z))i∈N ∈ UM for every

z ∈ UM,m and |fi(z)| ≤ vM (i). Thus fi ∈ vM (i)BM,m for every i ∈ N. By (21), we get for i ∈ N:
iMN fi = εvN (i)gi + SvK(i)iKNhi, where gi ∈ BN,n and hi ∈ BK,k. Clearly IM

N f = εg + SIK
N h for

g : X ′
N → E′

N = l∞(1/vN ), g(y) := (vN (i)gi(y))i∈N,

h : X ′
K → E′

K = l∞(1/vK), h(y) := (vK(i)hi(y))i∈N.

Finally, g ∈ W (UN,n, UN ), h ∈ W (UK,k, UK) which completes the proof by (15). 2
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4 Splitting results for special spaces

In the present section we obtain a more natural splitting result and apply it to sequence spaces.
Let us define the condition (PA) for a PLS-space X as follows:

(22)
∀ N ∃ M ∀ K ∃ n ∀ m ∃ θ ∈]0, 1[ ∃ k, C ∀ y ∈ X ′

N ;

‖y ◦ iMN ‖∗M,m ≤ C max
(
‖y ◦ iKN‖∗K,k

(1−θ)
, ‖y‖∗N,n

(1−θ)
)
‖y‖∗N,n

θ

or, equivalently (see the proof of [4, Lemma 5.1]),

(23)
∀ N ∃ M ∀ K ∃ n ∀ m ∃ η > 0 ∃ k, C, r0 > 0 ∀ r < r0 ∀ y ∈ X ′

N ;

‖y ◦ iMN ‖∗M,m ≤ C

(
rη‖y ◦ iKN‖∗K,k +

1
r
‖y‖∗N,n

)
.

Changing the quantifier for θ, η to be ∀θ ∈]0, 1[ (resp. ∀η > 0) one gets the condition (PA)
These conditions are PLS-versions of conditions (A) and (A) (see [34]) which are dual to

(DN) and (DN) respectively [25, Sec. 29]. It is worth noting that (PA) and (PΩ) differs only
by inequality r < r0 and r > r0, respectively. The same analogy holds between (PA) and (PΩ)

We present now an analogue of the famous (DN)− (Ω) splitting theorem [25, 30.1].

Theorem 4.1 Let E be an LS-space, X a PLS-space satisfying (b), (c) or (d), then
Ext1PLS(E, X) = 0 whenever E′ has (Ω) and X has (PA) or E′ has (Ω) and X has (PA) .

Proof: By Theorem 3.1, it suffices to show that (E, X) ∈(G). Recall that E′ ∈(Ω) means

∀ N ∃ M ≥ N ∀ K ≥ M, θ ∈]0, 1[ ∃ D ∀ x ∈ E ‖x‖M ≤ D‖x‖θ
N‖x‖1−θ

K .

Fix N and find M which is good for (PA) and (Ω) . Then fix K, find n from (PA) and fix
m. Finally, fix k and η from (PA) . Take x ∈ EN and r := ‖x‖M

‖x‖N
. By (Ω) , θ := η

η+1 ,

rη =
(‖x‖M

‖x‖N

)η

≤ D
‖x‖K

‖x‖M
.

We substitute r into (23) to get

‖y ◦ iMN ‖∗M,m ≤ C

(
D
‖x‖K

‖x‖M
‖y ◦ iKN‖∗K,k +

‖x‖N

‖x‖M
‖y‖∗N,n

)
.

This completes the proof. The case E′ ∈(Ω) and X ∈(PA) is analogous. 2

The following proposition summarize elementary facts concerning (PA) and (PA) .

Proposition 4.2 Every Fréchet Schwartz space has (PA) and (PA). An LS-space has (PA) or
(PA) if and only if it has (A) or (A) respectively. The conditions (PA) and (PA) are inherited
by complete quotients and countable products and (PA)⇒(PA)⇒ Proj1 X = 0.

The proof is so similar to the proof of [4, Cor. 5.2, Prop. 5.3 and Prop. 5.4] that we omit it.
Observe that duals of power series spaces have always (A) and they have (A) only for infinite
type spaces [25, Sec. 29]. Thus products of such spaces have correspondingly (PA) and (PA) .
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Theorem 4.3 (a) The Köthe type PLS-space Λp(A) for 1 ≤ p ≤ ∞ has (PA) if and only if

∀ N ∃ M ∀ K ∃ n ∀ m, θ ∈]0, 1[ ∃ k, C ∀ i ∈ N
aM,m(i) ≥ C min

(
aK,k(i)(1−θ), aN,n(i)(1−θ)

)
aN,n(i)θ

The same condition holds for (PA) with a suitable change of quantifiers.

