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1. Introduction

The purpose of this paper is to present a unified treatment of the extension of holomorphic or har-
monic vector valued functions, including the several variables case. Vector-valued holomorphic
functions are useful in the theory of topological algebras [18], in the theory of one-parameter
semigroups [3, 17], in infinite dimensional holomorphy [14, Chapter 3], and also in operator
theory [1, 19]. Composition operators of spaces of this type have been investigated recently
[9, 10, 31, 30]. The topic we consider is closely related to the investigation of conditions to
ensure that a weakly holomorphic function with values in a locally convex space is holomorphic.
In fact, it is much easier to show that a function is weakly holomorphic and conclude that the
original function is holomorphic as a consequence of an abstract theorem. The classical theorem
of Dunford and Grothendieck shows that a function f defined on an open set Ω ⊆ C in the com-
plex plane with values in a complete locally convex space E is holomorphic if u◦f is holomorphic
for every u ∈ E′ in the topological dual of E. Several authors presented extensions of this re-
sult and related it to the extension of holomorphic functions; see Bogdanowicz [7], Colombeau
[12] and Gramsch [20, 21]. Weak conditions for holomorphy of a vector valued function have
found renewed interest recently. Grosse-Erdmann [22] showed that it is enough to test weak
holomorphy of a locally bounded function with values in a locally complete locally convex space
on the elements of a separating subset of the dual of the range space, solving a problem posed
by Wrobel [41]. Arendt and Nikolski [2] gave a short proof of this result if the range space is
Fréchet; and Grosse-Erdmann [23] shortened his original proof with a more functional analytic
approach. He also treated holomorphic extension, and stated several open problems which we
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treat in our article.

The basic problem we consider can be stated as follows: Let Ω be an open subset of RN (or a
smooth manifold), let F be a sheaf of smooth functions on Ω, and let f : M → E be a function
acting from a subset M of Ω into a locally convex space E such that u◦f has a unique extension
fu ∈ F (Ω) for each u in a separating subset of E′, does f have an extension f̂ belonging to the
space F (Ω, E) of vector valued F (Ω)-functions? We present theorems which simultaneously
extend results due to Gramsch [21], Arendt, Nikolski [2] and Grosse-Erdmann [23]. Our approach
using sheaves of smooth functions permits us to treat, not only spaces defined on open subsets
of the complex plane as in [2] and [23], but also holomorphic or harmonic functions of several
variables and kernels of linear partial differential operators, thus including consequences about
the work of Bierstedt, Holtmanns [6] and Enflo, Smithies [16]. Besides the positive results,
we solve a problem of Grosse-Erdmann in the negative; see the Example 20. Finally, we give
representations of F ′(Ω) and of F ′(Ω, E) in the spirit of Wolff description of the dual of the
space one variable holomorphic functions on a domain [40], used by Grosse-Erdmann to obtain
the extension result [23, Theorem 2].

Our proofs are functional analytic. They are based on properties of Fréchet Schwartz spaces, the
local completion of a locally convex space [35, Chapter 5], a theorem of Raikov about (DFS)-
spaces, see e.g. [35, 8.5.28], and the theory of ε-products of Schwartz [38]. In fact all the spaces
of holomorphic or harmonic functions we are interested in are Fréchet Schwartz spaces and their
duals are (DFS)-spaces. These powerful abstract techniques have not been exploited before in
connection with the present research. They permit us to derive many results with relatively
smooth proofs.

2. Preliminaries and notation

2.1. ε-products and locally complete spaces. Our notation for locally convex spaces and
functional analysis is standard. We refer the reader to [26, 28, 32, 35], and we recall some
terminology. For a locally convex space E, which we assume to be Hausdorff, E? and E′ stand
for its algebraic dual and topological dual, respectively. We denote by β(E, F ) the strong
topology and by σ(E, F ) the weak topologies on E with respect to a dual pair 〈E, F 〉. As usual,
if E′ is the topological dual of a locally convex space E, the topology σ(E′, E) is called the weak?

topology. We denote by co = co(E′, E) the topology of uniform convergence on the compact
and absolutely convex subsets of the locally convex space E. The polar in E of a subset A

of F in the dual pair 〈E, F 〉 is A◦ := {x ∈ E : |f(x)| ≤ 1 for all f ∈ A}. A subspace G of
E′ is called separating if u(x) = 0 for each u ∈ G implies x = 0. Clearly this is equivalent
to G being weak?-dense (or dense in the co-topology). If E, F are locally convex spaces, then
L(E,F ) denotes the vector space of all continuous linear maps from E to F . Given T ∈ L(E, F )
we denote by T t ∈ L(F ′, E′) its transpose defined by T t(u) = u ◦ T ∈ E′ for each u ∈ F ′.
EεF := Le(E′

co, F ) is called the Schwartz’s ε-product of E and F [28, 38]; here e denotes the
topology of uniform convergence on the equicontinuous subsets of E′. The map T 7→ T t is an
isomorphism between EεF and FεE. We refer the reader for more information, especially for
the representation of spaces of vector valued functions, to [4, 28, 37, 38]. In case Y is a Fréchet
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Schwartz (or (FS)) space, i.e. a Fréchet space which has a defining spectrum of Banach spaces
with compact linking maps, Y εE = Lβ(Y ′

β, E), since Y is in particular a Montel space, i.e. a
locally convex space which is barrelled and such that all its bounded sets are relatively compact.
Montel spaces are reflexive and Fréchet Schwartz spaces have even a fundamental system of
reflexive Banach spaces; c.f. [28, 32]. A (DFS)-space is the strong dual of a Fréchet Schwartz
space and can be represented as a countable inductive limit of a sequence of (reflexive) Banach
spaces with compact linking maps.

A locally convex space E is said to be locally complete whenever every absolutely convex, closed,
bounded subset B of E spans a Banach space EB endowed with the Minkowski gauge of B. A
linear subspace F of E is said to be locally closed if for every continuously embedded normed
space (X, ‖ · ‖) and every sequence (xn)n ⊆ F ∩ X which converges to some x in the normed
space X, we have x ∈ F . The local closure of a linear subspace F ⊆ E is defined as the smallest
locally closed subspace of E which contains F . For a locally convex space E, if Ê denotes
the completion of E, the local completion Elc of E is defined as the local closure of E in Ê.
Every locally complete subspace of E is locally closed and a locally closed subspace of a locally
complete space is locally complete, [35, 5.1.20].

2.2. Holomorphic, harmonic and C∞ functions. Our notation for spaces of (vector valued)
differentiable or holomorphic functions is standard. We refer the reader to [3, 26, 36, 37, 38].

A function f : Ω ⊆ RN → E from an open connected subset (a domain) Ω of RN into a locally
convex space is said to be of class C 1 if, for all 1 ≤ i ≤ N , there is a continuous function
∂f
∂xi

: Ω → E such that

∂f(x)
∂xi

= lim
t→0

1
t
(f(x + tei)− f(x)), x ∈ Ω.

Here ei denotes the i-th vector of the canonical basis of RN . For smooth functions on Ω ⊆ RN

we use standard multi-index notation. Thus, if α = (α1, . . . , αN ) ∈ NN , then

∂αf =
∂|α|

∂xα
f =

∂|α|

∂xα1
1 · · · ∂xαN

N

f,

where |α| = α1 + · · ·+ αN . The space of all the functions f : Ω → E such that ∂|α|f
∂xα : Ω → E is

a well defined continuous function for |α| ≤ k is denoted by C k(Ω, E). Whenever f : Ω → E is
infinitely differentiable, P (∂, x) =

∑
|α|≤m aα(x)∂α is a linear partial differential operator with

smooth coefficients, then P (∂, x)f is also an infinitely differentiable function.

