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Abstract. It is shown that every echelon space λ∞(A), with A an
arbitrary Köthe matrix, is a Grothendieck space with the Dunford-
Pettis property. Since λ∞(A) is Montel if and only if it coincides
with λ0(A), this identi�es an extensive class of non-normable, non-
Montel Fréchet spaces having these two properties. Even though
the canonical unit vectors in λ∞(A) fail to form an unconditional
basis whenever λ∞(A) 6= λ0(A), it is shown, nevertheless, that
in this case λ∞(A) still admits unconditional Schauder decom-
positions (provided it satis�es the density condition). This is in
complete contrast to the Banach space setting, where Schauder
decompositions never exist. Consequences for spectral measures
are also given.

1. Introduction
The class of Banach spaces which are Grothendieck spaces with the

Dunford-Pettis property (brie�y, GDP-spaces) plays a prominent role
in the theory of Banach spaces and vector measures; see Chapter VI
of [15], especially the Notes and Remarks, and [14], for example. Well
known examples of GDP-spaces include L∞, H∞(D), injective Banach
spaces (eg. `∞) and certain C(K) spaces. A sequence {Pn}∞n=1 of
continuous projections on a Banach space X is called a (weak) Schauder
decomposition if:
(S1) PmPn = Pmin{m,n} for all m,n ∈ N,
(S2) {Pnx} converges (weakly) to x for each x ∈ X, and
(S3) Pm 6= Pn for m 6= n.

Usually, a (weak) Schauder decomposition is de�ned in terms of closed
subspaces of X, [10]. We prefer the equivalent operator theoretic def-
inition, [20, 21]. D. Dean showed in [10] that a GDP-space does not
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have any (weak) Schauder decomposition; see also [21, Corollary 8]. As
a consequence, spectral measures in GDP-spaces are of a rather special
nature; they are necessarily countably additive for the operator norm
topology and hence, are trivial, in the sense that they can assume only
�nitely many distinct values, [25].

Suppose now that X is a Fréchet-Montel (locally convex) space. It
follows from the de�nitions (see Section 2) that X is necessarily a
GDP-space. Hence, Schauder decompositions surely exist in many such
spaces X, that is, Dean's result for Banach spaces does not extend
to this class of spaces. Moreover, the Montel property ensures that
all spectral measures in X are necessarily countably additive for the
topology τb in L(X) of uniform convergence on all bounded subsets
of X, [28]; here L(X) denotes the vector space of all continuous linear
operators from X into itself. However, unlike for Banach spaces (where
τb is the operator norm topology), it is surely not the case that all such
spectral measures assume only �nitely many distinct values.

Other than Montel spaces, there seem to be no other known exam-
ples of non-normable Fréchet spaces which are GDP-spaces. One of
our aims in this note is to exhibit a class of such spaces, namely all
Köthe echelon spaces of the kind λ∞(A). Since it is known precisely
when λ∞(A) is Montel, namely whenever λ∞(A) = λ0(A) (c.f. also
Proposition 2.3), this automatically produces a whole class of non-
Montel, non-normable Fréchet spaces which are GDP-spaces. For the
class of Köthe echelon spaces λ∞(A), it also turns out that every spec-
tral measure is τb-countably additive. Indeed, we establish this result
for arbitrary GDP-Fréchet spaces (c.f. Proposition 4.3). Moreover,
via the density condition, we identify a (non-empty!) subclass of the
non-Montel λ∞(A) spaces in which even unconditional Schauder de-
compositions always exist; see Proposition 4.4. This subclass is then
of some interest; it genuinely contrasts the situation for GDP-Banach
spaces. Moreover, in such spaces, the existence of Schauder decomposi-
tions is not �forced� by the rather strong Montel property; it is intrinsic
to the spaces themselves. As a consequence, non-trivial spectral mea-
sures exist (even τb-countably additive), which then allows for a rich
theory of spectral operators in such spaces, [24], [27], [29].

2. Preliminaries
For Fréchet spaces X and Y (always assumed to be locally convex)

we denote the vector space of all continuous linear maps from X into
Y by L(X,Y ); if X = Y , then we simply write L(X). The topology of
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uniform convergence on all �nite (resp. bounded) subsets of X is de-
noted by τs (resp. τb) and Ls(X, Y ) (resp. Lb(X, Y )) denotes L(X, Y )
equipped with the locally convex Hausdor� topology τs (resp.τb). If
Y = C, then Lb(X,C) is also denoted by X ′

β (the strong dual space of
X).

A Fréchet space X is called a Grothendieck space if every sequence in
the dual space X ′ which is convergent for the weak∗ topology σ(X ′, X)
is also convergent for the weak topology σ(X ′, X ′′). A Fréchet space
X is said to have the Dunford-Pettis property (brie�y, DP-property)
if every element of L(X,Y ), for Y an arbitrary quasicomplete locally
convex Hausdor� space, which transforms bounded subsets of X into
relatively weakly compact subsets of Y , also transforms weakly com-
pact subsets of X into relatively compact subsets of Y , [16, pp.633�
634]. Actually, it su�ces if Y simply runs through the class of all
Banach spaces. For, assume that we have the property for all Banach
spaces. Let Y be a quasicomplete locally convex Hausdor� space and
T ∈ L(X, Y ) map bounded sets into relatively weakly compact sets
in Y . Now, Y is a topological subspace of a product Z of a family
{Yj}j∈J of Banach spaces. Denote by pj : Z → Yj the natural projec-
tion. For each j ∈ J , the map pj ◦T ∈ L(X,Yj) maps bounded subsets
of X into relatively weakly compact sets in Xj (as pj is weakly con-
tinuous). By the property assumed of X (for Banach spaces) we have
that pj ◦T maps relatively weakly compact subsets of X into relatively
compact sets in Yj. Let C ⊆ X be relatively weakly compact. Then
T (C) ⊆ Y and pj(T (C)) is relatively compact in Yj for each j ∈ J .
By Tychono�'s theorem, T (C) is relatively compact in Z. Since Y is
quasicomplete, the closure of T (C) in Z is actually contained in Y .
This implies that T (C) is relatively compact in Y . So, the classical
form of the DP-property as given in [16, pp.633�634] follows.

