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José Bonet

Abstract. We give examples of non normable locally convex spaces such that
every operator defined on them is topologizable, or even m-topologizable, in
the sense of Żelazko. These examples are non complete metrizable spaces or
complete (DF)-spaces; they solve a problem asked by Żelazko.

Motivated by the absence of a reasonable locally convex topology in the space
L(E) of all the continuous linear operators on a non normable locally convex space
E, cf. [Z1], Żelazko introduced and studied in [Z2] the concept of operator algebras
A ⊂ L(E) on E and the related concepts of topologizable and m-topologizable
operators. The aim of this note is to present the examples mentioned in the abstract,
thus solving a question asked by Prof. Żelazko during his lecture at the International
Conference on Topological Algebras and Applications.

Our notation for locally convex spaces and functional analysis is standard; we
refer the reader to [J, K, MV, BP]. For topological algebras we refer the reader
to [DL, MA, MI, Z0]. We recall some terminology. For a locally convex space
E, which we assume to be Hausdorff, E′ stands for its topological dual. The set of
continuous seminorms on the space E is denoted by cs(E). We denote by β(E, F )
the strong topology and by σ(E, F ) the weak topologies on E with respect to a
dual pair 〈E,F 〉. The strong dual (E′, β(E′, E)) of E is also denoted by E′

b. If
E is a locally convex space, then L(E) denotes the vector space of all continuous
linear maps from E to E. The composition of an operator T with itself k times
is denoted by T k. Given T ∈ L(E) we denote by T t ∈ L(E′) its transpose de-
fined by T t(u) = u ◦ T ∈ E′ for each u ∈ E′. A locally convex space is called
normable if it is isomorphic to a normed space, or equivalently if it has a bounded
0-neighbourhood. A complete, metrizable, locally convex space is called a Fréchet
space, see [MV, BP], or a B0-space, according to the classical terminology of
Mazur and Orlicz, see [Z2]. A (DF)-space is a locally convex space E which has a
fundamental sequence of bounded sets, and such that every countable intersection
of absolutely convex closed 0-neighbourhoods which absorbs the bounded sets is
also a 0-neighbourhood. We refer the reader to [K, MV, BP]. This class was
introduced by Grothendieck. The strong dual of a Fréchet space is a complete
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(DF)-space. The class of (DF)-spaces also contains the countable inductive limits
of Banach spaces, called (LB)-spaces.

The following two classes of operators were defined and studied by Żelazko in
[Z2].

Definition 1. An operator T ∈ L(E) on a locally convex space E is called
topologizable if for every continuous seminorm p ∈ cs(E) there is a continuous
seminorm q ∈ cs(E) such that for every k ∈ N there is Mk > 0 such that

p(T k(x)) ≤ Mkq(x)

for each x ∈ E.

Definition 2. An operator T ∈ L(E) on a locally convex space E is called
m-topologizable if for every continuous seminorm p ∈ cs(E) there are a continuous
seminorm q ∈ cs(E) and C ≥ 1 such that for every k ∈ N such that

p(T k(x)) ≤ Ckq(x)

for each x ∈ E.

Observe that in the definitions above it is essential that the seminorm q only
depends on the seminorm p and not on the iteration k. By Żelazko [Z2], Theorems
5 and 9, an operator T ∈ L(E) is topologizable (resp. m-topologizable) if and only if
T belongs to some operator algebra A ⊂ L(E) on E (resp. T belongs to an operator
algebra of the form LΓ(E)); see [Z2] for notation.

Clearly every m-topologizable operator is topologizable. If the locally convex
space E is normable, then every operator T ∈ L(E) is m-topologizable. We give
examples of non normable locally convex spaces in which every operator is topolo-
gizable or m-topologizable.

First of all we show that natural examples of operators on a non-normable
Fréchet space are topologizable. The translation operator is mentioned in Żelazko
[Z2], Examples 8, as a natural operator which is not topologizable in many cases.

Example 3. Let G := {z ∈ C | |z| < t}, t > 0 or t = ∞, and let E =
H(G) be the Fréchet space of all holomorphic functions on G, endowed with
the compact open topology. The topology of H(G) is defined by the seminorms
pr(f) := sup|z|≤r |f(z)|, 0 < r < t. We show that the operator of differentiation
T ∈ L(E), T (f) := f ′, is topologizable in L(E).

