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Abstract

This note contains a proof of the fact that a Jordan curve in R2 with a
continuous tangent line at each point admits a regular reparametrization.
We extend the result both to more general curves in Rn and to higher
orders of differentiability.

1 Introduction

An important result in the theory of the boundary regularity of the Riemann
mapping, due to E. Lindelöf [Lin], asserts that a Jordan domain has a continuous
tangent line at each point of the boundary if and only if the argument of the
derivative of the Riemann mapping extends continuously to the boundary of the
unit disk.

The traditional concept of a continuous tangent line at a point of a curve is
of geometrical nature and essentially independent of the parametrization of the
curve:

Definition. A Jordan curve γ : [0, 1] → R2 is said to have a continuous
tangent line at each point if and only if there exists a continuous function
β : [0, 1] → R satisfying1 for any t0,

lim
t→t+0

arg{γ(t)− γ(t0)} = β(t0)

and
lim

t→t−0

arg{γ(t)− γ(t0)} = β(t0) + π.

In the case of regular curves (having a C1 parametrization with nonvanishing
tangent vector) the tangent line is given by the tangent direction.

The precise concept of regular curve comes from the following definitions:

Definition. A curve γ: [0, 1]→Rn is said to have a regular local parametriza-
tion if and only if:
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and by grant number 2005SGR00611 of Generalitat de Catalunya.
AMS Subject Classification: Primary 53A04. Secondary 26E99, 30E99.

1As usual, the argument is measured with respect to the X axis in R2.
Clearly the referred condition is exact for t0 ∈ (0, 1) and has a different but analogous

formulation for t0 = 0, 1.
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A) For any t0 ∈ (0, 1) there exists δ = δ(t0), J = Jt0 ⊂ R a bounded open
interval and µ : J → Rn, C1, such that µ(J) = γ(t0 − δ, t0 + δ) and µ′ is
never 0 on J .

B) There exists δ′0 > 0, J0 ⊂ R a bounded open interval and µ0 : J0 → Rn,
C1 such that µ(J0) = γ([0, δ′0)) ∪ γ((1− δ′0, 1]) and µ′0 is never 0 on J0.

Definition. 1. A curve γ: [0, 1] → Rn is said to have a regular global
parametrization if and only if there exists µ : [0, 1] → Rn realizing the
properties A) and B).

2. A curve γ is said to be regular if and only if it has a global regular
parametrization

The assumption that the derivative is always non zero is more subtle and
basic than appears on first sight. Every polygonal curve permits an infinitely
differentiable parametrization γ [Dem, p. 10]. The point is that γ′(t) = 0 for t
corresponding to a corner.

It is often taken for granted that definitions of having a continuous tangent
line and being regular are equivalent For instance in [Pom, Sect. 3.2] the
tangent definition is used to prove Lindelöf’s theorem whereas in [Pom, Sect. 3.3]
the other definition is used.

The proof of the fact that regular curves posses a continuous tangent line
is quite elementary. In the present paper we give an accessible proof of the
converse. There cannot be any doubt that the classical literature contains a
proof, but the authors where unable to find a reference. For instance in [Dem,
p. 11] the fact is stated as a theorem but withouth giving a proof.

However, our proof covers the case of general (not necessarily Jordan) curves
in Rn, as well as a generalization to higher orders of differentiability. We think
this is the main interest of the paper.

2 Curves with continuous geometric tangent lines

Suppose, now, that γ : (0, 1) → Rn is a continuous arc with the natural assump-
tion that no open interval in (0, 1) is applied by γ to a single point. In the
remaining of the paper, the notation for the components of a curve γ will be
γ(t) = (γ1(t), . . . , γn(t)), as well as ( , ) for the standard scalar product in Rn.

Definition (Continuous geometric tangent line). We will say that γ has
a continuous tangent line at each point if and oly if there is a continuous map
B : (0, 1) → Sn−1 (the euclidean unit sphere in Rn) such that for any t0 ∈ (0, 1),
one has

lim
t→t+0

γ(t)− γ(t0)
‖γ(t)− γ(t0)‖

= B(t0)

and

lim
t→t−0

γ(t)− γ(t0)
‖γ(t)− γ(t0)‖

= −B(t0),

whenever γ(t) 6= γ(t0).
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Remark. Observe that under the hypotheses of the definition above, any point
in the curve has finite multiplicity. Otherwise there would be a point
t0∈ (0, 1) and a sequence of disjoint open intervals Il = (αl, βl) whose extreme
points increase (or decrease) to t0 and satisfy γ(αl) = γ(βl) = γ(t0), for any l. It
is possible to find a sequence of points sl∈Il such that γ(sl)−γ(αl)

‖γ(sl)−γ(αl)‖ =B(αl)+wl

and ‖wl‖ →l→+∞ 0. This means that ( γ(sl)−γ(αl)
‖γ(sl)−γ(αl)‖ , B(t0)) →t→+∞ 1, but

γ(sl)−γ(αl)
‖γ(sl)−γ(αl)‖ = γ(sl)−γ(t0)

‖γ(sl)−γ(t0)‖ → −B(t0), so the limit of the scalar product above
should be −1. This is a contradiction.

The previous definition is the one adopted in [Gar, p. 60], for Jordan curves,
in the case of n = 2.