Lemma 2.1. Let X be a Fréchet space.
(i) If every σ(X ′, X)-null sequence in X ′ is also µ(X ′, X)-null, then

X has the DP-property. Here, µ denotes the Mackey topology.
(ii) X has the DP-property if and only if for every σ(X, X ′)-null se-

quence {xn} ⊆ X and every σ(X ′, X ′′)-null sequence {ξn} ⊆ X ′,
we have 〈xn, ξn〉 → 0 as n →∞.

(iii) If X is a GDP-space, then every σ(X ′, X)-null sequence in X ′ is
also µ(X ′, X)-null.

(iv) If X is a GDP-space, then every complemented subspace of X is
also a GDP-space.

Proof. (i) and (iii). See [8, Proposition 11].
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(ii) For Banach spaces this is the classical Brace-Grothendieck the-
orem; see [15, p.177] or [16, pp.635�636], for example. For general
Fréchet spaces, see [8, p.397].

(iv) Let Y be a complemented subspace of X. That Y has the
DP-property is known, [16, p.635].

Denote by j : Y → X the inclusion map and by P : X → Y a
projection of X onto Y , in which case P ′ : Y ′ → X ′ denotes the dual
projection. Let {ξn} ⊆ Y ′ be any σ(Y ′, Y )-null sequence and de�ne
vn := P ′ξn, for n ∈ N, in which case {vn} ⊆ X ′ is a σ(X ′, X)-null
sequence. Since X is a Grothendieck space, we conclude that {vn}
is a σ(X ′, X ′′)-null sequence. Fix z ∈ Y ′′, so that z : Y ′

β → C is
continuous. The dual map j′ : X ′

β → Y ′
β is continuous and hence, so is

z ◦ j′ : X ′
β → C. Accordingly, 〈vn, z ◦ j′〉 → 0 as n →∞. But,

〈ξn, z〉 = 〈ξn, z ◦ j′ ◦ P ′〉 = 〈P ′ξn, z ◦ j′〉 = 〈vn, z ◦ j′〉, n ∈ N,

and so 〈ξn, z〉 → 0 as n →∞, that is, {ξn} is a σ(Y ′, Y ′′)-null sequence.
This shows that Y is a Grothendieck space. ¤

Remark 2.2. Let X be a Fréchet-Montel space. Then X is re�ex-
ive, [19, p.369], and hence, is a Grothendieck space. Moreover, it fol-
lows from Lemma 2(i) that X has the DP-property, [8, p.397]. So, all
Fréchet-Montel spaces are GDP-spaces. ¤

Let I be an index set, always assumed to be countable. An increasing
sequence A = (an)∞n=1 of functions an : I → (0,∞) is called a Köthe
matrix on I, where by increasing we mean

0 < an(i) ≤ an+1(i), i ∈ I, n ∈ N.

The Köthe echelon space λ∞(A) is de�ned as the vector space
λ∞(A) := {x ∈ CI : anx ∈ `∞(I) for all n ∈ N},

equipped with the increasing sequence of seminorms ‖·‖1 ≤ ‖·‖2 ≤ · · · ,
where
(1) ‖x‖k := sup

i∈I
ak(i)|xi|, x ∈ λ∞(A),

and elements x ∈ CI are denoted by x = (xi). Then λ∞(A) is a Fréchet
space, [23, Ch.27]. We will also require its closed subspace

λ0(A) := {x ∈ λ∞(A) : anx ∈ c0(I) for all n ∈ N},
equipped with the seminorms (1) restricted to λ0(A). The canonical
unit vectors in λ∞(A), which also belong to λ0(A), are the vectors
{ej}j∈I given by ej(i) := δij for all i ∈ I. They form an unconditional
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Schauder basis for λ0(A). In particular, the Fréchet space λ0(A) is
always separable.

Let ΩI := I and ΣI := 2I denote the σ-algebra of all subsets of
ΩI . For each E ∈ ΣI de�ne a projection PA(E) : λ∞(A) → λ∞(A) by
x 7→ χ

E
x (coordinatewise multiplication as functions on I), for each

x ∈ λ∞(A). Note that λ0(A) is an invariant subspace of each PA(E),
for E ∈ ΣI . Given x ∈ CI , de�ne |x| := (|xi|). Then the seminorms
(1) are Riesz seminorms on λ∞(A), meaning that ‖x‖k = ‖ |x| ‖k for
all x ∈ λ∞(A) and k ∈ N, and

‖x‖k ≤ ‖y‖k, k ∈ N,

whenever x, y ∈ λ∞(A) satisfy |x| ≤ |y| (with the order de�ned coor-
dinatewise). In particular, for each E ∈ ΣI ,