Given 0 < r < t, select s such that r < s < t. For each k ∈ N, we can apply
Cauchy integral formula to conclude

f (k)(z)
k!

=
1

2πi

∫

|u|=s

f(u)
(u− z)k+1

du, |z| ≤ r

therefore

pr(T k(f)) = pr(f (k)) ≤ k! s

(s− r)k+1
ps(f).

Theorem 4. If E is a (DF)-space, then every operator T ∈ L(E) is topolo-
gizable. In particular, the strong dual E = F ′b of a Fréchet space F is a complete
(DF)-space such that every operator T ∈ L(E) is topologizable.
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Proof. Let T ∈ L(E) be an operator on a (DF)-space E. We fix a continuous
seminorm p ∈ cs(E). For each k ∈ N, the continuity of T k yields a continuous
seminorm pk ∈ cs(E) such that p(T k(x)) ≤ pk(x) for each x ∈ E. Every (DF)-
space satisfies the countable neighbourhood property [BP, 8.3.5], hence there is a
continuous seminorm q ∈ cs(E) and there is a sequence (Mk)k of positive numbers
such that pk(x) ≤ Mkq(x) for each x ∈ E. this implies p(T k(x)) ≤ Mkq(x) for each
k ∈ N and each x ∈ E, and the operator T is topologizable. ¤

Not every operator defined on a (DF)-space is m-topologizable. To see this we
need the notation about Köthe echelon and co-echelon spaces. A Köthe matrix A =
(an)n∈N is an increasing sequence of strictly positive functions on N. Corresponding
to each Köthe matrix A = (an)n we associate the Fréchet space
λ1(A) = {x = (x(i))i∈N ∈ CN (or RN) | ∀n ∈ N : pn(x) :=

∑
i(an(i)|x(i)|) < ∞},

The i-th unit vector is denoted by ei, i ∈ N.
The space λ1(A) is called a Köthe echelon space of order 1, it is a Fréchet space

with the sequence of norms pn, n = 1, 2, .... Let α = (αi)i be a monotonically
increasing sequence of strictly positive numbers tending to ∞. A power series
space of infinite type Λ∞(α) is a Köthe echelon space λ1(A) for the Köthe matrix
an(i) = exp(nαi), n, i ∈ N. The space of entire functions on C and the space S
of rapidly decreasing smooth functions of Schwartz are isomorphic to power series
spaces of infinite type; see Meise, Vogt [MV], Chapters 27 and 29.

For a Köthe matrix A = (an)n, denote by V = (vn)n the associated decreasing
sequence of functions vn = 1/an, n ∈ N. For a given decreasing sequence V = (vn)n

of strictly positive functions on N or for the corresponding Köthe matrix A = (an)n,
we associate as in [BMS] the system

V := {v = (v(i))i ∈ RN+; ∀n ∈ N : sup
i

v(i)
vn(i)

= sup
i

an(i)v(i) < ∞}.

The strong dual λ1(A)′b coincides algebraically and topologically with the space

K∞(V ) := {u = (u(i))i | pv(u) := sup
i

v(i)|u(i)| < ∞ for all v ∈ V },

endowed with the topology defined by the seminorms pv, v ∈ V . An element u =
(u(i))i belongs to K∞(V ) if and only if there is n ∈ N such that supi vn(i)|u(i)| < ∞.
A fundamental sequence of bounded sets in K∞(V ) is given by the sets Bn := {u =
(u(i))i | supi vn(i)|u(i)| ≤ n}, n ∈ N. We refer the reader to [BB, BMS] for more
information and details.

Example 5. We exhibit a (DF)-space E and an operator T ∈ L(E) which
is not m-topologizable. In fact, the space E is even an (LB)-space. Recall that,
by Theorem 4, every operator T ∈ L(E) is topologizable. The space s of rapidly
decreasing sequences is the Köthe echelon space λ1(A) defined by the Köthe matrix
an = in, i, n ∈ N. Its strong dual E = s′b is a complete (DF)-space. Define the
operator T ∈ L(E) by T ((u(i))i) := (0, u(1), 2u(2), 3u(3), ...), u ∈ E. Observe that,
if we write T (x) = ((Tx)i)i, we have (Tx)i = (i− 1)u(i− 1), i ∈ N, with u(0) := 0,
T (ei) = iei+1, i ∈ N, and T k(e1) = k! ek+1 for each k ∈ N. Since s is a Fréchet
Schwartz space, E is bornological. Therefore, to see that T is linear and continuous,
it is enough to show that it maps bounded sets into bounded sets: it can be easily
verified that T (Bn) ⊂ Bn+1, for Bn := {u = (u(i))i | supi i−n|u(i)| ≤ n}. Now
suppose that T is m-topologizable. Consider the weight w(i) = 2−i, i ∈ N. Clearly
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w belongs to the set V , since supi in2−i < ∞ for each n ∈ N. Given the seminorm
pw on E, there is a seminorm pv, v ∈ V , and there is C ≥ 1 such that for each
k ∈ N