A function f : Ω → E defined on an open subset Ω of the complex plane C is said to be
holomorphic if, for each z0 ∈ Ω, there exists r > 0 and a sequence (an)n ∈ E such that
f(z) =

∑∞
n=0 an(z − z0)n for each z ∈ B(z0, r). The space of holomorphic functions with values

in E is denoted by H (Ω, E). If the space E is locally complete, a function f ∈ C∞(Ω, E)
belongs to H (Ω, E) if and only if f satisfies the Cauchy Riemann equations. Analogously one
can define the space of vector-valued harmonic functions h(Ω, E) as the vector valued kernel of
the Laplacian. Several variables vector-valued holomorphic and harmonic functions are defined
in a natural way.
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If Ω is a domain and E is locally complete, then the spaces C∞(Ω, E) (resp. H (Ω, E), h(Ω, E) )
and C∞(Ω)εE (resp. H (Ω)εE, h(Ω)εE) can be canonically identified via the map f → Tf (u) :=
u ◦ f, u ∈ E′. This is a consequence of [11, Prop. 2]. The result was well-known when E is
quasicomplete, see e.g. [24, 26, 34]

2.3. Sheaves. We recall now the definition of topological sheaf. We refer the reader to [5,
Section 1] or [34, Chapter V, Section 2] for more details and examples.

Definition 1. Let Ω be an open set in RN . F is called a sheaf over Ω of locally convex spaces
if it satisfies the following properties:

(a) For each open subset U of Ω there is a locally convex space F (U) such that F (∅) := {0}
and there are continuous linear maps (called restrictions) ρU,V : F (U) → F (V ) if V ⊆ U

such that ρU,W = ρV,W ◦ ρU,V whenever W ⊆ V ⊆ U .
(b) If ω ⊆ Ω is open and ω is the union of open subsets {U : U ∈ U }, then F (ω) is the

projective limit of (F (U), ρω,U )U∈U . In particular, for each family {fU ∈ F (U), U ∈ U }
satisfying ρU,U∩V (fU ) = ρV,U∩V (fV ), U, V ∈ U , there is a unique f ∈ F (ω) with
ρω,U (f) = fU for each U ∈ U .

Remark 2. The Open Mapping Theorem for (LB) spaces yields that if F is a sheaf over Ω of
distinguished Fréchet spaces and {Un : n ∈ N} is a countable covering by open subsets of an
open subset ω of Ω then F (ω)′ = indnF (Un)′, the inductive limit taken with respect to the
transpose of the restrictions.

In the sequel we will omit of locally convex spaces when we refer to a sheaf. Our main example is
the sheaf C∞(Ω) of infinitely differentiable functions over a domain Ω: for every open set U ⊆ Ω
the vector space C∞(U) is the vector space of all infinite differentiable functions defined on U .
Here the ρU,V are simply the restrictions. By a closed subsheaf of C∞ over Ω we mean a sheaf
F satisfying that each F (ω) ⊆ C∞(ω) is closed for each ω ⊆ Ω open. The restriction maps are
the same. All these sheaves are Fréchet Schwartz sheaves; by this we mean with this that F (ω)
is a Fréchet Schwartz space for each ω ⊆ Ω open. We remark that some of the results which
we offer could be formulated in a more abstract way in order to include other Fréchet-Schwartz
sheaves of functions over Ω, like the ultradifferentiable functions of Beurling type.

Vector valued sheaves are defined using ε-products e.g. in [5, 1.4]. Let Ω be a domain in RN

and C∞ be the sheaf of the infinite differentiable functions. Let P1(∂, x), ..., Pm(∂, x) be linear
partial differential operators with smooth coefficients on Ω. Let Pω : C∞ → (C∞)m defined by

Pω : C∞(ω) → C∞(ω)m, f 7→ (P1(∂, x)f, . . . , Pm(∂, x)f), ω ⊆ Ω

open. For a locally complete space E and ω ⊆ Ω we consider the maps

Pωεid : C∞(ω)εE → C∞(ω)mεE.

These maps define a morphism in the category of sheaves of vector spaces over Ω. Moreover,
the maps

ker(Pω)εE = ker(Pωεid) → {f ∈ C∞(ω,E) : P1(∂, x)f = · · · = Pm(∂, x)f = 0},
T 7→ fT , fT (x) = T (δx), x ∈ ω,
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define an isomorphism of sheaves. These remarks lead to the following definition.

Definition 3. Let Ω be a domain in RN , let F be a closed subsheaf of C∞ over Ω, and let E

be a locally complete space. Then the sheaf defined by

F (ω,E) := {x 7→ T (δx) : T ∈ F (ω)εE}, ω ⊆ Ω open,

is called the sheaf of F−functions with values in E.

This definition is coherent with the usual definition of the vector valued sheaves of holomorphic
and harmonic functions with values in a locally complete locally convex space E by the remarks
at the end of the former subsection. The coherence of this definition, which in principle could
seem more restrictive, is also obtained as a direct consequence of Theorem 9 below. Observe
that in the case of spaces of holomorphic or harmonic functions F on Ω, the spaces are closed
subsheaves of the sheaf C of continuous functions on Ω. Equivalently, since all the spaces are
Fréchet, the spaces C (ω) and C∞(ω) induce the same topology on F (ω) for each ω ⊆ Ω open.
The same holds for sheaves defined by kernels of hypoelliptic linear partial differential operators
with constant coefficients. The following definitions are needed to formulate precisely the first
problem we want to deal with.

Definition 4. A set M ⊆ Ω × NN
0 is called a set of uniqueness for F (Ω) if g ∈ F (Ω) van-

ishes whenever ∂αg(x) = 0 for all (x, α) ∈ M , i.e. whenever span {δx ◦ ∂α : (x, α) ∈ M} is
σ(F (Ω)′, F (Ω))-dense.

Definition 5. If M ⊆ Ω × NN
0 is a set of uniqueness for F (Ω) and G ⊆ E′ is a separating

subspace, we define FG(M, E) as the space of all f : M → E such that for each u ∈ G there
is fu ∈ F (Ω) with ∂αfu(x) = u ◦ f(x, α), (x, α) ∈ M . Since M is supposed to be a set of
uniqueness for F (Ω) the functions fu are unique.

With the notation established so far, the first extension problem to be considered in this paper
reads as follows: When is the (injective) restriction map

RM,G : F (Ω, E) → FG(M, E), f 7→ (∂αf(x))(x,α)∈M

surjective?

3. Extension of vector-valued functions

In the sequel E denotes a locally complete locally convex space, Ω an open and connected subset
of RN , F a closed subsheaf of C∞ over Ω and F (Ω, E) the corresponding sheaf of functions
with values in E. F (Ω) is an (FS) space since it is supposed to be closed in C∞(Ω). According
to [2], a subspace G ⊆ E′ is said to determine boundedness if every σ(E, G) bounded subset of
E is also bounded in E. Clearly, if G ⊆ E′ determines boundedness in E′, then G is separating,
hence dense in (E′, σ(E′, E)). The following lemma is very important in the rest of the article.
It states known results in a way which is suitable for the applications we have in mind.

Lemma 6. (a) If T ∈ L(E, F ) there exists a (unique) extension T lc ∈ L(Elc, F lc) of T to
the local completions.
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(b) If Y is a Fréchet Schwartz space and X is a subspace of the (DFS) space Y ′, then
X

lc = X
Y ′.