‖PA(E)x‖k ≤ ‖x‖k, x ∈ λ∞(A),

for all k ∈ N. It follows that PA(E) ∈ L(λ∞(A)) and the Boolean
algebra of commuting projections {PA(E) : E ∈ ΣI} form an equicon-
tinuous subset of L(λ∞(A)). It is routine to check that the so de�ned
set function PA : ΣI → L(λ∞(A)) is multiplicative (i.e. PA(E ∩ F ) =
PA(E)PA(F ) for all E, F ∈ ΣI), satis�es PA(ΩI) = I (the identity oper-
ator on λ∞(A)) and is �nitely additive on the σ-algebra ΣI . That is, PA

is an equicontinuous, �nitely additive spectral measure on ΣI , called the
canonical spectral measure in λ∞(A). Observe that PA({j})x = xjej

for each x ∈ λ∞(A) and j ∈ ΩI . For j ∈ I de�ne ψj : λ∞(A) → C by
〈x, ψj〉 := xj, for x ∈ λ∞(A). Since

|ψj(x)| ≤ a1(j)
−1‖x‖1, x ∈ λ∞(A),

each ψj is continuous. Moreover, Γ∞ := {ψj : j ∈ I} ⊆ λ∞(A)′ is a
total set of functionals for λ∞(A) with the property that the C-valued
set function
(2) E 7→ 〈PA(E)x, ψj〉 = χ

E
(j)xj, E ∈ ΣI ,

is σ-additive for each x ∈ λ∞(A) and ψj ∈ Γ∞.
We point out that both λ∞(A) and λ0(A) are complex Fréchet lat-

tices, being the complexi�cation of the corresponding real Fréchet lat-
tices obtained when CI above is replaced with RI . Both λ0(A) and
λ∞(A) are discrete Fréchet lattices with the canonical unit vectors
{ej}j∈I forming a maximal disjoint system consisting of positive dis-
crete elements, [17, Section 2]. It is routine to verify that λ0(A) has
a Lebesgue topology, that is, whenever a sequence {x(n)} ⊆ λ0(A) sat-
is�es |x(n)| ↓ 0 in the order of λ0(A), then x(n) → 0 (as n → ∞) in
the topology of λ0(A). As a general reference for Fréchet (and locally
convex) lattices we refer to [2].
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The following result illustrates the precise connection between λ0(A)
and λ∞(A), of special interest to us because of its relationship to the
Montel property of λ∞(A). Some equivalences are known and several
others are new.
Proposition 2.3. Let I be a countable index set and A = (an)∞n=1 be
a Köthe matrix on I. The following assertions are equivalent.
(i) λ∞(A) = λ0(A).
(ii) λ∞(A) is Montel.
(iii) λ0(A) is Montel.
(iv) λ∞(A) is re�exive.
(v) λ0(A) is re�exive.
(vi) λ∞(A) has a Lebesgue topology.
(vii) λ∞(A) does not contain a complemented copy of the Banach space

`∞.
(viii) λ∞(A) is separable.
(ix) The canonical unit vectors {ej}j∈I are an unconditional Schauder

basis for λ∞(A).
(x) The �nitely additive canonical spectral measure PA : ΣI → L(λ∞(A))

is τs-countably additive.
Proof. The �rst �ve equivalences are known; see Theorems 27.9 and
27.15 of [23], for example.

(i) ⇔ (vi). It is clear that the Riesz seminorms (1) have the AM-
property, that is,

‖ |x| ∨ |y| ‖k = max{‖x‖k, ‖y‖k}, x, y ∈ λ∞(A),

for all k ∈ N. Recall that {ej}j∈I is a maximal disjoint system of
positive, discrete elements in λ∞(A). It then follows from Lemma 2.4
(and its proof) in [17], after an examination of the proof of Lemma 2.3
in [17], that the topology of λ∞(A) is Lebesgue if and only if λ∞(A) =
λ0(A).

(ii) ⇔ (vii). If λ∞(A) contains a complemented copy of `∞, then it
is surely not Montel.

On the other hand, if λ∞(A) is not Montel, then it follows from
Theorem 27.9 (6) of [23] that λ∞(A) contains a sectional (hence, com-
plemented) subspace which is isomorphic to `∞.

(ii) ⇒ (viii) is known, [19, p.370], and (viii) ⇒ (vii) is clear.
(ix) ⇒ (viii) is clear.
(viii) ⇒ (x). By (2) we know that E 7→ 〈PA(E)x, ψ〉 is σ-additive

on ΣI , for each x ∈ λ∞(A) and ψ ∈ Γ∞, with Γ∞ ⊆ λ∞(A)′ a total
set of functionals. Then the separability assumption on λ∞(A) and
Proposition 1(iii) of [26] imply that PA is τs-countably additive.
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(ix) ⇔ (x). Suppose that PA is τs-countably additive, that is, E 7→
PA(E)x is σ-additive on ΣI as a λ∞(A)-valued vector measure, for each
x ∈ λ∞(A). Since ΩI =

⋃
j∈I{j} is a pairwise disjoint, countable union

it follows, for every x ∈ λ∞(A), that
x = PA(ΩI)x =

∑
j∈I

PA({j})x =
∑
j∈I

xjej

with the series unconditionally convergent in λ∞(A). Hence, {ej}j∈I is
an unconditional Schauder basis in λ∞(A).