(b) The PLS-type power series space Λr,s(α, β) ∈(PA) iff either s = ∞ or it is isomorphic to
a product of an LS-space and a Fréchet space (equivalently, Proj1 Λr,s(α, β) = 0).

(c) The PLS-type power series space Λr,s(α, β) satisfies condition (PA) iff either s = ∞ or
the space is isomorphic to a Fréchet space.

It is worth noting that spaces of Beurling (ultra-)distributions D ′
(ω) ∈ (PA) are isomorphic

to Köthe type PLS-spaces [37], see [7] for the definitions. The role of these new invariants and
applications of our splitting result for spaces of real analytic functions and Roumieu (quasian-
alytic) classes of ultradifferentiable functions will be explained in [5]. The kernels of surjective
convolution operators on D ′

(ω)(R), E{ω}(R) or E{ω}(] − 1, 1[) give examples of PLS-type power
series spaces (see [12, Th. 2.10], [27, 2.11], [26, Satz 3.2, 3.18], [23], comp. [4, Th. 2.2]), in the
first case they have (PA) in the other two (PA) .

Proof of 4.3: (a): Necessity follows by taking y as unit vectors. For the proof of sufficiency,
translate the condition as in the definition of (PA) into the condition with the parameter r:

∀ N ∃ M ∀ K ∃ n ∀ m, η > 0 ∃ k, C, r0 > 0 ∀ r < r0 ∀ i ∈ N : such that aN,l(i) 6= 0 for all l

1
aM,m(i)

≤ C max
(

rη 1
aK,k(i)

,
1
r

1
aN,n(i)

)
.

Then prove that this condition holds for all vectors in X ′
N instead of the unit vectors only.

(b): By Proposition 4.2, (PA) implies Proj1 = 0, apply [39, 4.3]. Sufficiency for s < ∞
follows from Prop. 4.2, since the LS-space factor must be a dual to a Fréchet power series space
and it has (A) (see [25, Sec. 29]). Sufficiency for s = ∞ follows from (c) below.

(c): Since LS-factor is Λ′0(γ), necessity for s < ∞ follows from (b)(see [25, Sec.29]). Suffi-
ciency for s < ∞ follows from Prop. 4.2.

Assume that s = ∞. Let us take arbitrary N , choose M := N + 1 and take arbitrary K.
Fix n = 1, take arbitrary m and θ ∈]0, 1[. We choose k so big that

θ ≤ sk − sm

sk − sn
and

rK − rN

rM − rN
<

sk − sn

sm − sn
.

Let us observe that if rK−rM
rK−rN

≤ θ then

(24) exp(−rMαi + smβi) ≤ exp((−rKαi + skβi)(1− θ)) · exp((−rNαi + snβi)θ)

and
‖ei‖∗M,m ≤ (‖ei‖∗N,n)θ(‖ei‖∗K,k)

1−θ.

Now, assume that ‖ei‖∗M,m ≥ ‖ei‖∗N,n then

−rMαi + smβi ≥ −rNαi + snβi and αi ≤ sm − sn

rM − rN
βi <

(
sk − sn

rK − rN

)
βi.
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Observe that f(θ) := −rKαi(1− θ) + skβi(1− θ)− rNαiθ + snβiθ has negative derivative

f ′(θ) = (rK − rN )αi + (sn − sk)βi <

(
sk − sn

rK − rN

)
(rK − rN )βi + (sn − sk)βi = 0.

Therefore, if the inequality (24) holds for big θ < 1 then it holds for all θ ∈]0, 1[ and either

‖ei‖∗M,m ≤ ‖ei‖∗N,n or ‖ei‖∗M,m ≤ (‖ei‖∗N,n)θ(‖ei‖∗K,k)
1−θ.

We conclude by the same method as in (a). 2

Theorem 4.4 If α is stable, X is an ultrabornological PLS-space, then Ext1PLS((Λ∞r (α))′, X) =
0 if and only if X has (PA) .