(c) If E is a locally convex space and t is an admissible topology, i.e. σ(E, E′) ≤ t ≤
τ(E,E′), then (E, t)lc = Elc algebraically. In particular, if E is locally complete then E

equipped with an admissible topology is also locally complete.

Proof. Part (a) is exactly [35, 5.1.25]. Part (b) is a consequence of Raikov’s theorem [35,
8.5.28]. It is enough to show that X

lc is closed in Y ′. Since Y ′ is a Fréchet Schwartz space, we
have Y ′ = indnGn, Gn a Banach space and the linking maps Gn → Gn+1 are compact for each
n ∈ N. Since X

lc is locally closed by [35, 5.1.17], it intersects each Gn in a closed subset of Gn.
We can apply Raikov’s theorem [35, 8.5.28] to conclude that X

lc is closed in Y ′. Part (c) follows
from [35, 5.1.6 and 7], since

(E, τ(E, E′))∧ ↪→ (E, t)∧ ↪→ (E, σ(E, E′))∧

and all the admissible topologies have the same bounded sets. 2

In the rest of the article we will make the following natural identification: Suppose that X is a
dense locally convex subspace of the dual Y ′ of a Fréchet Schwartz space Y . Since Y is reflexive,
we consider Y as an algebraic subspace of X∗. In fact Y is the set of all elements of the dual
X∗ of X which are continuous on X for the topology induced by Y ′. In case no locally convex
topology is mentioned on X, we endow it with the finest locally convex topology, which makes
any linear mapping T : X → E continuous for an arbitrary locally convex space E. In this case
T t acts from E′ into X?.

Proposition 7. Let Y be a Fréchet Schwartz space, let X ⊆ Y ′ be a dense subspace and let
E be a locally complete space. If T : X → E is a linear map then the following conditions are
equivalent:

(i) There is a (unique) extension T̂ ∈ L(Y ′, E) of T .
(ii) T t(E′) ⊆ Y (= Y ′′).
(iii) (T t)−1(Y ) (= {u ∈ E′ : u ◦ T ∈ Y }) determines boundedness in E.

Proof. Trivially (i) implies (ii) and (ii) implies (iii). Clearly, the map T : (X,σ(X, Y )) →
(E, σ(E, (T t)−1(Y ))) is always continuous. If we assume (iii), the space (E, σ(E, (T t)−1(Y ))) is
locally complete. Lemma 6 yields that the local completion of (X,σ(X,Y )) is (Y ′, σ(Y ′, Y )) and
hence we obtain a unique continuous linear extension T̂ : (Y ′, σ(Y ′, Y )) → (E, σ(E, (T t)−1(Y ))).
Now, Y ′ endowed with its strong topology is a bornological space and T̂ : Y ′ → E maps bounded
sets in Y ′ into bounded sets in E. Hence T̂ is continuous. 2

Corollary 8. Let Y be a Fréchet Schwartz space, E a locally complete space, T ∈ L(Y ′, E)
and F a locally closed subspace of E. If there exists a separating subspace X of Y ′ such that
T (X) ⊆ F then T ∈ L(Y ′, F ).

Proof. The restriction T : X → F is continuous, hence there is a unique extension T lc : X lc →
F lc = F . Now Y ′ = X lc by Lemma 6 (b), so T = T lc. 2
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Theorem 9. Let F be a closed subsheaf of C∞ over a domain Ω ⊆ RN , let M be a set of unique-
ness for F (Ω), let G be a subspace of the dual of a locally complete space E which determines
boundedness. Then the restriction map RM,G from F (Ω, E) to FG(M, E) is surjective.

Proof. Let f ∈ FG(M,E). The space X := span{δx ◦ ∂α : (x, α) ∈ M} is a (weak?) dense
subspace of the dual of the Fréchet Schwartz space Y := F (Ω). Let the linear map T : X → E

be determined by T (δx◦∂α) := f(x, α), (x, α) ∈ M . Since G is σ(E′, E)-dense, T is well-defined.
Let u ∈ G and fu the unique element in F (Ω) with ∂αfu(x) = u ◦ T (δx ◦ ∂α), (x, α) ∈ M . We
can consider fu as a linear form on X, so we obtain u ◦ T ∈ F (Ω) = Y for all u ∈ G, hence
(T t)−1(Y ) determines boundedness in E. By Proposition 7, there is an extension T̂ ∈ F (Ω)εE
of T . Putting f̂(x) := T̂ (δx), x ∈ Ω, we get that RM,G(f̂) = f . 2

In particular, Theorem 9 shows that if f : Ω → E is a function such that u ◦ f ∈ F (Ω) for each
u ∈ E′ then there exists T : F (Ω)′ → E such that f(x) = T (δx) for every x ∈ Ω. Therefore, for
Ω ⊆ C N open, one can obtain directly from Theorem 9 the representation H (Ω, E) ' H (Ω)εE
valid for locally complete spaces E (cf. [11, 27]). Moreover, to illustrate the scope of Theorem
9, we mention that it gives a direct proof of the fact that weak-C∞ implies C∞: Let f : Ω → E

be a map into a locally complete space E such that u ◦ f ∈ C∞(Ω) for all u ∈ E′. Theorem 9
shows that f(x) = Tf (δx), x ∈ Ω, with Tf ∈ C∞(Ω)εE. Using the Arzela-Ascoli Theorem the
map S : Ω → C∞(Ω), x 7→ δx, is infinite differentiable, hence f = Tf ◦S is infinite differentiable.
These also applies to holomorphic and harmonic functions. Thus, a general version of Dunford-
Grothendieck Theorem is a simple consequence of the extension result Theorem 9. Also to
illustrate the applicability of Theorem 9 we mention explicitly how to extend two results obtained
in [2] for holomorphic functions with values in Banach spaces E; it is enough to take as F the
sheaf of holomorphic functions.

Corollary 10. (a) Let F be a closed subsheaf of C∞ over a domain Ω ⊆ RN and let E

be a locally complete locally convex space. If G ⊆ E′ determines boundedness in E then
F (Ω, E) is the space formed by the functions f : Ω → E such that u ◦ f ∈ F (Ω) for all
u ∈ G.

(b) (cf. [2, Theorem 3.5, Lemma 3.6]) Let Ω ⊆ C be a domain, A ⊆ Ω a set with an
accumulation point and f : A → E a map such that u ◦ f has an analytic extension to Ω
for each u contained in a subspace G of E′ which determines boundedness on E. Then
there exists f̂ ∈ H (Ω, E) which extends f .

(c) (cf. [2, Theorem 2.2]) Let Ω ⊆ C a domain, let E be a locally complete space, let F be a
locally closed subspace of E and let f ∈ H (Ω, E). Assume that
(i) the set Ω0 := {z ∈ Ω : f(z) ∈ F} has an accumulation point in Ω; or
(ii) there exists z0 ∈ Ω such that ∂kf(z0)

∂zk ∈ F for k = 0, 1, 2 . . .,
then f(z) ∈ F for all z ∈ Ω.

Proof. Part (a) follows from Theorem 9 for M = Ω. Part (b) is a direct consequence of Theorem
9. Part (c) follows from Corollary 8. 2
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In fact, [27, Theorem 3, Theorem 8] are immediate consequences of Theorem 9.