Conversely, suppose that {ej}j∈I is an unconditional Schauder ba-
sis for λ∞(A). Then λ∞(A) is separable and by (viii) ⇒ (i) we con-
clude that λ∞(A) = λ0(A). Then PA is precisely the �nitely additive
canonical spectral measure in λ0(A). By Lemma 27.11 of [23], each
ξ ∈ λ0(A)′ ⊆ CI satis�es

∑
j∈I |xj| · |ξj| < ∞ for all x ∈ λ0(A) with the

duality given by
〈x, ξ〉 =

∑
j∈I

xjξj, x ∈ λ0(A).

Accordingly,
E 7→ 〈PA(E)x, ξ〉 =

∑
j∈I

χ
E
(j)xjξj, E ∈ ΣI ,

is σ-additive for each x ∈ λ0(A) and ξ ∈ λ0(A)′ and hence, by the
Orlicz-Pettis Theorem, PA is τs-countably additive in λ0(A) = λ∞(A).

¤
In relation to Proposition 2.3 we point out that if λ0(A) is nuclear

(hence, also Montel), then every basis (being absolute) is necessarily
unconditional, not just the canonical basis. This is surely not true for
its Banach space analog c0, where the canonical basis is unconditional
but other bases, such as {vn :=

∑n
j=1 ej}∞n=1, for example, are not

unconditional, [22, Theorem III.7.2].
The following observation will be needed later. It can be found on

pp. 308�309 in the proof of Theorem 3.1(a) in [12]; see also Theorems 3
and 5 in [13].
Lemma 2.4. Let A = (an)∞n=1 be a Köthe matrix on I and B be a
bounded subset of λ∞(A). Then there exists an increasing sequence
(Im)∞m=1 of subsets of the base set I such that
(i) each sectional subspace λ∞(Im, A) := {x|Im : x ∈ λ∞(A)} is

normable, hence isomorphic to `∞, and
(ii) for every k ∈ N and every ε > 0 there exists m ∈ N such that

χ
I\Im

B := {xχ
I\Im

: x ∈ B} ⊆ εWk,
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where
(3) Wk := {x ∈ λ∞(A) : ‖x‖k ≤ 1}.

Let I = N × N. A Köthe matrix A = (an)∞n=1 on N × N is called a
Köthe-Grothendieck (brie�y, KG) matrix if
(KG-1) an(i, j) = 1 for all i > n and all n, j ∈ N,
(KG-2) supj∈N an(n, j) = ∞ for all n ∈ N, and
(KG-3) ap(i, j) = aq(i, j), for all i, j ∈ N and all p, q ≥ i.
The original KG-matrix corresponds to

an(i, j) :=

{
j for i ≤ n and j ∈ N
1 for i > n and j ∈ N,

for each n ∈ N. For a KG-matrix A = (an)∞n=1 it is known that the
Köthe echelon space

λ1(A) := {x ∈ CI : q(1)
n (x) :=

∑
i∈I

an(i)|xi| < ∞ for all n ∈ N}

is not distinquished, [6, Thoerem 18(2)], and hence, λ∞(A) cannot be
Montel; see Corollary 2 and Theorem 18 of [6]. Actually, more is true.

Proposition 2.5. Let A = (an)∞n=1 be a KG-matrix on N × N and F
be any Montel subspace of λ∞(A). Then there exists i0 ∈ N that

F ∩ {x ∈ λ∞(A) : x(i, j) = 0 for all i ≤ i0 and j ∈ N} = {0}.
Proof. The statement of the result follows if we establish the (stronger)
Claim: There exists n(0) ∈ N and d > 0 such that, for all x ∈ F ,
‖x‖1 = sup

N×N
a1(i, j) · |x(i, j)| ≤ d sup

1≤i≤n(0)

sup
j∈N

an(0)(i, j) · |x(i, j)|.

Suppose that the Claim is false. Then, for each n ∈ N, there exists
zn ∈ F such that

‖zn‖1 > 2n sup
1≤i≤n

sup
j∈N

an(i, j) · |zn(i, j)|.

Setting xn := zn/‖zn‖1 we have, for every n ∈ N, an element xn ∈ F
with ‖xn‖1 = 1 such that

2n sup
1≤i≤n

sup
j∈N

an(i, j) · |xn(i, j)| < 1.

In particular, for each n ∈ N we have

(4) an(i, j) · |xn(i, j)| ≤ 1

2n
, j ∈ N, 1 ≤ i ≤ n.
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We now show that {xn}∞n=1 is bounded in F . So, �x m ∈ N. Let
n > m. Then, for all j ∈ N and 1 ≤ i ≤ m, we have

am(i, j) · |xn(i, j)| ≤ an(i, j) · |xn(i, j)| ≤ 1

2n

and, for all j ∈ N and i > m, we have (since am(i, j) = 1 by (KG1))
that

am(i, j) · |xn(i, j)| = |xn(i, j)| ≤ ‖xn‖1 = 1.

By de�nition of the seminorm ‖ · ‖m we have ‖xn‖m ≤ 1. Hence,
sup
n∈N

‖xn‖m ≤ max{1, ‖x1‖m, . . . , ‖xm‖m} < ∞.

So, {xn}∞n=1 is a bounded sequence in the Montel space F , from
which it follows that there exists a subsequence {xnk

}∞k=1 and x ∈ F
with xnk

→ x as k → ∞ (in λ∞(A)). But, for each i ∈ N and j ∈ N
(recalling that an ≥ 1 on N× N) it follows from (4), that

|xn(i, j)| ≤ 1

2n
, n > i.

Since, xnk
→ x pointwise on N× N we conclude that x ≡ 0 on N× N.