Remark. Clearly the same holds for
∏

n∈N Λr(α(n)), for instance, C∞(U) ' ∏
n∈N Λ∞(log j)

for any smooth non-compact manifold U .
Proof: Sufficiency follows from Theorem 4.1 since Λr(α) has (Ω) .
Necessity. We may assume that α0 = 0 and that αj ≤ dαj−1 for some d > 1 and every j ∈ N.

We apply (G) for x = ej . We fix N and find M ≥ N from (G), then we fix K. We choose η0

such that rK−rM
rM−rN

≥ η0d. There is n such that for every m there is k(m) such that

‖y ◦ iMN ‖∗M,m ≤ S
(
exp ((rM − rK)αj) ‖y ◦ iKN‖∗K,k(m) + exp ((rM − rN )αj) ‖y‖∗N,n

)
.

Let us take r ≤ exp ((rN − rM )α0) = 1. There is j such that

(rN − rM )αj ≤ log r ≤ (rN − rM )αj−1.

Now, exp ((rM − rN )αj) ≤ exp (d(rM − rN )αj−1) ≤ 1
rd . Clearly, for η < η0 we have

exp ((rM − rK)αj) ≤ exp
(

(rN − rM )
rM − rK

rN − rM
αj

)
≤ rηd.

We have proved that

∀ N ∃ M ≥ N ∀ K ≥ M ∃ n ∃ η0 ∀ m ∃ k(m), S ∀ η < η0 ∀ r ∈]0, 1[:

‖y ◦ iMN ‖∗M,m ≤ Sm

(
rη‖y ◦ iKN‖∗K,k(m) +

1
r
‖y‖∗N,n

)
.

Then

‖y ◦ iKN‖∗K,k(m) ≤ ‖y ◦ iMN ‖∗M,k(m) ≤ Sk(m)

(
rη‖y ◦ iNK‖∗K,k(k(m)) +

1
r
‖y‖∗N,n

)
.

Combining the two inequalities above we get

‖y ◦ iMN ‖∗M,m ≤ Sm(Sk(m) + 1)
(

r2η‖y ◦ iKN‖∗K,k(k(m)) +
1
r
‖y‖∗N,n

)
,

since rη−1 < 1/r. Repeating this procedure inductively we get

‖y ◦ iMN ‖∗M,m ≤ Sp,m

(
rpη‖y ◦ iKN‖∗K,k̃(p)

+
1
r
‖y‖∗N,n

)
,

where k̃(p) = k ◦ k ◦ · · · ◦ k(m), p-times composition, p ∈ N. This completes the proof. 2

Kunkle [20, Th.5. 14] proved Ext1PLS(Λ1∞,s(α, β),Λ∞p,∞(γ, δ)) = 0 for any p and s. We get:

Corollary 4.5 If either s = ∞ or Λr,s(β, γ) is a Fréchet space then

Ext1PLS((Λ∞r (α))′,Λr,s(β, γ)) = 0.

Proof: The case s = ∞ follows from Theorem 4.3 (d), Theorem 4.1 and the propert (Ω) of
Λr(α). The other case follows from [29, Th. 9.1]. 2
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5 Parameter dependence of solutions of differential equations

As explained in the introduction, the parameter dependence problem for linear PDO with con-
stant coefficients is equivalent to the question if the partial differential operator

(25) P (D) : D ′(Ω, F ) → D ′(Ω, F )

is surjective for suitably chosen Fréchet spaces F . We prove that this is the case for Ω convex and
any nuclear Fréchet space F with property (Ω) (for instance, F ' H(U), C∞(U), Λr(α), C∞[0, 1],
etc., see [25, 29.11]). Our approach should be compared with [4, Section 3].

The positive solution for the holomorphic dependence was probably known to some specialists
- Palamodov showed the authors the full proof without using splitting of short exact sequences.
For the sake of completeness we give a full proof based on Palamodov’s theory of systems of
linear PDE and (DN)− (Ω) splitting result of Vogt and Wagner (see [25, 30.1]).

Theorem 5.1 Let Ω ⊆ Rd and U be any Stein manifold. For every linear partial differential
operator with constant coefficients P (D) the following map is surjective

P (D) : D ′(Ω,H(U)) → D ′(Ω,H(U)).