Remark 11. In [2, Theorem 3.5] it is shown that if E is a Banach space and G is a closed and
almost norming subspace of E′, which means that E is a topological subspace of the Banach
space G′, then Corollary 10 (b) holds. Such as that subspace G ⊂ E′ determines boundedness
in E by the Uniform Boundedness Principle. Hence Corollary 10 (b) is a proper extension of
[2, Theorem 3.5]. We include an application of Corollary 10 (b) which can not be deduced
from [2, Theorem 3.5]. Let X, Y be Banach spaces. For x ∈ X and y ∈ Y ′, we denote
δx,y : L(X, Y ) → K, T 7→ y(T (x)). The set G := span{δx,y : x ∈ E, y ∈ F ′} determines
boundedness in L(X,Y ) endowed with its norm topology. This is a consequence of the Banach-
Steinhaus Theorem. Therefore, as a consequence of Corollary 10 (b), if M is a subset of a
domain Ω ⊆ C with an accumulation point and f : M → L(X,Y ) is a function such that
z 7→ y(f(z)(x)) has a holomorphic extension to Ω for each y ∈ Y ′ and x ∈ X, then f has an
extension f̂ ∈ H (Ω, L(X, Y )), L(X, Y ) endowed with its norm topology. This implies that each
L(X, Y )-valued holomorphic function for the Weak Operator Topology is also holomorphic for
the norm topology.

It is worth remarking that [2, Theorem 1.5] shows that if E is a Banach space, D is the unit disc
in C and G ⊆ E′ is a subspace which does not determine boundedness in E, then there exists a
non continuous function f : D→ E such that u ◦ f ∈ H (D) for all u ∈ G. Hence Theorem 9 is
optimal if we only require M to be a set of uniqueness.

4. Extension of locally bounded functions

Let Ω be a domain in C. A subset M ⊆ Ω is said to fix the topology in H (Ω) (determine local
convergence in [23]) if for all K ⊆ Ω compact there is L ⊆ Ω compact and C ≥ 1 such that

sup
z∈K

|g(z)| ≤ C sup
z∈M∩L

|g(z)| for all g ∈ H (Ω).

Grosse-Erdmann [23] posed the following problem (see the end of section 3 and comments below
the statement of Theorem 2 in the Introduction of [23]): let M ⊆ Ω fix the topology in H (Ω),
let f : M → E be a map such that f(M ∩K) is bounded in E for all K ⊆ Ω compact, assume
that for a separating subspace G of E′, u ◦ f has a holomorphic extension to Ω for every u ∈ G.
Does f have a holomorphic extension to Ω? Gramsch [21] proved that this result is true if
G

β(E′,E) = E′, which clearly includes the case that E is semireflexive (cf. [27, Theorem 6]).
His result inspired Grosse-Erdmann to study this problem and he gave a positive solution for
spaces E being Br-complete. We give below a unified proof of these two cases, and show that
the answer to the problem is in general negative.

The following definitions are needed to pose the problem in a more abstract form.

Definition 12. Let Y be a Fréchet space. An increasing sequence (Bn)n∈N of bounded subsets
of Y ′ fixes the topology in Y if (B◦

n)n∈N is a fundamental system of zero neighbourhoods of Y .
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Definition 13. Let Ω be a domain in RN , let F be a closed subsheaf of C∞ over Ω. A subset
M of Ω× NN

0 fixes the topology in F (Ω) if for every compact K ⊆ Ω and every k ∈ N there is
a compact L ⊆ Ω, l ∈ N and C ≥ 1 such that

sup{|∂αg(x)| : x ∈ K, |α| ≤ k} ≤

C sup{|∂αg(x)| : x ∈ L, |α| ≤ l, (x, α) ∈ M}

for all g ∈ F (Ω).

In case of the space holomorphic functions on Ω ⊆ C the subsets M ⊆ Ω fixing the topology in
H (Ω) can be characterized by a nice geometrical property, as we see below (cf. [25, 2.5.2,2.6.8]).

Remark 14. (a) Let Ω ⊆ CN be a pseudo-convex domain. Then M ⊆ Ω fixes the topology in
H (Ω) if and only if the H (Ω)-hulls K̂ ∩MΩ, K ⊆ Ω compact, are a fundamental system of
the compact subsets of Ω.

(b) If Ω ⊆ C is a domain, then it is pseudoconvex and the H (Ω)-hull of a compact subset L ⊆ Ω
is the union of L with the relatively compact components of Ω \ L. Hence M ⊆ Ω fixes the
topology in H (Ω) (equivalently in h(Ω)) if and only if there is a fundamental sequence (On)n of
Ω of relatively compact open sets On with ∂On ⊆ On+1 ∩M

(c) In case of Y := H (Ω) and M ⊆ Ω fixing the topology in Y , the constant C in Definition 13
can be taken 1, because the powers of holomorphic functions are holomorphic.

Let (Ln)n be a fundamental sequence of compact (or relatively compact open) subsets of Ω. Let
M ⊆ Ω × NN

0 . Denote Mn := {(x, α) ∈ M : x ∈ Ln, |α| ≤ n} and Bn := {δx ◦ ∂α : (x, α) ∈
Mn} ⊆ F (Ω)′. Observe that a set M fixes the topology in F (Ω) in the sense of definition 13 if
and only if the sequence (Bn)n fixes the topology in F (Ω) in the sense of Definition 12. This
notation will be used in the rest of the article.

Let M ⊆ Ω×NN
0 fix the topology in F (Ω) and let G be a separating subspace of E′. We define

FG(M, E)lb := {f ∈ FG(M, E) : f(Mn) is bounded in E for n ∈ N}.

Observe that RM,G(f) belongs to FG(M, E)lb for each f ∈ F (Ω, E). Using this terminology,
our problem reads as follows: Let F (Ω) be a closed subsheaf of C∞ over Ω, let M ⊆ Ω×NN

0 be
a set which fixes the topology in F (Ω) and let G ⊆ E′ be a separating subspace. Is the (injective)
restriction map

RM,G : F (Ω, E) → FG(M, E)lb, f 7→ (∂αf(x))(x,α)∈M

surjective?

Lemma 15. Let Y be a Fréchet Schwartz space, let (Un)n∈N be a zero basis for Y , and let
X ⊆ Y ′ be a sequentially dense subspace. If T : X → E is a linear map into a locally convex
space E then

(∗)
⋂

n∈N
span((T t)−1(Un)

σ(E′,E)
) ⊆ (T t)−1(Y ).
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Proof. It is clear that the space defined in the left side of (*) does not depend on the choice
of the zero basis. Let Y be the reduced projective limit of a sequence (Gn)n∈N of reflexive
Banach spaces such that there are compact linking maps Pn+1,n : Gn+1 → Gn with dense
range. We denote by Pn the induced map from Y to Gn. Then Y ′ = indnG′

n is the injective
inductive limit of an increasing sequence of reflexive Banach spaces with compact inclusions
in,n+1 : G′

n ↪→ G′
n+1, where in,n+1 := (Pn+1,n)t. Using the Grothendieck factorization theorem

[32, 24.33] and the sequential density of X it is easy to see that we can assume that Xn := G′
n∩X

is dense in G′
n for each n ∈ N. Let Bn be the unit ball of Gn. The sets Un := P−1

n (Bn), n ∈ N
form a fundamental system of zero neighbourhoods in Y . We can even assume that they form
a zero basis. Take u ∈ ⋂

n∈N span((T t)−1(Un)
σ(E′,E)

). For each n ∈ N there is λn+1 ≥ 1 with

u ∈ λn+1(T t)−1(Un+1)
σ(E′,E)