This contradicts ‖x‖1 = 1 and hence, the Claim holds. ¤

Remark 2.6. (a) A.A. Albanese, [1], studied the structure of Montel
subspaces of certain Fréchet spaces (of Moscatelli type). For A =
(an)∞n=1 a KG-matrix, her results cover the case of λp(A) spaces for
p ∈ {0} ∪ [1,∞) but, not the case of λ∞(A) (which is covered by
Proposition 2.5 above).

(b) By a classical result of C. Bessaga, A.A. Pelczy«ski and S. Rolewicz,
[4], every Fréchet space X not isomorphic to Y × CN, with Y a
Banach space, contains a closed in�nite dimensional subspace F
which is a nuclear Fréchet space with basis. It follows that every
(non-normable) space λ∞(A), with A = (an)∞n=1 a KG-matrix, con-
tains in�nite dimensional nuclear Fréchet spaces F with a basis. In
particular, such a space F is Montel.

3. λ∞(A) is always a GDP-space
Let A = (an)∞n=1 be a Köthe matrix on the countable set I. It is

known that λ∞(A) is always a Grothendieck space, [11, Proposition 5].
Actually, more is true.

Proposition 3.1. Let A = (an)∞n=1 be any Köthe matrix on I. Then
the Fréchet space λ∞(A) is a GDP-space.
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Proof. For brevity, write X = λ∞(A). It was just noted above that X
is a Grothendieck space.

To establish that X has the DP-property, let {xk}∞k=1 ⊆ X be an
arbitrary σ(X, X ′)-null sequence and {uk}∞k=1 ⊆ X ′ be an arbitrary
σ(X ′, X ′′)-null sequence. By Lemma 2.1(ii) it su�ces to show that
limk→∞〈xk, uk〉 = 0. De�ne {Wn}∞n=1 according to (3). There is no
loss of generality in assuming that {Wn}∞n=1 is a neighbourhood base
of zero. Since X is barrelled, the σ(X ′, X)-bounded subset {uk}∞k=1 of
X ′ is equicontinuous and hence, there exists s ∈ N such that
(5) {uk}∞k=1 ⊆ W ◦

s := {ξ ∈ X ′ : |〈x, ξ〉| ≤ ‖x‖s for all x ∈ X}.
The set B := {xk}∞k=1 is bounded in X and so, according to Lemma 2.4,

there exists an increasing sequence {Im}∞m=1 of subsets of the index set
I such that
(a) Xm := λ∞(Im, A) is isomorphic to `∞, for each m ∈ N, and
(b) for every k ∈ N and ε > 0 there exists m ∈ N with χ

I\Im
B ⊆ εWk.

Applying (b) to the choice k := s we have
(6) ∀ε > 0, ∃m(ε) ∈ N such that χ

I\Im(ε)
B ⊆ εWs.

Fix an arbitrary m ∈ N. Since the linear map x 7→ χ
Im

x is con-
tinuous (hence, also weakly continuous) from X into Xm and {xk}∞k=1

is a σ(X,X ′)-null sequence, it follows that {χ
Im

xk}∞k=1 is σ(Xm, X ′
m)-

null. Moreover, as the closed subspace Xm is complemented in X and
{uk}∞k=1 is σ(X ′, X ′′)-null, it follows that the sequence of restrictions
{uk|Xm}∞k=1 is σ(X ′

m, X ′′
m)-null. But, Xm ' `∞ (see (a)) has the DP-

property and so, by Lemma 2.1(ii), limk→∞〈χIm
xk, uk|Xm〉 = 0. That

is
(7) ∀m ∈ N, ∀ε > 0, ∃k0 ∈ N such that |〈χ

Im
xk, uk〉| ≤ ε, ∀k ≥ k0.

Now, �x ε > 0. Apply (6) to �nd m(ε) ∈ N such that χ
I\Im(ε)

B ⊆
εWs. In view of (5) we conclude that∣∣∣〈χI\Im(ε)

xk, uk〉
∣∣∣ ≤ ε, k ∈ N.

According to (7) there exists k0 ∈ N such that∣∣∣〈χIm(ε)
xk, uk〉

∣∣∣ ≤ ε, k ≥ k0.

Combining these two inequalities yields |〈xk, uk〉| ≤ 2ε for all k ≥ k0.
That is, limk→∞〈xk, uk〉 = 0 and the proof is complete. ¤

For every KG-matrix A = (an)∞n=1 we know that λ∞(A) is not Montel
yet, by Proposition 3.1, it is still a GDP-space. For λ0(A) spaces, even
with A arbitrary, this is impossible.
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Corollary 3.2. Let A = (an)∞n=1 be any Köthe matrix on I. The
following assertions are equivalent.
(i) λ0(A) is Montel.
(ii) λ0(A) is a GDP-space.
(iii) λ0(A) is a complemented subspace of λ∞(A).

Proof. (i) ⇒ (ii) is precisely Remark 2.2.
(i) ⇒ (iii) is immediate from [23, Proposition 27.15] which states

that (i) is equivalent with λ0(A) = λ∞(A).
(iii) ⇒ (ii) follows from Lemma 2.1(iv) and Proposition 3.1.
(ii) ⇒ (i) is established via a contrapositive argument which uses

Theorem 27.9 and Proposition 27.15 of [23], together with the fact
that the Banach (sequence) space c0 is not a GDP-space. ¤

Observe that (ii) and (iii) of Corollary 3.2 provide two further equiv-
alences with those in (i)�(x) of Proposition 2.3.

