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Abstract. We distinguish between entire functions of different order or type
by the behavior of their associated superposition operators on subsets of Besov
spaces or the little Bloch space.

1. Introduction

Let X, Y be spaces of analytic functions on the unit disk D ⊂ C which contain
the polynomials. The nonlinear superposition operator Sϕ on X (with symbol ϕ)
is defined by

Sϕ(f) = ϕ ◦ f, f ∈ X.

We write ϕ ∈ S(X, Y ) if Sϕ(X) ⊂ Y . It is immediate that S(X,Y ) is a vector
space of entire functions. The following natural questions arise:

(1) Given spaces X, Y , what is S(X, Y )?
(2) Are there X, Y for which S(X, Y ) equals a given space of entire functions?

Similar problems in the context of real variables have a long history [AZ], but
the above questions have only recently been studied in complex function theory.
Cámera and Giménez answered (1) in the context of Bergman spaces and the
Nevanlinna area class [CG] and Hardy spaces and related classes [Ca]. Together
with J.L. Fernández [BFV], we answered (1) for various classes of Dirichlet-type
spaces. Question (2) is most natural for spaces of entire functions ϕ defined in
terms of a bound on the growth rate of ϕ, and we showed in [BFV] that many
such spaces of entire functions were of the form S(X,Y ) for pairs of appropriate
Dirichlet-type spaces X,Y . More precisely, we showed that this the case for the
space of polynomials of degree at most n ≥ 0 (see Corollary 10 and Theorem 12)
and the spaces E(ρ) for each ρ > 1 (see Corollary 25); here E(ρ) is the space of
functions of order less than ρ, or order ρ and finite type. Other related results on
superposition operators from Bloch or Besov space to Bergman space were proved
in [AMV] and [BV].

These earlier results involving E(ρ) can be viewed as “tests” that distinguish
between entire functions of different orders according to whether or not they map
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Dirichlet-type spaces to other Dirichlet-type or Bergman spaces. However none of
these earlier results provide us with tests to distinguish between entire functions of
the same order but different types. It is precisely this refinement that we examine
in this note. In particular we show that superposition operators from Besov spaces
X = Bp or the little Bloch space X = B0 to Bergman spaces Y = Aq can be used
to distinguish between entire functions that have the same order ρ ≥ 1 but different
types. This distinction requires a more refined criterion than simply whether the
operator Sϕ maps all of one space into another. Instead the test will be whether
Sϕ(f) lies in a fixed ball in Y for all f in some bounded subset of X.

Let us state here one such result which implies that superposition operators
from Dirichlet space D = B2 to Bergman space Aq can be used in order to distin-
guish between entire functions of order 2 and distinct types. For a definition of the
space E(2, τ), see Section 2; for now, we remark that E(2, τ) contains all functions
whose order and type strictly precede (2, τ) lexicographically.

Theorem 1.1. Suppose 0 < τ, q < ∞. Let R :=
√

2/τq and KR := {f ∈ D :
f(0) = 0, ‖f‖D ≤ R}. Then ϕ ∈ E(2, τ) if and only if Sϕ(KR) is a bounded set in
Aq.

2. Background

Throughout the paper, C denotes the complex plane, D the unit disk {z ∈ C :
|z| < 1}, T the unit circle {z ∈ C : |z| = 1}, and dA(z) := π−1 dxdy = π−1r drdθ is
normalized area measure (a probability measure) on D. A disk of radius r centered
at w is denoted D(w, r), while [z, w] means the line segment from the point z to
the point w.

Given two positive expressions A,B, we write A . B or B & A to mean that
A ≤ CB for some constant C dependent only on allowed parameters (which should
be clear from the context). We write C = C(A,B, . . . ) to indicate that C depends
only on the parameters A,B, . . . .

2.1. Order and type. Recall that the order of a non-constant entire function
ϕ is

ρ := lim sup
r→∞

log log M(r, ϕ)
log r

,

where M(r, ϕ) := max{|ϕ(z)| : |z| = r}. If ϕ has order ρ < ∞, then the type τ of
ϕ is

τ := lim sup
r→∞

log M(r, ϕ)
rρ

.