. So, there is a net (un
α)α∈I ⊆ E′ with un

α ◦ T ∈ λn+1Un+1, α ∈ I,

such that (un
α ◦ T (x))α∈I converges to u ◦ T (x) for all x ∈ X. By the very definition of the

Un, for each α ∈ I there exists vn
α ∈ Y such that Pn+1(vn

α)(x) = un
α ◦ T (x) for each x ∈

Xn+1 and Pn+1(vn
α) ∈ λn+1Bn+1. Using now the compactness of Pn+1,n, there is a subnet

(Pn(vn
σ(β)))β∈J of (Pn(vn

α))α∈I = (Pn+1,n(Pn+1(vn
α))α∈I such that (Pn(vn

σ(β)))β∈J converges in
the Banach space Gn to gn. But for each x ∈ Xn ⊆ Xn+1 and for each α ∈ I we have
Pn(vn

α)(x) = Pn+1(vn
α)(in,n+1(x)) = un

α ◦ T (x). Then gn(x) = u ◦ T (x) for each x ∈ Xn and for
each n ∈ N. The density of Xn in G′

n yields Pn+1,n(gn+1) = gn for each n ∈ N. This means
precisely u ∈ (T t)−1(Y ). 2

Theorem 16. Let Y be a Fréchet Schwartz space, let (Bn)n∈N fix the topology in Y , and let
T : X := span(∪{Bn : n ∈ N}) → E be a linear map into a locally complete space E which is
bounded on each Bn. If
a) (T t)−1(Y ) is strongly dense in E′ or if
b) (T t)−1(Y ) is weak?-dense in E′ and E is Br-complete,
then T has a (unique) extension T̂ ∈ Y εE.

Proof. 1) If Vn := T (Bn)◦, Un := B◦
n, we obtain Vn ∩ (T t)−1(Y ) ⊆ (T t)−1(Un), n ∈ N. We

apply lemma 15 to get

(?)
⋂

n∈N
span(Vn ∩ (T t)−1(Y )

σ(E′,E)
) ⊆ (T t)−1(Y ).

2) In view of Proposition 7 it is enough to show that E′ = (T t)−1(Y ). Now the case a) is trivial,
since the Vn are strong zero neighbourhoods and (T t)−1(Y ) is β(E′, E)-dense. In the case of b)
we have to show that (T t)−1(Y ) is nearly closed, i.e. the weak?-closure of the intersection of it
with an equicontinuous set is contained in it. But this follows from the fact that each Vn absorbs
equicontinuous sets, since they are strong zero neighbourhoods. Then, for each 0-neighbourhood
U in E, U◦ ∩ (T t)−1(Y ) ⊆ span (Vn ∩ (T t)−1(Y )) for each n ∈ N. Taking weak star closures the
conclusion is easily obtained. 2
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Analyzing the previous proof we see that it is enough (instead of a) or b)) to ensure that
(T t)−1(Y ) is weak? dense and has, in addition, the following property: for each decreasing se-
quence (Vn)n∈N of strong zero neighbourhoods in E′ with (?), one has (T t)−1(Y ) = E′.

Theorem 17. If M ⊆ Ω × NN
0 fixes the topology in F (Ω) and G ⊆ E′ is separating, then the

restriction map RM,G from F (Ω, E) to FG(M, E)lb is surjective in the following two cases:
(a) E is a Br-complete space or

(b) E is locally complete and G is strongly dense.

Proof. Let f ∈ FG(M,E)lb. There exists fu ∈ F (Ω) such that u ◦ f(x, α) = ∂αfu(x) for
each (x, α) ∈ M and for each u ∈ G. Then the linear map T : span ∪n Bn → E defined by
T (δx ◦ ∂α) = f(x, α) is well defined and bounded on each Bn. The conclusion follows applying
Theorem 16 to T . 2

From Theorem 17 we obtain a general positive solution for the problem of Wrobel, valid for the
harmonic case. That is, if f : Ω → E is a locally bounded function such that u◦f is holomorphic
or harmonic for each u ∈ G ⊆ E′ separating then f is holomorphic or harmonic. This can be
applied to the following concrete result:

Let H be a complex Hilbert space. For x, y ∈ H we consider the continuous linear mappings
δx,y : L(H) → C, T 7→ 〈Tx, y〉. The subspace G1 := span{δx,y : x, y ∈ H} ⊆ L(H)′ determines
boundedness in L(H). This can be easily checked using the Banach-Steinhauss Theorem (see
Remark 11). The subspace G2 = span{δx,x : x ∈ H} ⊆ L(H)′ also determines boundedness.
This can be proved observing that every T ∈ L(H) can be decomposed as the sum of the two
self-adjoint operators 1

2(T + T ∗) and 1
2i(T −T ∗) and that, for every u ∈ G1 there is v ∈ G2 such

that for every A ∈ L(H) self-adjoint u(A) = v(A) (see [32, p.88],[16]). Given an orthonormal
basis (ei)i∈I in H, the subspace G3 = span{δei,ej : i, j ∈ I} ⊆ L(H)′ is σ(L(H)′, L(H)) dense.
Then, in view of Corollary 10 (a) and Example 29 (a), given Ω ⊆ C open and f : Ω → L(H) the
following assertions are equivalent:

(1) f ∈ h(Ω, L(H)),
(2) u ◦ f ∈ h(Ω) for each u ∈ G1,
(3) u ◦ f ∈ h(Ω) for each u ∈ G2,
(4) f is locally bounded and u ◦ f ∈ h(Ω) for each u ∈ G3.

This extends [16, Lemma 1] and hence contradicts Example 1 and the previous assertion in
[16]. Grosse-Erdmann [23, Remark 1 (d)] had already observed that [16, Example 1] was not
correct. We also remark that if H is a real Hilbert space then the space G2 could be not even
σ(E′, E)-dense (cf.[32, Example 16.19]).

As an immediate consequence of Theorem 17, we obtain the following result, which is valid
for harmonic and several variable holomorphic functions and extends [21, Satz 3.3] and [23,
Theorem 2]. By a closed subsheaf F of C∞ over Ω satisfying the maximum principle we mean
that maxz∈K |f(z)| = maxz∈∂K |f(z)| for each f ∈ F (Ω) and for each K ⊆ Ω compact.

Corollary 18. Let F (Ω) be closed in C (Ω) and satisfy the maximum principle, let (On)n be a
fundamental sequence of relatively compact subdomains of Ω, ∂On ⊆ M ∩On+1 for each n. If



12 JOSÉ BONET, LEONHARD FRERICK, AND ENRIQUE JORDÁ

f : M → E is a function such that f(M ∩K) is bounded in E for each compact subset K of
Ω and u ◦ f admits an extension fu ∈ F (Ω) for each u ∈ G ⊆ E′, then f admits an extension
f̂ ∈ F (Ω, E) whenever E is Br-complete and G is separating (i.e σ(E′, E)-dense) or E is locally
complete and G is β(E′, E)-dense.

If G ⊆ E′ determines boundedness in a locally complete space E then (E, σ(E, G)) is a locally
complete space. Moreover, if S ⊆ E′ is dense in G for the strong topology β(E′, E) then it is
also dense for the β(G,E) topology, since these two topologies coincide on G. This observation
together with Corollary 10 (a) yield the next result, which is relevant when E = X ′, X a Banach
space and G a dense subspace of X ⊆ E′′.

Remark 19. Theorem 17 and Corollary 18 remain true if E is locally complete and G
β(E′,E)

determines boundedness in E.

The next example shows that Corollary 18 is not true if E is only assumed to be locally complete
and G is σ(E′, E)-dense.