4. Families of commuting projections in GDP-spaces
The de�nition of a (weak) Schauder decomposition {Pn}∞n=1 in Ba-

nach spaces, as given in Section 1 via (S1)-(S3), is purely algebraic and
topological and so applies equally well in Fréchet spaces X; see [18]
and the references therein, for example. Note, by (S2), that {Pn}∞n=1 is
an equicontinuous subset of L(X). Recall, for a Fréchet space X, that
the weakly and strongly bounded subsets of X ′ coincide. For Banach
spaces, the next two results are due to H.P. Lotz, [20], [21].

Proposition 4.1. Let X be a Fréchet space which is a Grothendieck
space and let {Pn}∞n=1 ⊆ L(X) be any Schauder decomposition.
(i) If {ξn} ⊆ X ′ is any bounded sequence, then {(I − Pn)′ξn} is a

σ(X ′, X ′′)-null sequence in X ′.
(ii) If {xn} ⊆ X is any bounded sequence, then {(I − Pn)xn} is a

σ(X, X ′)-null sequence in X.

Proof. For simplicity of notation set Qj := (I − Pj) for j ∈ N.
(i) According to (S2) we have limj→∞ Qj = 0 in Ls(X). Since B :=

{ξj}∞j=1 ⊆ X ′ is equicontinuous, it follows that limj→∞ supξ∈B |〈Qjx, ξ〉| =
0 for each x ∈ X. Accordingly, limj→∞〈x,Q′

jξj〉 = 0 for each x ∈ X,
that is, {Q′

jξj}∞j=1 is a σ(X ′, X)-null sequence. By the Grothendieck
property of X, the sequence {Q′

jξj}∞j=1 is also σ(X ′, X ′′)-null.
(ii) By part (i) we have

(8) lim
j→∞

P ′
jξ = ξ (relative to σ(X ′, X ′′)), for each ξ ∈ X ′.
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De�ne a linear subspace of X ′ by

H := {ξ ∈ X ′ : lim
j→∞

P ′
jξ = ξ in X ′

β}.

Claim 1. H is a closed subspace of X ′
β.

To establish the claim, let {ξα}α∈A ⊆ H be a net (so, limj→∞ P ′
jξα =

ξα in X ′
β for each α ∈ A) such that limα ξα = ξ (in X ′

β) for some
ξ ∈ X ′. Fix a bounded set D ⊆ X. By equicontinuity of the set
{Pj}∞j=1 ⊆ L(X) we can conclude that C := D ∪ (

⋃
j∈N Pj(D)) is also

bounded in X. Since limα ξα = ξ in X ′
β, there exists α0 ∈ A such that

|〈c, (ξα − ξ)〉| ≤ 1

3
, α ≥ α0, c ∈ C.

For each α ≥ α0 and d ∈ D, it follows from

〈d,Q′
jξ〉 = 〈d, (ξ − ξα)〉+ 〈d,Q′

jξα〉+ 〈d, P ′
j (ξα − ξ)〉,

valid for each j ∈ N, and the triangle inequality (after noting that
Pjd ∈ C for all j ∈ N), that

∣∣〈d,Q′
jξ〉

∣∣ ≤ 2

3
+

∣∣〈d, Q′
jξα〉

∣∣ , j ∈ N.

In particular, for each j ∈ N and d ∈ D, we have

(9)
∣∣〈d,Q′

jξ〉
∣∣ ≤ 2

3
+

∣∣〈d,Q′
jξα0〉

∣∣ .

Since limj→∞ Q′
jξα0 = 0 in X ′

β, there exists j0 ∈ N such that

sup
d∈D

∣∣〈d,Q′
jξα0〉

∣∣ ≤ 1

3
, j ≥ j0.

It follows that
∣∣〈d,Q′

jξ〉
∣∣ ≤ 1 for all d ∈ D and j ≥ j0, that is, Q′

jξ ∈ D◦

for all j ≥ j0. Equivalently, since, D is an arbitrary bounded subset of
X, we conclude from (9) that limj→∞ P ′

jξ = ξ in X ′
β and hence, ξ ∈ H.

Claim 2.
(⋃

k∈N P ′
k

)
H ⊆ H.

To see this, �x ξ ∈ H, in which case limj→∞ P ′
jξ = ξ in X ′

β. For each
(�xed) k ∈ N it follows, after noting that {P ′

j}∞j=1 ⊆ L(X ′
β), that

P ′
kξ = P ′

k( lim
j→∞

P ′
jξ) = lim

j→∞
P ′

j(P
′
kξ)

in X ′
β. Hence, P ′

kξ ∈ H. Since k ∈ N and ξ ∈ H are arbitrary, Claim 2
is established.

It now follows from (8) and Claim 2 that H is σ(X ′, X ′′)-dense in X ′.
Since both σ(X ′, X ′′) and β(X ′, X) are topologies of the dual pairing
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(X ′, X ′′), we conclude that H is also dense in X ′
β. Then Claim 1 yields

that H = X ′
β, that is,

(10) lim
j→∞

Q′
j = 0 in Ls(X

′
β).

Finally, to complete the proof of part (ii), let {xk}∞k=1 ⊆ X be a
bounded sequence. According to (10) we have

lim
j→∞

sup
k∈N

∣∣〈xk, Q
′
jξ〉

∣∣ = 0, x ∈ X ′.

It follows that limj→∞〈Qjxj, ξ〉 = 0 for each ξ ∈ X ′, that is, {(I −
Pj)xj}∞j=1 is a σ(X, X ′)-null sequence.

¤
We have the following important application.