pw(T k(u)) ≤ Ckpv(u) = Ck sup
i

v(i)|u(i)|,
for each u = (u(i))i ∈ E. Evaluating this inequality at x = e1, we get, for each
k ∈ N,

k! 2−(k+1) = pw(k! ek+1) = pw(T k(e1)) ≤ Ckpv(e1) ≤ Ckv(1).

This implies that the sequence
(

k!
2k+1Ck

)
k

is bounded, a contradiction.

Example 6. There are complete (DF)-spaces which are not normable in which
every operator is m-topologizable. Indeed, let I be an uncountable index set, and let
`2(I) be the vector space of all square summable families x = (x(i))i∈I . We denote
by ||.|| the usual Hilbert norm on `2(I) and define E as the space `2(I) endowed
with the topology τ of uniform convergence on the separable bounded subset of the
dual `2(I)′ of `2(I). Clearly τ is a topology of the dual pair (`2(I), `2(I)′), hence it
has the same bounded sets as the norm topology of `2(I). Moreover E = (`2(I), τ)
is a complete (DF)-space which is not normable. Spaces of this type have been used
often as counter-examples in the theory of (DF)-spaces; see e.g. Köthe [K], page
401 of volume 1. The topology τ of E can be described by the following family of
seminorms: for each countable subset J of I, we set

pJ (x) :=

(∑

i∈J

|x(i)|2
)1/2

, x = (x(i)) ∈ `2(I).

We show that every continuous linear operator T ∈ L(E) is m-topologizable. Fix a
continuous seminorm pJ(0) on E, J(0) a countable subset of I. Since each T k, k ∈ N
is continuous, we find, for each k, a countable subset J(k) of I and a constant
Ck > 0 such that pJ(0)(T k(x)) ≤ CkpJ(k)(x) for each x ∈ E. Set J for the union
of the sets J(0), J(1), J(2), .... If y ∈ E satisfies y(i) = 0 for each i ∈ J , then
pJ(0)(T k(x)) = 0 for each k ∈ N. Since T is continuous on E, it maps bounded
sets into bounded sets, hence it is a continuous linear map on `2(I), and there is
C ≥ 1 such that, for all k ∈ N, ||T k(x)|| ≤ Ck||x|| for every x ∈ `2(I). We claim
that pJ(0)(T k(x)) ≤ CkpJ(x) for each k ∈ N, x ∈ E, which implies that T is m-
topologizable in L(E). Fix k ∈ N and x ∈ E, and write x = x1 +x2, with x1(i) = 0
if i ∈ I \ J and x2(i) = 0 if i ∈ J . we have

pJ(0)(T k(x)) ≤ pJ(0)(T k(x1)) + pJ(0)(T k(x2)) = pJ(0)(T k(x1)) ≤
≤ ||T k(x1)|| ≤ Ck||x1|| = CkpJ(x).

There is a relevant class of operators which are m-topologizable on every locally
convex space. An operator T ∈ L(E) is called bounded if there is 0-neighbourhood
U in E such that T (U) is bounded in E. Bounded operators play an important
role in the theory of Fréchet spaces, see e.g. Vogt [V].

Proposition 7. Every bounded operator T ∈ L(E) on a locally convex space
E is m-topologizable.

Proof. If T is bounded, there is a continuous seminorm p0 ∈ cs(E) such that
for every p ∈ cs(E) there is C(p) ≥ 1 such that, for every x ∈ E, we have p(T (x)) ≤
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C(p)p0(x). In particular, we can find C(0) ≥ 1 such that p0(T (x)) ≤ C(0)p0(x).
Fix p ∈ cs(E) and x ∈ E. We have, for k ∈ N, k ≥ 2,

p(T k(x)) ≤ C(p)p0(T k−1(x)) ≤ C(p)C(0)k−1p0(x).