Example 20. (a) Let Ω = C, M := ∪nγn, where γn := {neit : t ∈ [0, 2π) ∩Q}. Then there
is a function f : M → ⊕n∈Nl1 such that f(γn) is bounded for each n ∈ N and there exists
a weak∗-dense subspace G ⊆ (⊕n∈Nl1)′ such that u ◦ f admits holomorphic extension to
Ω for each u ∈ G but f is not continuous.

(b) Let Ω = C, M := ∪nγn, where γn := {neit : t ∈ [0, 2π)}. Then there is a function
f : M → ⊕n∈Nl1(γn) such that f(γn) is bounded for each n ∈ N and there exists a
weak∗-dense subspace G ⊆ (⊕n∈Nl1(γn))′ such that u ◦ f admits a holomorphic extension
to Ω for each u ∈ G but f is not continuous.

Proof. We show the statement (a). The proof of part (b) is analogous. Take an enumeration
γn := {zn

i : i ∈ N}. First we observe that the linear mapping T : ⊕nl1 → H (C)′, (αn)n∈N 7→∑∞
n=1

∑∞
i=1 αn

i δzn
i

is continuous and injective. The continuity is easily obtained from the fact
that each γn is relatively compact, and then T maps bounded sets in the bornological space ⊕nl1

to bounded sets in H (C)′. To see that it is injective we suppose that there exists a non trivial
sequence (αn)n in ⊕nl1 such that u :=

∑∞
n=1

∑∞
i=1 αn

i δzn
i

= 0. in H (C)′. Fix n0, i0 ∈ N such
that αn0

i0
6= 0 and αn

i = 0 for each n > n0 and for each i ∈ N. We enumerate the double sequence
(αn

i δzn
i
) by (αkδzk

)k. We assume without loss of generality that α1δz1 = αn0
i0

δz
n0
i0

. Take k0 ∈ N
such that

∑
k≥k0

|αk| ≤ |α1|/3. The function f(z) := ((z + z1)/2z1) satisfies that f(z1) = 1
and |f(zk)| < 1 for each k > 1. We get j ∈ N such that |∑k0

k=2 αkf
j(zk)| < |α1|/3. Thereby

|u(f j)| > |α1/3|, a contradiction.

We denote E := ⊕nl1. We return to the first enumeration of each γn. Now we define f : M =
∪nγn → E, zn

i 7→ (αj)j , each αj ∈ l1 being the zero sequence except αn which has the i-th
coordinate 1 and zero all the others. It is clear that f is not continuous because the difference in
the l1-norm ‖f(zn

i )− f(zn
j )‖ = 2 for i 6= j and n ∈ N. It is also clear that f(γn) is bounded in E

for each n ∈ N. Now the injectivity and continuity of T yields that G := {g ◦ T : g ∈ H (C)} is
a σ(E′, E)-dense subspace of E′. To conclude we observe that for each g ∈ H (C), the function
g ◦ T ◦ f : M → C can be extended to g ∈ H (C). 2
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Remark 21. (i) It is clear that the functions in the above example can not be extended
holomorphically to C. Therefore, this example solves Grosse-Erdmann’s extension prob-
lem in the negative. Further, the linear mapping T in the given proof solves problems
(a) and (b) in [23] also in the negative. In fact, T can not be surjective because it is an
injective continuous linear mapping between two (LB) spaces and H (C)′ is Montel but
⊕nl1 is not.

(ii) Example 20 contradicts [2, Corollary 3.7]. In fact, if we set Γn := ∪1≤k≤nγk, Vn :=
B(0, n + 1) the open ball in C of radius n + 1 centered at zero for n ∈ N, E := ⊕k∈Nl1

and we consider the Banach space En := ⊕1≤k≤nl1 endowed with its natural norm defined
as the sum of the norms in l1 of the components of the vectors, then the restriction

f |Γn : Γn → En+1

is a function such that f(Γn) is contained in the unit ball of En+1 for all n ∈ N. The
restriction of T to each En is continuous. Hence, for all n ∈ N,

G := {g ◦ T |En+1 : g ∈ H (C)}
is a σ(E′

n+1, En+1) dense subspace of E′
n+1 such that, for each g ∈ H (C), g◦T |En+1◦f |Γn

admits the holomorphic extension g|Vn to Vn and

sup
z∈Vn

|g(z)| ≤ sup
z∈γn+1

|g(z)| ≤ sup
e∈BEn+1

|g ◦ T |En+1(e)| = ‖g ◦ T |En+1‖E′n+1
.

[2, Corollary 3.7] would imply that f |Γn could be extended holomorphically to fn ∈
H (Vn, En+1), but f |Γn is not continuous.

(iii) Corollary 18 implies that [2, Corollary 3.8] is true, even for several variable holomorphic
functions.

5. Wolff type results

The main tool in the proof of Grosse-Erdmann theorem [23, Theorem 1] is Wolff’s theorem [40],
which we state now in a more functional analytic way, as it is done in the preliminaries of [23]:
If Ω ⊆ C is a domain, for each u ∈ H (Ω)′ there exists a sequence (zi)i which is relatively
compact in Ω and a sequence (αi)i ∈ l1 such that u =

∑∞
i=1 αiδzi . Our goal in this section is

to obtain similar representations for dual spaces F ′(Ω) of closed subsheaves of C∞(Ω) and to
derive extension results from these representations. For further information about extensions of
Wolff original result we refer to [33, sections 5.7.8 and 5.8], [39] and the references quoted there.

Let Y be a Fréchet Schwartz space and let (Bn)n be an increasing sequence of bounded subsets
of Y ′. We introduce a notation which will be useful in the rest of the article. We denote, for
n ∈ N, by l1(Bn) the Banach space of all summable families with index set Bn. The linear map

jn : l1(Bn) → Y ′
β, jn((α(b))b∈Bn) :=

∑

b∈Bn

α(b)b,

is well defined and continuous. We denote by Y ′(Bn) the image of the map jn endowed with
the quotient norm. Clearly Y ′(Bn) is a Banach space which is continuously embedded in Y ′

β.
Finally we set Y ′((Bn)n∈N) := indnY ′(Bn), which is an (LB)-space continuously included in Y ′

β.
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Remark 22. Let Y be a Fréchet Schwartz space. If (Bn)n is an increasing sequence of bounded
sets of Y ′, E is a locally complete locally convex space and T : span(∪nBn) → E is a linear map
such that T is bounded on each Bn and (T t)−1(Y ) is σ(E′, E)-dense, then there exists a unique
continuous linear extension Ti : Y ′((Bn)n) → E. Compare with Theorem 16.

In view of this remark, our extension problem has a positive solution whenever (Bn)n is an
increasing sequence of bounded sets of Y ′ such that Y ′((Bn)n∈N) = Y ′

β topologically. We char-
acterize now these sequences of bounded sets.

Proposition 23. Let Y be a nuclear Fréchet space with an increasing fundamental system
(‖ · ‖n)n∈N of seminorms, and let (Bn)n∈N an increasing sequence of bounded sets of Y ′. Then
the following assertions are equivalent:

(i) Y ′((Bn)n∈N) = Y ′
β .

(ii) For every µ ∈ Y ′ there is n ∈ N, (µν)ν∈N ∈ BNn , and (λν)ν∈N ∈ l1 such that

µ =
∞∑

ν=1

λνµν .

(iii) For every k ∈ N there is n ∈ N, (µν)ν∈N ∈ BNn , and a decreasing zero sequence (εν)ν∈N
such that

‖f‖k ≤ sup
ν∈N

εν |µν(f)|

for every f ∈ Y.