See the first two chapters of [Boa] for more on entire functions. The allowable
(order-type) pairs are (ρ, τ), 0 ≤ ρ < ∞, 0 ≤ τ ≤ ∞, together with the special
pair (∞, ∗), where ∗ just means that type is undefined for infinite order functions.
Let us define ≺ on this set of allowable pairs to be the (strict) lexicographic order.
Thus (ρ1, τ1) ≺ (ρ2, τ2) if either ρ1 < ρ2 ≤ ∞ or ρ1 = ρ2 < ∞ and τ1 < τ2.

Suppose (ρ, τ) is an allowable pair with ρ < ∞. We denote by E′(ρ, τ) the space
of entire functions that grow more slowly than some entire function of order ρ and
type τ . Equivalently, ϕ ∈ E′(ρ, τ) if ϕ is constant, has order less than ρ, or has
order ρ and type at most τ . If τ < ∞, we also define E(ρ, τ) to be the space of entire
functions ϕ for which there exists a constant C such that |ϕ(z)| ≤ C exp(τ |z|ρ),
z ∈ C. Note that E′(ρ′, τ ′) ⊂ E(ρ, τ) ⊂ E′(ρ, τ) whenever (ρ′, τ ′) ≺ (ρ, τ). Thus
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there is a close relationship between E(ρ, τ) and E′(ρ, τ), but for our purposes,
E(ρ, τ) is much better suited to uniform norm estimates than E′(ρ, τ). We also
write E(ρ) :=

⋃
τ<∞E(ρ, τ). It is convenient to define both E(∞, ∗) and E′(∞, ∗)

to be the class E of all entire functions, and to define E(t,∞) = E(t). If we
define the set-valued functions f1(ρ, τ) = E(ρ, τ) and f2(ρ, τ) = E′(ρ, τ) for all
allowable pairs (ρ, τ), then f1 and f2 are increasing functions in the sense that if
(ρ′, τ ′) ≺ (ρ, τ) then fi(ρ′, τ ′) ≺ fi(ρ, τ), i = 1, 2.

2.2. Hardy and Bergman spaces. We denote by Hp, 0 < p < ∞, the
well-known Hardy space of functions analytic in D for which

‖f‖p
Hp := sup

0<r<1

(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

< ∞ .

Hp functions have radial limits f(eiθ) almost everywhere on T. The Bergman space
Ap, 0 < p < ∞, is the space of functions analytic on D with

‖f‖p
Ap :=

∫

D
|f(z)|p dA(z) < ∞ .

The spaces Hp and Ap are Banach spaces if 1 ≤ p < ∞.
The theory of Bergman spaces, including many recent developments, can be

found in [HKZ] and [DS]. We mention two facts that we shall need. First

(2.1) (1− |z|)2|f(z)|p ≤ ‖f‖p
Ap , f ∈ Ap, z ∈ D ,

as can be seen by applying the area version of the sub-mean value property to the
subharmonic function |f |p on D(z, 1 − |z|). Secondly, there exists C = C(p) such
that ‖f‖Ap ≤ C‖f‖Hp/2 ; this follows from [D, Theorem 9.4].

2.3. Besov, Dirichlet, and Bloch spaces. The Besov space Bp, 1 < p < ∞,
is the Banach space of functions analytic on D for which

‖f‖Bp := |f(0)|+
(

(p− 1)
∫

D
|f ′(z)|p(1− |z|2)p−2 dA(z)

)1/p

< ∞ .

The Dirichlet space is D := B2. The Bloch space B is the Banach space of all
functions analytic in D for which

‖f‖B := |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| < ∞ .

The little Bloch space B0 is the set of all f ∈ B such that lim|z|→1−(1−|z|2)|f ′(z)| =
0. It is the natural limit as p →∞ of Bp, as well as the closure of the polynomials
in B. Note that D ⊂ Hp, 0 < p < ∞ (see [D, Chapter 6, Exercise 7]), so functions
in D have radial limits almost everywhere on T. For more on these spaces, see for
instance [Z1] and [Z2].

We shall need the functions

(2.2) fr,p :=

{
log(1/(1− rz))(log(1/(1− r2))−1/p, 0 < r < 1, 1 < p < ∞,

log((1 + rz)/(1− rz)), 0 < r < 1, p = ∞.