Proposition 4.2. Let X be a Fréchet GDP-space and {Pn}∞n=1 ⊆ L(X)
be a Schauder decomposition. Then Pn → I in Lb(X) as n →∞.
Proof. Suppose that {Pn}∞n=1 fails to converge to I in Lb(X). Then
there exist a bounded set B ⊆ X, a continuous seminorm q in X and
ε > 0 such that supx∈B q(x − Pjk

x) > ε for some increasing sequence
{jk}∞k=1 ⊆ N. For each k ∈ N, select xk ∈ B such that q(xk−Pjk

xk) > ε.
Recall that q(x) = supξ∈U◦q |〈x, ξ〉| for all x ∈ X, where

U◦
q := {ξ ∈ X ′ : |〈x, ξ〉| ≤ q(x) for all x ∈ X}.

For each k ∈ N, it follows from the Hahn-Banach theorem that there
exists ξk ∈ U◦

q satisfying |〈(xk − Pjk
xk), ξk〉| > ε. Using (I − Pjk

)2 =
(I − Pjk

) we conclude that
(11) ε < |〈(I − Pjk

)xk, (I − Pjk
)′ξk〉| , k ∈ N.

But, {xk}∞k=1 ⊆ B is bounded in X and {ξk}∞k=1 ⊆ U◦
q is bounded in

X ′. Then Proposition 4.1 shows that (I −Pjk
)xk → 0 in (X, σ(X,X ′))

as k →∞ and (I −Pjk
)′ξk → 0 in (X ′, σ(X ′, X ′′)) as k →∞. Since X

has the DP-property, Lemma 2.1(ii) shows that the right-hand-side of
(11) converges to 0 as k →∞, which is clearly impossible. Accordingly,
Pn → I in Lb(X) as n →∞. ¤

Let X be a Fréchet space and Σ be a σ-algebra of subsets of a non-
empty set Ω. A map P : Σ → L(X) which is multiplicative, satis�es
P (Ω) = I and is σ-additive in Ls(X) is called a spectral measure (in
X). If, in addition, P is σ-additive in Lb(X), then P is called boundedly
σ-additive. As noted in Section 1, in a Fréchet-Montel space every
spectral measure is automatically boundedly σ-additive. The following
result is an extension of this fact.
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Proposition 4.3. Let X be a Fréchet GDP-space and P : Σ → L(X)
be any spectral measure. Then P is necessarily boundedly σ-additive.
Proof. Let {En}∞n=1 ⊆ Σ be pairwise disjoint sets, in which case we have
P (En)P (Em) = 0 for all m 6= n in N. By the τs-countable additivity
of P we have P (

⋃∞
n=1 En) =

∑∞
n=1 P (En), where the series converges

unconditionally in Ls(X). Let Qn :=
∑n

i=1 P (Ei) for n ∈ N and Q :=∑∞
n=1 P (En). Then {Qn}∞n=1 is increasing (in the partial order speci�ed

by range inclusion) and satis�es Qn → Q in Ls(X) as n → ∞. Of
course, Qn ≤ Q for all n ∈ N.

Let Y := Q(X) and Pn := Qn|Y be the restriction of Qn to the closed
invariant subspace Y of X. Then Y is a GDP-space (by Lemma 2.1(iv))
and Q|Y is the identity operator IY in Y .

Suppose there exists n0 ∈ N such that Pn = Pn0 for all n ≥ n0. Since
Pn → IY in Ls(Y ) as n →∞ we conclude that Pn = IY for all n ≥ n0

and hence, Pn → IY in Lb(Y ). If no such n0 exists, then there exists an
increasing sequence nk ↑ ∞ in N such that Pnk

6= Pnk+1
for all k ∈ N.

Since Pn ≤ Pn+1 for all n ∈ N, the nk can be chosen so that Pj = Pnk

for all nk ≤ j < nk+1 and all k ∈ N. Then {Pnk
}∞k=1 satis�es (S1)�(S3),

that is, it is a Schauder decomposition in Y . By Proposition 4.2 we
conclude that Pnk

→ IY in Lb(Y ) as k →∞ and hence, that Pn → IY

in Lb(Y ) as n → ∞. So, in both cases, we have Pn → IY = Q|Y in
Lb(Y ).

Since Qn|Z , with Z := (I −Q)(X), is the zero operator 0Z in Z for
every n ∈ N, we have Qn|Z → 0Z in Lb(Z) as n → ∞. Noting that
Q(B), resp. (I − Q)(B), is a bounded set in Y , resp. Z, whenever
B ⊆ X is bounded, and that Qn = Pn ⊕ 0Z (with Y ⊕ Z = X) for
every n ∈ N, it follows that

Qn → Q|Y ⊕ 0Z = Q, for n →∞,

in Lb(X). This is precisely bounded σ-additivity of P . ¤
Given a Schauder decomposition {Pn}∞n=1 in a Fréchet space X, it fol-

lows from (S1)�(S3) that
∑∞

n=0(Pn+1−Pn) = I (where P0 := 0) with the
series convergent in Ls(X). If this series is unconditionally convergent
in Ls(X), then {Pn}∞n=1 is called an unconditional Schauder decompo-
sition, [24]. It is precisely such decompositions which are associated
with (non-trivial) spectral measures; see (the proof of) Proposition 4.3
above and also Lemma 5 and Theorem 6 in [24].