Proof. (i) and (ii) are equivalent by the open mapping theorem.
For k ∈ N, let Ck denote the polar of the unit ball of the k-th seminorm. We denote by E′

k

the Banach space spanned by Ck. Assume (i). By Grothendieck’s factorization theorem the
inductive spectra of Y ′((Bn)n∈N) and that of Y ′

β are equivalent. Since Y is nuclear there is
n ∈ N such that the inclusion ik,n : E′

k → Y ′(Bn) is nuclear. Now we observe the following two
facts, which can be easily checked:

a) Let E be a Banach space and let I be an index set. If S : E → l1(I) is a nuclear linear
map and B is the unit ball of E then there exists β = (β(i))i∈I ∈ l1(I) such that

S(B) ⊆ {(λ(i))i∈I : |λ(i)| ≤ |β(i)|, i ∈ I}.

b) If E is a Banach space, F is a Hausdorff quotient of a Banach space G and T : E → F

is a nuclear linear map then there exists a nuclear linear map S : E → G such that
T = p ◦ S, where p is the quotient map.

We apply a) and b) to ik,n to obtain (µν)ν∈N ∈ BNn and (βν)ν∈N ∈ l1 such that

Ck ⊆ {
∞∑

ν=1

λνµν : |λν | ≤ βν , ν ∈ N}.
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If we choose a decreasing zero sequence (εν)ν∈N such that C :=
∑∞

ν=1 |βν

εν
| < ∞, we obtain

‖f‖k ≤ sup{
∞∑

ν=1

λνµν(f) : |λν | ≤ βν , ν ∈ N}

≤ C sup
ν∈N

εν |µν(f)|

for every f ∈ Y.

Assume now (iii) and fix k ∈ N. Then Ck is contained in the closure D of the absolutely convex
hull of {ενµν : ν ∈ N} and from [35, 3.2.13] we get that D = {∑∞

ν=1 λνενµν :
∑∞

ν=1 |λν | ≤ 1}.
This shows (ii). 2

Remark 24. (a) Nuclearity plays an important role in the proof of the equivalence between (ii)
and (iii), but (i) and (ii) are equivalent for distinguished Fréchet spaces. In our setting, F (Ω)
is a nuclear space because it is a subspace of C∞(Ω).

(b) Notice that if Y ′((Bn)n∈N) = Y ′
β holds then (Bn)n fixes the topology in the Fréchet Schwartz

space Y , because the polar of the unit ball of Y ′(Bn) in Y coincides with the polar of Bn for
each n ∈ N. Example 20 together with Remark 21 (i) show that (Bn)n fixing the topology in Y

is not enough to have the equality Y ′((Bn)n∈N) = Y ′.

To obtain concrete examples about Wolff descriptions we introduce the following notation. Let
F be a closed subsheaf of C∞ over an open set Ω ⊆ RN and let U ⊆ V ⊆ Ω open sets. If
B ⊆ F (U)′ we denote B|F (V ) := {u ◦ ρV,U : u ∈ B} = (ρV,U )t(B) ⊆ F (V )′.

Lemma 25. Let F be a closed subsheaf of C∞ over an open domain Ω ⊆ RN , let (Un)n be an
increasing covering of Ω by open subsets, and let (Bn

j )j ⊆ F (Un)′ be a sequence of bounded sets
which fixes the topology in F (Un) for n ∈ N. Assume also that (Bn

j )|F (Un+1) ⊆ Bn+1
j and that

Bn := ∪j(Bn
j )|F (Ω) is bounded in F (Ω)′ for each n ∈ N. Suppose that T : span(∪nBn) → E is

a linear mapping into a locally complete space E such that (T t)−1(F (Ω)) is separating and that,
for all n ∈ N, there exists a Banach space En ↪→ E continuously embedded such that T (Bn) is
bounded in En. Then there exists an extension T̂ ∈ F (Ω)εE of T .

Proof. First we observe that span(∪nBn) is dense in F (Ω)′ and then (T t)−1(F (Ω)) is mean-
ingful. This can be easily deduced from the description F (Ω) as a projective limit of the
spaces F (Un) with respect to the restrictions, using the density of span ∪j (Bn

j ) in F (Un)′.
For n ∈ N, we define Tn : span(∪jB

n
j ) → En, µ 7→ T (µ|F (Ω)). By the construction, we

have that Tn(Bn
j ) is bounded in En for each j ∈ N and the subspace Hn := (T t

n)−1(F (Un))
of E′

n contains (T t)−1(F (Ω))|En . Hence Hn is σ(E′
n, En) dense. Theorem 16 b) implies that

there exists a continuous linear extension T̂n : F (Un)′ → En ↪→ E of Tn. We observe that
T̂n+1 ◦ (ρUn+1,Un)t|span∪jBn

j
= Tn and that span∪j Bn

j is dense in F (Un)′ for each n ∈ N. There-

fore, we apply Remark 2 to define T̂ : F (Ω)′ = indnF (Un)′ → E by T̂ (b) = T̂n(b) whenever
b ∈ F (Un)′. T̂ is the desired extension of T . 2

The following abstract Wolff type result is now a consequence of the previous extension lemma.



16 JOSÉ BONET, LEONHARD FRERICK, AND ENRIQUE JORDÁ

Theorem 26. Let F be a closed subsheaf of C∞ over an open set Ω ⊆ RN , let (Un)n be an
increasing covering of Ω by open subsets and let (Bn

j )j ⊆ F (Un)′ be a sequence of bounded sets
which fixes the topology in F (Un) for n ∈ N. Assume also that (Bn

j )|F (Un+1) ⊆ Bn+1
j and that

Bn := ∪j(Bn
j )|F (Ω) is bounded in F (Ω)′. Then F (Ω)′ = F (Ω)′((Bn)n∈N) (topologically).

Proof. Set E := Y ′((Bn)n∈N) and En := Y ′(Bn). We consider the inclusion T : span(∪nBn) →
E. Since E ↪→ F (Ω)′ continuously it follows that F (Ω) is σ(E′, E) dense. We apply Lemma 25
to obtain a continuous linear map T̂ : F (Ω)′ → E which extends T . But span(∪nBn) is dense
in F (Ω)′. Hence the continuous inclusion E ↪→ F (Ω)′ is surjective. The topological equality
follows from Proposition 23. 2

We see below that we can obtain Wolff type results for not necessarily increasing coverings by
open sets.

Corollary 27. Let F be a closed subsheaf of C∞ over an open domain Ω ⊆ RN , let (Un)n be
a covering of Ω by open subsets and let (Bn

j )j ⊆ F (Un)′ be a sequence of bounded sets which
fixes the topology in F (Un) for n ∈ N. Assume that Bn := ∪j(Bn

j )|F (Ω) is bounded in F (Ω)′

for each n ∈ N. Then, for each µ ∈ F (Ω)′ there exists (αi)i ∈ l1, k ∈ N and (µi)i ⊆ ∪1≤j≤kBj

such that µ =
∑

i αiµi

Proof. We show that, if U, V are two open subsets of Ω, (BU
j )j is a sequence of bounded subsets

of F (U)′ which fixes the topology in F (U), (BV
j )j is a sequence of bounded subsets of F (V )′

which fixes the topology in F (V ) and we define Cn := BU
n |F (U∪V ) ∪BV

n |F (U∪V ), then (Cn)n is
a sequence of bounded subsets of F (U ∪ V )′ which fixes the topology in F (U ∪ V ). Since F

is a sheaf, F (U ∪ V ) is the projective limit of the spaces F (U) and F (V ) with respect to the
restrictions ρU∪V,U and ρU∪V,V . This implies that a fundamental system of 0-neighbourhoods is
given by the sets

Wn := (ρU∪V,U )−1((BU
n )◦) ∩ (ρU∪V,V )−1((BV

n )◦),

n ∈ N. It is straightforward to show that Wn = C◦
n. Now the conclusion can be obtained by

applying Theorem 26 to the covering (Vn)n of Ω defined by Vn := ∪1≤j≤nUj . 2

From Theorem 26 we have also the following corollary.