Proof: First, assume that U ⊆ Cd is a convex. To simplify notation we take d = 1.
We have the following differential complex obtained as in [28]:

0 −−−−→ ker
(

∂
P (D)

)
−−−−→ D ′(Ω× U)

0
@ −∂

P (D)

1
A

−−−−−−−−→ [D ′(Ω× U)]2 −−−−→

(P (D) , ∂)−−−−−−−→ D ′(Ω× U) −−−−→ 0 ,

where P (D) acts on Ω and ∂ acts on U ⊆ C = R2. This is a particular case of [28, VII, 7.2, Ex.
4]. Since Ω× U is convex the complex is exact by [28, VII, 8.1, Th. 1].

If f ∈ D ′(Ω× U), ∂f = 0, then
(

0
f

)
∈ ker (P (D) , ∂) ⊆ [D ′(Ω× U)]2, thus by exactness

of the complex, there is g ∈ D ′(Ω × U) such that −∂g = 0, P (D)g = f . We have proved that
P (D) : ker ∂ → ker ∂ is surjective. By the very definition D(Ω,H(U)) = L(D(Ω),H(U)). Let
us prove that

{f ∈ D ′(Ω× U) : ∂f = 0} = L(D(Ω),H(U)).

Define a map Sf : D(Ω) → D ′(U), 〈Sf (ϕ), ψ〉 = 〈f, ϕψ〉 for ψ ∈ D(U). Since 〈∂Sf (ϕ), ψ〉 =
−〈f, ϕ∂ψ〉 = −〈f, ∂ψϕ〉 = 0, we have Sf (D(Ω)) ⊆ H(U). On the other hand, for ϕ ∈ D(Ω),
ψ ∈ D(U), if S : D(Ω) → H(U) then we define fS ∈ D ′(Ω× U), 〈fS , ϕψ〉 := 〈S(ϕ), ψ〉. Clearly

〈∂fS , ϕψ〉 = −〈fS , ϕ∂ψ〉 = −〈S(ϕ), ∂ψ〉 = 〈∂S(ϕ), ψ〉 = 0, and ∂fS = 0.

Let U be an arbitrary Stein manifold. By [17, 5.3.9], U embeds properly into Cd for suitable
d as a submanifold. Clearly, we have the following short exact sequence of Fréchet spaces:

0 −−−−→ I(U) −−−−→ H(Cd)
q−−−−→ H(U) −−−−→ 0,

where I(U) = {f ∈ H(Cd) : f |U ≡ 0}. By [38] remark on page 195, I(U) has (Ω) . Let
f ∈ H(U,D ′(Ω)) then it can be extended to g ∈ H(Cd, D ′(Ω)). Indeed,

H(U,D ′(Ω)) ' H(U)εD ′(Ω) ' L(D(Ω), H(U))
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and extendability is equivalent to the fact that every operator T : D(Ω) → H(U) lifts with
respect to q. Since D(Ω) ' ⊕

N∈N s and s has (DN) the lifting follows from the (DN) − (Ω)
splitting theorem [25, 30.1]. We get the conclusion combining extendability with surjectivity of

P (D) : D ′(Ω,H(Cd)) → D ′(Ω,H(Cd)) ' H(Cd,D ′(Ω)). 2

For the smooth dependence we cannot use the idea from the first part of the proof above
but we can use the splitting theory as the following observation shows:

Proposition 5.2 Let F be a Fréchet-Schwartz space, let Y =
∏

t∈N Yt be a product of LS-spaces
and let T : Y → Y be a surjective operator.

(a) If Ext1PLS(F ′, ker T ) = 0, then the map T ⊗ id : Y εF → Y εF is surjective.
(b) If Ext1PLS(F ′, Yt) = 0 for every t and T ⊗ id : Y εF → Y εF is surjective, then

Ext1PLS(F ′, ker T ) = 0.
(c) If either Yt ' Λ′∞(βt) and F has (Ω) or Yt ' Λ′0(βt) and F has (Ω) , then

T ⊗ id : Y εF → Y εF

is surjective if and only if Ext1PLS(F ′, ker T ) = 0.