Taking q(x) := C(p)p0(x), x ∈ E, we get p(T k(x)) ≤ C(0)kq(x) for each k ∈ N, x ∈
E. ¤

Many non normable Fréchet spaces E admit an operator T ∈ L(E) which is not
topologizable. Our next result covers the spaces given by Żelazko in [Z2], Examples
8 (a), (b), (c). The operator in the examples (a) and (b) is the translation operator.

Theorem 8. If E is a Fréchet space without a continuous norm, then there is
T ∈ L(E) which is not topologizable.

Proof. By a classical result of Bessaga and Pelczynski, see e.g. [BP, 2.6.13],
there is a complemented subspace F of E which is isomorphic to the space ω of all
sequences endowed with the pointwise topology. By Żelazko [Z2], Example 8 (c),
the backward shift B(x1, x2, x3, ...) := (x2, x3, ...) on ω is not topologizable. Note
that the notation for the space ω in [Z2] is (s). Consider B as an operator on
F . By assumption, there are continuous linear maps π : E → F and j : F → E
such that π ◦ j coincides with the identity on F . Define T ∈ L(E) by T (x) :=
(j ◦ B ◦ π)(x), x ∈ E. It is easy to see that if T were topologizable on L(E), then
B would be topologizable in L(F ). ¤

Our next result covers examples of non normable Fréchet spaces with a con-
tinuous norm and, in particular, the space which is used in Example 8 (d) in [Z2],
since the space of entire functions H(C) is isomorphic to the power series space
Λ∞(α) with α = (αi)i, αi = i, i ∈ N. However, the operator mentioned in [Z2] is
more natural, it is the translation operator.

Theorem 9. If E = Λ∞(α) is a power series space of infinite type, then there
is T ∈ L(E) which is not topologizable.

Proof. Define the diagonal operator T ∈ L(E) by T ((x(i))i) := (exp(αi)x(i))i

for every x ∈ E. It is easy to see that T is continuous. Suppose that T is topolo-
gizable. Given the seminorm p1(x) =

∑
i exp(αi)|x(i)|, x ∈ E, there is n ∈ N such

that, for each k ∈ N, there is Mk > 0 such that, for each k ∈ N and x ∈ E,

p1(T k(x)) ≤ Mkpn(x) = Mk

∑

i

exp(nαi)|x(i)|.

This implies, for each k ∈ N, taking x = ei, exp(αi)k+1 ≤ Mk exp(nαi) for each
i ∈ N. For k = n + 1 we conclude αi ≤ log(Mn+1) for each i ∈ N. This is a
contradiction, since the sequence α tends to infinity. ¤

Every composition operator T = Cϕ, f → f ◦ϕ, on the space H(D) of holomor-
phic functions on the unit disc, defined by a holomorphic self map ϕ : D→ D such
that the sequence of iterates (ϕk(0))k of 0 ∈ D converges to a point in the boundary
of D, is a continuous linear operator on T ∈ L(H(D)) which is not topologizable.
We refer the reader to Shapiro [S] for details.

We do not know if every non normable Fréchet space with a continuous norm
admits an operator which is not topologizable.
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There are non complete non normable metrizable locally convex spaces on which
every operator is m-topologizable. The following result is based on a deep result
due to Valdivia about the existence of dense hyperplanes of separable Fréchet spaces
with special properties, see [BP, 6.3.11].

Theorem 10. Every infinite dimensional non normable separable Fréchet space
F contains a dense hyperplane E which is not normable and satisfies that every
operator T ∈ L(E) is m-topologizable.

Proof. We apply Bonet, Frerick, Peris, Wengenroth [BFPW], Lemma 3.1, to
conclude that F contains a dense hyperplane E such that every operator T ∈ L(E)
is of the form T = λI +B, with B an operator with finite dimensional range. Since
F is not normable and E is dense in F , the metrizable space E is not normable.
Take T = λI + B ∈ L(E), with the range of B finite dimensional. Every operator
with finite dimensional range is bounded, hence m-topologizable by Proposition 7.
Since the operators λI and B commute, we can apply Żelazko [Z2], Proposition 12,
to conclude that T is m-topologizable too. ¤

References

[BB] K.. Bierstedt, J. Bonet, Some aspects of the modern theory of Fréchet spaces, Rev. R. Acad.
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Departmento de Matemática Aplicada and IMPA-UPV, ETS Arquitectura, E-46071
Valencia, SPAIN

E-mail address: jbonet@mat.upv.es