Corollary 28. Let F be a closed subsheaf of C∞ over an open domain Ω ⊆ RN . If M ⊆ Ω×NN
0

satisfies that there exists an increasing countable covering (Uk)k of Ω by relatively compact open
sets such that the sets Mn := {(x, α) ∈ M : x ∈ Un, |α| ≤ n} fix the topology in F (Un), n ∈ N,
then F (Ω)′ = F (Ω)′((Bn)n∈N). Hence the restriction map RM,G : F (Ω, E) → FG(M,E)lb is
surjective for each locally complete locally convex space E.

We enumerate below examples satisfying the hypothesis of Corollary 28.

Example 29. (a) F a sheaf of smooth functions which is closed in the sheaf of continuous
functions C over Ω ⊆ RN and M := Ω. For any covering (Uk)k of Ω by relatively
compact open subsets, Mk = Uk fixes the topology in F (Uk).
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(b) The sheaf H of holomorphic functions over Ω ⊆ CN , and M := Ω\K, K ⊆ Ω compact.
For any increasing covering (Uk)k of Ω relatively compact open subsets such that K ⊆ U1

the sets Mk := M ∩ Uk fix the topology of H (Uk) (cf. [23, Corollary 1]).
(c) The sheaf H of holomorphic functions over Ω := CN , N ∈ N, and M := ∪k,n∈NS(0, k−

1/n). For Uk := B(0, k), k ∈ N, the sets Mk := M ∩ Uk fix the topology H (Uk)
(here B(a, r) and S(a, r) denote the ball and the sphere centered and a with radius r

respectively). Example 20 shows that M := ∪kS(0, k) does not satisfy the hypothesis of
Corollary 28 in the one variable case.

We have also the following consequences:

(i) In the three examples above, Corollary 28 can be formulated in the following way. For
each µ ∈ F (Ω)′ there exists k ∈ N, a sequence (zν)ν in Mk and a sequence (αν)ν ∈ l1

such that

µ =
∞∑

ν=1

ανδzν .

Hence, if E is a locally complete space, G is a weak∗ dense subspace of E′ and f : M → E

is a function such that f(M ∩K) is bounded in E for each compact subset K of Ω and
u◦f admits extension in F (Ω) for all u ∈ G then there exists an extension f̂ ∈ F (Ω, E)
of f . We also remark that in (b) and (c) one can take the sheaf of harmonic functions on
Ω ⊆ C instead of the sheaf of holomorphic functions. Thus, we have proper extensions
of [23, Theorem 1, Corollary 1].

(ii) Example 29 (a) and Proposition 23 together imply that for each compact subset K of
the open set Ω ⊂ CN , there exists a decreasing zero sequence of positive numbers (εν)ν

and a relatively compact sequence (zν)ν ⊆ Ω such that, for each f ∈ H (Ω)

sup
z∈K

|f(z)| ≤ sup
ν∈N

εν |f(zν)|.

In case Ω = CN , Example 29 shows that for each K compact there exists k0 ∈ N such
that the sequence (zν)ν can be even taken in ∪1≤k≤k0∪n∈NS(0, k−1/n). Again we remark
that there is no k0 ∈ N such that the sequence above could be taken in ∪k≤k0S(0, k).
This is a consequence of Example 20 and Proposition 23.

Finally, we obtain Wolff type results for closed subsheaves F (Ω, E) of C∞(Ω, E) with E Fréchet.
To do this, we consider in these spaces the natural topology of uniform convergence of the
derivatives on compact subsets of Ω, which makes it a Fréchet space. This topology coincides
with the one endowed by the ε-product F (Ω)εE. We refer to [26, 16.7] for the proof of this fact
for the sheaf of one variable holomorphic functions.

Proposition 30. Let F be a closed subsheaf of C∞ over an open set Ω ⊆ RN . Let (Bn)n be an
increasing sequence of bounded subsets of F (Ω)′ such that F (Ω)′ = F (Ω)′((Bn)n∈N). Let E be
a Fréchet space. For each µ ∈ F (Ω, E)′ there exists a sequence (αk)k ∈ l1, n0 ∈ N, a sequence
(bk)k ⊆ Bn0 and a bounded sequence (vk)k ⊆ E′ such that

µ(f) =
∞∑

k=1

αkbk(vk ◦ f).
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for each f ∈ F (Ω, E).

Proof. The space F (Ω) is nuclear and hence F (Ω) has the Approximation Property. Moreover,
F (Ω) is also separable. Thus, there exists a projective spectrum (Hn)n of separable Hilbert
spaces such that F (Ω) is its reduced projective limit. Let E be the reduced projective limit of
a sequence (En)n of Banach spaces. We have

F (Ω, E) = F (Ω)⊗̂εE = projnHn⊗̂εEn.

We can apply [13, 16.6] to obtain

F (Ω, E)′ = indnH ′
n⊗̂πE′

n.

algebraically. Let µ ∈ F (Ω, E)′. There exists k0 ∈ N such that µ ∈ H ′
k0
⊗̂πE′

k0
. Thereby, there

exists a bounded sequence (hk)k in H ′
k0

↪→ F (Ω)′, a bounded sequence (ek)k in E′
k0

↪→ E and
a sequence (λk)k in l1 such that

µ(f) =
∞∑

k=1

λk(hk ⊗ vk)(f) =
∞∑

k=1

λkhk(vk ◦ f).

Since (hk)k is bounded in F (Ω)′ = F (Ω)′((Bn)n∈N), there exists n0 ∈ N such that (hk)k is
bounded in F (Ω)′(Bn0). Hence we can get a sequence (bi)i ⊆ Bn0 and M > 0 such that, for
each k ∈ N there exists (αk

i )i ∈ l1 such that
∑

i |αk
i | < M and hk =

∑
i α

k
i bi. Therefore, for each

f ∈ F (Ω, E)

µ(f) =
∞∑

k=1

λk(hk ⊗ vk)(f) =
∞∑

k=1

λkhk(vk ◦ f) =
∞∑

k=1

∞∑

i=1

λkα
k
i bi(vk ◦ f).

An enumeration of the double series gives the desired formula. 2

By Example 29 (a), we have that in the sheaf H of holomorphic functions over Ω ⊆ CN , for each
µ ∈ H (Ω, E)′, there exists (αk)k ∈ l1, (vk)k ⊆ E′ bounded and (zk)k ⊆ Ω relatively compact
such that, for each f ∈ H (Ω, E)

µ(f) =
∞∑

k=1

αkvk(f(zk)).
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[27] E. Jordá, Extension of vector-valued holomorphic and meromorphic functions, Bull. Belg. Math. Soc. 12

(2005) 5-21.
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Valencia, E-46071 Valencia, Spain

E-mail address: jbonet@mat.upv.es

Fachbereich C - Mathematik, Bergische Universität Wuppertal, D-42097 Wuppertal, GERMANY

E-mail address: frerick@math.uni-wuppertal.de
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