Proof: Use [4, Prop. 3.3, 3.4] and the fact that if F has (Ω) or F has (Ω) then
Ext1PLS(F ′, Λ′∞(βt)) = 0 or Ext1PLS(F ′, Λ′0(βt)) = 0 respectively (see [38]). 2

Since for non-quasianalytic ω, D ′
(ω)(Ω) ' [Λ′∞(β)]N and [37], we have:

Corollary 5.3 Let F be Fréchet Schwartz with (Ω) and let T : D ′
(ω)(Ω) → D ′

(ω)(Ω) be surjective,
then T ⊗ id : D ′

(ω)(Ω, F ) → D ′
(ω)(Ω, F ) is surjective if and only if Ext1PLS(F ′, ker T ) = 0.

The following result is crucial for the application of our splitting results from Sec. 3 and 4.

Proposition 5.4 Let Ω ⊆ Rd be a convex open set, P (D) : D ′(Ω) → D ′(Ω) a linear partial
differential operator with constant coefficients. Then ker P (D) has the property (PA) .

Proof: By Theorem 5.1, P (D) : D ′(Ω,H(D)) → D ′(Ω, H(D)) is surjective. By Cor. 5.3,

Ext1PLS(H ′(D), ker P (D)) = 0.

This completes the proof by Theorem 4.4. Observe that P (D) : D ′(Ω) → D ′(Ω) is surjective
and thus Proj1 ker P (D) = 0 while H(D) ' Λ0(α) has (Ω) . 2

Theorem 5.5 Let Ω ⊆ Rd be a convex open set, P (D) : D ′(Ω) → D ′(Ω) a linear partial
differential operator with constant coefficients, then for every Fréchet nuclear space F or Köthe
sequence Fréchet-Schwartz space F = λ∞(A) the map P (D) : D ′(Ω, F ) → D ′(Ω, F ) is surjective
whenever F ∈(Ω) . In particular, it holds for F = C∞(U), U an arbitrary smooth manifold.

Proof: Apply Corollary 5.3, Proposition 5.4 and Theorem 4.1. 2

The property (Ω) is not a necessary condition in Theorem 5.5. This follows from the example
in [36, p. 190] and the following result, which is a consequence of [2, Th. 36]. Recall that the
condition LB∞ is very restrictive see [36].

Proposition 5.6 Let F =
∏

N∈N FN , FN Fréchet spaces with property LB∞ and T : D ′
(ω)(Ω) →

D ′
(ω)(Ω) is surjective then the following map is surjective as well

T ⊗ id : D ′
(ω)(Ω, F ) → D ′

(ω)(Ω, F ).
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Theorem 5.7 If the convolution operator Tµ : D ′
(ω)(R) → D ′

(ω)(R) is surjective, then

Tµ : D ′
(ω)(R, F ) → D ′

(ω)(R, F )

is surjective for any Fréchet nuclear space F with property (Ω) or any Köthe sequence Fréchet-
Schwartz space F = λ∞(A) with property (Ω) .

Proof: By [12, Th. 2.10], ker Tµ ' Λ∞,∞(α, β). By Theorem 4.3, ker Tµ has (PA) . The
result follows from Theorem 4.1 and Corollary 5.3. 2

Similar results hold for Tµ : E{ω}(R) → E{ω}(R) or Tµ : E{ω}(] − 1, 1[) → E{ω}(] − 1, 1[) and

F with property (Ω) (use [27, 2.11], [26, Satz 3.2, 3.18], [23] instead of [12]).
It is worth noting that for hypoelliptic operators one can drop the assumption of condition

(Ω) in Theorem 5.5. Indeed, ker P (D) is Fréchet, by [29, Th. 9.1], Ext1PLS(F ′, ker P (D)) = 0.
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[8] S. Dierolf, Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation,
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[36] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J.
Reine Angew. Math. 345 (1983), 182-200.

[37] D. Vogt, Sequence space representations of spaces of test functions and distributions, in:
Functional Analysis, Holomorphy and Approximation Theory, (eds. G. L. Zapata), Lecture
Notes Pure Appl. Math. 83, Marcel Dekker, New York 1983, pp. 405–443.

[38] D. Vogt, On the functors Ext1(E, F) for Fréchet spaces, Studia Math. 85 (1987), 163–197.
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Amsterdam 1992, pp. 57–84.
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[44] G. Wiechert, Dualitäts- und Strukturtheorie der Kerne linearer Differentialoperatoren, Dis-
sertation Wuppertal (1982).

Authors’ Addresses:
J. Bonet
Departamento de Matemática Aplicada and
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Faculty of Mathematics and Comp. Sci.
A. Mickiewicz University Poznań
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