Then fr,p ∈ Xp, if we define Xp := Bp when p < ∞, and X∞ := B0. Let
cr,p := ‖fr,p‖Xp . Then cr,∞ ≤ 2. For fixed p < ∞, cp

r,p → Γ(p − 1)/(Γ(p/2))2

as r → 1−. Here, Γ is the classical gamma function, and this limit can be seen
by checking the proof of Theorem 1.7 in [HKZ] or of Lemma 4.2.2 of [Z1]. In
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particular, the class of all fr,p, 0 < r < 1, is a bounded subset of Xp. The functions
fr,2 are the well-known Beurling functions, and ‖fr,2‖D = cr,2 = 1 for all 0 < r < 1.

3. Main results

If 1 < ρ < ∞ and 0 < q < ∞, then E(ρ) = S(Bρ/(ρ−1), Aq); see [BV,
Theorem 1]. The following theorem says that the action of Sϕ on a certain bounded
subset UR of Bρ/(ρ−1) allows us to make finer distinctions between the classes
E(ρ, τ).

Theorem 3.1. Suppose 1 < ρ < ∞ and 0 < τ, q < ∞. Define s := ρ/(ρ − 1),
R := (2/τq)1/ρ, and UR := {cRfr,s : 0 < r < 1, c ∈ T}, where fr,s is as in (2.2).
Let F be the space of entire functions ϕ such that Sϕ(UR) is bounded in Aq. Then⋃

0<τ ′<τ E(ρ, τ ′) ( F ⊂ E(ρ, τ).

Theorem 1 of [BV] also says that E(1) = S(B0, A
q) for all 0 < q < ∞. Conse-

quently, it is not surprising that the following analogue of Theorem 3.1 for ρ = 1
uses a bounded subset UR of B0.

Theorem 3.2. Suppose 0 < τ, q < ∞. Define R := 2/τq, and UR := {cRfr,∞ :
0 < r < 1, c ∈ T}, where fr,∞ is as in (2.2). Let F be the space of entire functions
ϕ such that Sϕ(UR) is bounded in Aq. Then

⋃
0<τ ′<τ E(1, τ ′) ( F ( E(1, τ).

It would be nice if we could, as in Theorem 1.1, replace the set UR in Theo-
rem 3.1 by a ball in Bs ∩ {f : f(0) = 0}. This would require a variant Trudinger
inequality with sharp constants, i.e. a Bs version of the Chang-Marshall inequality.
The appropriate type of variant Trudinger inequality was proven in [BFV, The-
orem 23] (see also [BO]), but not with a sharp constant. We believe that both
the sharp constant problem and such a variant of Theorem 3.1 are difficult open
problems. Similar remarks apply to such a variant of Theorem 3.2. However the
following partial results are easy corollaries of the proofs of Theorems 3.1 and 3.2.

Corollary 3.3. Suppose 1 < ρ < ∞ and 0 < τ, q < ∞. Define s := ρ/(ρ−1),
R := Γ(s − 1)1/s Γ(s/2)−2/s (2/τq)1/ρ, and KR := {f ∈ Bs : f(0) = 0, ‖f‖Bs ≤
R}. Let F be the space of entire functions ϕ such that Sϕ(KR) is bounded in Aq.
Then F ⊂ E(ρ, τ).

Corollary 3.4. Suppose 0 < τ, q < ∞. Define R := 2/τq and KR := {f ∈
B0 : f(0) = 0, ‖f‖B ≤ R}. Let F be the space of entire functions ϕ such that
Sϕ(KR) is bounded in Aq. Then F ⊂ E(1, τ).

Theorem 1.1 allows us to distinguish between entire functions of order two
and different types, and Theorems 3.1 and 3.2 allow us to distinguish between
entire functions of different orders or types, at least when one of the orders lies in
[1,∞). Perhaps these assertions deserve a little justification. Suppose that ϕi has
order ρi and type τi, i = 1, 2, where either ρ1 or ρ2 lies in the interval [1,∞) and
(ρ1, τ1) ≺ (ρ2, τ2). It follows that we can choose 1 ≤ ρ < ∞ and 0 < τ ′ < τ < ∞ so
that (ρ1, τ1) ≺ (ρ, τ ′) ≺ (ρ, τ) ≺ (ρ2, τ2). Then ϕ1 ∈ E(ρ, τ ′) and so ‖ϕ1 ◦ f‖Aq is
uniformly bounded for all f ∈ UR, where q, R, and UR are as in either Theorem 3.1
or Theorem 3.2, depending on whether 1 < ρ < ∞ or ρ = 1. On the other hand,
ϕ2 /∈ E(ρ, τ) and so ‖ϕ2 ◦ f‖Aq is not uniformly bounded.