As noted in Section 1, a GDP-Banach space admits no Schauder
decompositions, a fact which fails in general Fréchet spaces; see Re-
mark 2.2. In view of Remark 2.2, Proposition 3.1 and the discussion
immediately after Proposition 3.1, the question arises of whether there
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exist spaces λ∞(A), other than Montel ones, which also admit un-
conditional Schauder decompositions? Recall that a Fréchet space X
satis�es the density condition if the bounded sets of its strong dual X ′

β

are metrizable. For equivalent conditions we refer to [5], [6], for exam-
ple. Fréchet spaces of the kind λ∞(A) satisfy the density condition if
and only if they are distinguished, [3].
Proposition 4.4. Let A = (an)∞n=1 be a Köthe matrix on I such
that λ∞(A) is non-normable and satis�es the density condition. Then
λ∞(A) admits an unconditional Schauder decomposition.
Proof. The density condition implies that A satis�es Condition D,
namely, there exists an increasing sequence (Im)m∈N of subsets of I
such that:
(D1) ∀m ∃n(m) ∀k > n(m) : inf

i∈Im

an(m)(i)/ak(i) > 0

and

(D2) ∀n ∀I0 ⊆ I with I0 ∩ (I \ Im) 6= ∅ (∀m ∈ N), ∃n∗ = n∗(n, I0) > n
such that infi∈I0 an(i)/an∗(i) = 0,

[6, Theorem 18]. Since λ∞(A) is non-normable, the argument in the
proof of [9, Corollary 2.4] shows that the increasing sequence (Im)m∈N
given by Condition D satis�es

⋃∞
m=1 Im = I, but that no Im coincides

with I.
Suppose there exists x ∈ λ∞(A) such that {xχ

Im
}∞m=1 fails to con-

verge to x. Then there exists n ∈ N, ε > 0 and a sequence {j(m)}∞m=1 ⊆
I with j(m) /∈ Im for each m such that an(j(m)) · |x(j(m))| > ε for
all m ∈ N. Apply (D2) to I0 := {j(m) : m ∈ N} and the above n to
choose an n∗ > n such that

ε <
an(j(m))

an∗(j(m))
· |x(j(m))| · an∗(j(m)) ≤ an(j(m))

an∗(j(m))
· ‖x‖n∗

for all m ∈ N. This is impossible since the right-hand-side has in�mum
0 (as m varies). Accordingly, for every x ∈ λ∞(A) we have xχ

Im
→ x

(in λ∞(A)) as m →∞.
Let Pm denote the projection of λ∞(A) onto the sectional subspace

λ∞(Im, A) := {xχ
Im

: x ∈ λ∞(A)}, for each m ∈ N. It was just shown
that Pm → I in Ls(λ∞(A)) as m →∞, with the Pm, for m ∈ N, pair-
wise distinct and increasing. So, {Pm}∞m=1 is a Schauder decomposi-
tion in λ∞(A). The claim is that {Pm}∞m=1 is actually an unconditional
Schauder decomposition, that is,

∑∞
m=0(Pm+1−Pm) is unconditionally

convergent in Ls(λ∞(A)), where P0 := 0. To verify this it su�ces to
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show that for each given x ∈ λ∞(A), n ∈ N and ε > 0, there exists a
�nite set F0 ⊆ N such that for each �nite set F ⊆ N with F ∩ F0 = ∅
we have

sup
i∈I

an(i) ·
∣∣∣∣∣

(∑
m∈F

(Pm+1 − Pm)x

)
(i)

∣∣∣∣∣ < ε.

Since limm→∞ xχ
Im

= x (in λ∞(A)), there is m(0) ∈ N such that
an(i)|x(i)| < ε for all i ∈ I \ Im(0). Set F0 := {1, 2, . . . ,m(0)}. Then,
for any �nite set F ⊆ N with F ∩ F0 = ∅, we have

sup
i∈I

an(i) ·
∣∣∣∣∣

(∑
m∈F

(Pm+1 − Pm)x

)
(i)

∣∣∣∣∣ ≤ sup
i∈I\Im(0)

an(i) · |x(i)| < ε.

This completes the proof. ¤
Proposition 4.4 applies to all non-normable spaces λ∞(A) which

satisfy the density condition. Of course, if λ∞(A) is also Montel,
then Proposition 2.3(ix) already implies the existence of unconditional
Schauder decompositions (consisting even of rank 1 projections). The
real interest in Proposition 4.4 lies in the non-Montel case. For the
existence of such spaces λ∞(A), we observe that the product of `∞ and
an in�nite dimensional nuclear space λ∞(B) is a space of type λ∞(A)
which is not normable, not Montel but, satis�es the density condition.
Further examples are obtained by taking a Köthe matrix A which is
regularly decreasing (in the sense of [7]) and such that λ∞(A) is nei-
ther normable nor Montel; concrete examples of such spaces λ∞(A) are
given in [7].

In conclusion we point out that the density condition in Proposi-
tion 4.4 is not necessary for the existence of unconditional Schauder
decompositions. Indeed, the cartesian product of any Montel space
λ0(C), such as the space s of rapidly decreasing sequences, with the
classical space λ∞(B) corresponding to any KG-matrix B (which is
known to fail the density condition; combine [9, Proposition 2.6] with
[6, Theorem 18], for example), is a λ∞(A) space (just put each of λ0(C)
and λ∞(B) in the even-odd coordinates, respectively) which fails the
density condition. However, λ∞(A) admits an unconditional Schauder
decomposition; just add to the usual one coming from the canonical ba-
sis of λ0(C) (see Proposition 2.3) the projection of λ∞(A) onto λ∞(B).
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