Let us now prove each of our theorems.
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Proof of Theorem 1.1. Suppose ϕ ∈ E(2, τ), and so |ϕ(w)| ≤ C exp(τ |w|2), w ∈ C.
Recall that ‖ · ‖Aq . ‖ · ‖Hq/2 . Thus if f ∈ KR and g := f/R, then

(∫

D
|ϕ ◦ f |q dA

)1/2

.
∫

T
|ϕ ◦ f |q/2 .

∫

T
exp

(τq

2
|f |2

)
=

∫

T
exp(|g|2).

But this last integral is uniformly bounded by the Chang-Marshall inequality [CM,
Theorem 1] since ‖g‖D ≤ 1 and g(0) = 0.

Suppose instead that ϕ /∈ E(2, τ), and so there exist a sequence of nonzero
points (wn) tending to infinity so that |ϕ(wn)| ≥ n exp(τ |wn|2). Let rn be the
unique number in (0, 1) for which

|wn| = Rfrn,2(rn) ≡ R
[
log(1/(1− r2

n))
]1/2

,

so that rn → 1 as n → ∞. The Beurling functions fr,2 all lie in K1, and gn :=
R ei arg wnfrn,2 ∈ KR has the property that gn(rn) = wn. Using (2.1), we see that

‖ϕ ◦ gn‖q
Aq ≥ (1− |rn|)2|ϕ(gn(rn))|q

≥ (1− rn)2 · n exp
(
qτ |wn|2

)

= n(1− rn)2 exp
(−qτR2 log(1− r2

n)
)

= n(1− rn)2(1− r2
n)−2.

Since rn → 1, this last expression tends to infinity as n → ∞. Thus ‖ϕ ◦ gn‖Aq is
not uniformly bounded. ¤

It will actually be convenient for us to prove Theorem 3.2 first and then The-
orem 3.1.

Proof of Theorem 3.2. Suppose ϕ ∈ E(1, τ ′) for some τ ′ < τ , and so |ϕ(w)| ≤
C exp(τ ′|w|), w ∈ C. Suppose also g := cRfr,∞ for some c ∈ T, 0 < r < 1. Then

|ϕ(g(z))|q ≤ C

∣∣∣∣
1 + rz

1− rz

∣∣∣∣
τ ′Rq

.

Now τ ′Rq = s for some s < 2, and it is easily verified that |1− rz|−s is integrable
on the unit disk, uniformly in r. It follows that ϕ(UR) is bounded is Aq.

We omit the proof that if ϕ /∈ E(1, τ), then Sϕ(UR) fails to be a bounded set,
since it is very similar to the corresponding part of the proof of Theorem 1.1.

It remains to show that both containments are strict. The function ϕ(z) :=
exp(τz) lies in E(1, τ). Moreover, ϕ(Rfr,∞(z)) = [(1 + rz)/(1 − rz)]2/q, and it is
readily verified that the Aq norm of this last function tends to infinity as r → 1−.
To check this, just look at the Taylor series of the function inside the modulus sign
and apply the standard norm formula for the Bergman space A2 to get

∫

D

∣∣∣∣
1 + rz

1− rz

∣∣∣∣
2

dA(z) = 1 + 4
∞∑

n=1

r2n

n + 1

The statement now follows from the monotone convergence theorem. Thus ϕ ∈
E(1, τ) \ F .

For each m ∈ N, the function

ϕm(z) :=
∞∑

n=m

τnzn−m

n!
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is entire. Clearly, |ϕm(z)| ≤ | exp(τ |z|)|/|z|m for z 6= 0, and ϕm(z) & exp(τz)/zm

for all sufficiently large real z, so ϕm ∈ E(1, τ) \⋃
0<τ ′<τ E(1, τ ′), m ∈ N.

We claim that |ϕm(cRfr,∞(z))|q is integrable on D, uniformly over all r and
c, as long as mq > 1. Let us fix 0 < r < 1, and partition D into annular sets Sj ,
j ≥ 0, where S0 := D ∩D(1, 2(1− r2)), and inductively,

Sj :=
[
D ∩D(1, 2j+1(1− r2))

] \ Sj−1, j ∈ N.

Let j0 be the last integer for which 2j(1 − r2) < 2, and so Sj is empty for j > j0.
By considering separately the cases where z lies in the left and right half of D, we
see that |1− rz| ≥ |1− z|/2. Since also 1− 1/s = 1/ρ, we get

|fr,∞(z)| ≤ log
(

4
2j(1− r2)

)
, z ∈ Sj , 0 ≤ j ≤ j0.

Let g := cRfr,∞ for some c ∈ D. For 0 ≤ j ≤ j0, we have

Ij :=
∫

Sj

|ϕm(g(z))|q dA(z) ≤
(

log
(

4
2j(1− r2)

))−mq

·
(

4
2j(1− r2)

)qτR

|Sj |.

where |Sj | is the normalized area of Sj . Now qτR = 2 and |Sj | ≤ 22(j+1)(1− r2)2,
so Ij . (j1 + 1− j)−mq. Thus I :=

∑j0
j=0 Ij is dominated by a bounded multiple of

the series
∑∞

i=n n−mq, which converges for mq > 1, and so our claim follows. Thus
ϕm ∈ F \⋃

0<τ ′<τ E(1, τ ′) whenever m is an integer exceeding 1/q. ¤

Proof of Theorem 3.1. Suppose ϕ ∈ E(ρ, τ ′) for some τ ′ < τ , and so |ϕ(w)| ≤
C exp(τ ′|w|ρ), w ∈ C. Let us fix 0 < r < 1, and define Sj , j ≥ 0, and j0 as in the
last part of the proof of Theorem 3.2. Noting that 1 − 1/s = 1/ρ, and arguing as
before, we get

|fr,s(z)| ≤
[
log

(
4

2j(1− r2)

)]1/ρ

, z ∈ Sj , 0 ≤ j ≤ j0.

Let g := cRfr,s for some c ∈ D. For 0 ≤ j ≤ j0, we have

Ij :=
∫

Sj

|ϕ(g(z))|q dA(z) ≤
(

4
2j(1− r2)

)τ ′qRρ

|Sj |.

where |Sj | is the normalized area of Sj . Since |Sj | ≤ 22(j+1)(1−r2)2, and τ ′qRρ < 2,
we see that Ij .

[
2j(1− r2)

]ε for some ε > 0 which is independent of r and c. Thus
I :=

∑j0
j=0 Ij is dominated by a finite geometric series with geometric factor 2−ε

and largest term less than 2ε, so I converges uniformly in r and c. Thus ‖ϕ ◦ f‖Aq

is uniformly bounded for all f ∈ UR, as required.
We omit the proof that if ϕ /∈ E(ρ, τ), then Sϕ(UR) fails to be a bounded set,

since it is very similar to the corresponding part of the proof of Theorem 1.1.
It remains to exhibit a function ϕ ∈ F \ ⋃

0<τ ′<τ E(ρ, τ ′). The function
ϕm(z) :=

∑∞
n=[m/ρ]+1 τnz[ρn]−m/n! is entire; here [t] is the greatest integer not

exceeding t. Clearly |ϕm(z)| ≤ | exp(τ |z|ρ)|/|z|m for all z 6= 0, and ϕm(z) &
exp(τzρ)/zm+1 for all sufficiently large real z. Thus ϕm ∈ E(ρ, τ)\⋃0<τ ′<τ E(ρ, τ ′)
for all m ∈ N. We leave to the reader the task of modifying the first part of this
proof to verify that z 7→ ϕm(cRfr,s(z)) is uniformly in Aq as long as qm/τ > 1.
Thus φm ∈ F \⋃

0<τ ′<τ E(ρ, τ ′) whenever m is an integer exceeding τ/q. ¤
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Corollary 3.3 follows easily from the omitted half of the proof of Theorem 3.1
and the fact that the Bs norm of fr,s is asymptotic to Γ(s − 1)1/sΓ(s/2)−2/s.
Similarly, we deduce Corollary 3.4 from the omitted half of the proof of Theorem 3.2
and the fact that ‖fr,∞‖B ≤ 2.

Finally, we mention two things we do not know. First, we do not know if the
second containment in the conclusion of Theorem 3.1 is strict. More significantly,
we know of no results similar to those in this paper that distinguish between entire
functions of different orders ρ1, ρ2 ∈ (0, 1), let alone the more refined distinctions
involving different types.
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