Even in Rn, the definition above imposes strong restrictions on the curve:

Proposition 1. If γ has continuous tanget line at each point, then for every
t0 ∈ (0, 1) there exist δ > 0 and j ∈ {1, . . . , n} such that γj : (t0 − δ, t0 + δ) → R
is injective.

Proof. For a fixed t0 ∈ (0, 1), after an afine change of coordinates, we may
assume that B(t0) = (1, 0, . . . , 0) = e1. Then, there exists δ > 0 such that
(B(t), e1) > 0 for t ∈ (t0 − δ, t0 + δ). As a consequence γ1(t) is injective on this
interval, otherwise there would be a, b ∈ (t0 − δ, t0 + δ) such that γ1(a) = γ1(b),
and this would imply the existence of a point τ ∈ (a, b) with γ1(τ) = γ1(a) =
γ1(b):

For t in a neighborhood of a and t > a we have (γ(t)− γ(a), e1) > 0 which
implies that γ1(t) > γ1(a) = γ1(b). Analogously, for t in in a neighborhood
of b and t < b, we have (γ(t) − γ(b), e1) < − 1

2 (B(b), e1) < 0, and therefore
γ1(t) < γ1(b) = γ1(a). Then Bolzano’s theorem applied to the function f(t) =
γ1(t)− γ1(a) will show the existence of τ .

Iteration of this procedure would provide points τn → τ0 with τn, τ0 ∈
(t0 − δ, t0 + δ) such that γ1(τn) = γ1(τ0). Then (γ(τn) − γ(τ0), e1) = 0, but
(B(τ0), e1) > 0.

Corollary 1. If γ : [0, 1] → Rn is a curve having continuous tangent line at
every point, then for any t0 ∈ [0, 1] there is an open neighborhood It0 (in the
extended sense for the cases t0 = 0, 1), such that γ|It0

is a Jordan arc.

3 The case of Jordan arcs

Suppose now that γ : [0, 1] → Rn is a Jordan arc (γ continuous and injective).

Proposition 2. If γ has continuous tangent line at each point, then the
set γ((0, 1)) admits a regular local parametrization.

Proof. We will proceed by induction on the dimension:
Fix t0 ∈ (0, 1). After a rigid movement in Rn we may suppose that γ(t0) = 0

and B(t0) = e1. By Proposition 1, there exists δ > 0 such that γ1 : (t0 −
δ, t0 + δ) → R is an injective map to the X1 axis, and so it is the projection
of γ((t0 − δ, t0 + δ)) onto the hyperplane 〈en〉⊥R . Let p : Rn → 〈en〉⊥R be the
orthogonal projection map.

Since p is continuous, p◦γ is a continuous curve, and since t → (p◦γ(t), e1) =
γ1(t) is injective in I = (t0 − δ, t0 + δ), so is ρ = p ◦ γ in this interval.
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Then ρ is a Jordan arc in Rn−1. Moreover, if t1 ∈ I, we have

p(B(t1)) = p( lim
t→t+1

γ(t)− γ(t1)
‖γ(t)− γ(t1)‖

) = lim
t→t+1

p ◦ γ(t)− p ◦ γ(t1)
‖γ(t)− γ(t1)‖

= lim
t→t+1

ρ(t)− ρ(t1)
‖γ(t)− γ(t1)‖

,

and therefore

‖p(B(t1))‖ = lim
t→t+1

‖ρ(t)− ρ(t1)‖
‖γ(t)− γ(t1)‖

.

Since (B(t1), e1) 6= 0, we see that ‖p(B(t1))‖ > 0, and

lim
t→t+1

ρ(t)− ρ(t1)
‖ρ(t)− ρ(t1)‖

= lim
t→t+1

p ◦ γ(t)− p ◦ γ(t1)
‖γ(t)− γ(t1)‖

lim
t→t+1

‖γ(t)− γ(t1)‖
‖ρ(t)− ρ(t1)‖

= lim
t→t+1

‖γ(t)− γ(t1)‖
‖ρ(t)− ρ(t1)‖

lim
t→t+1

p(
γ(t)− γ(t1)
‖γ(t)− γ(t1)‖

),

because p is linear, so

lim
t→t+1

ρ(t)− ρ(t1)
‖ρ(t)− ρ(t1)‖

= p(B(t1)) lim
t→t+1

‖γ(t)− γ(t1)‖
‖ρ(t)− ρ(t1)‖

= p(B(t1))
1

‖p(B(t1))‖
6= 0.

Now, if the result is true for Jordan arcs in Rn−1, then ρ admits a local C1

parametrization. Let us call it

µ : (τ0 − δ′′, τ0 + δ′′) → Rn−1,

with µ(τ0) = ρ(t0), for some δ′′ > 0.
On the other hand, the injectivity of the projection p in ρ(I) implies that

for a small interval I0 b I, γ(I0) is a graph over ρ(I0), namely there exists a
function f : ρ(I0) → R, such that

γ(I0) = {(µ(τ), f(µ(τ)) : τ ∈ (τ0 − δ′′, τ0 + δ′′)}.

The parametrization τ → (µ(τ), f(µ(τ)) is C1 in (τ0 − δ′′, τ0 + δ′′), because
for any t1 ∈ (τ0 − δ′′, τ0 + δ′′) one has

f(µ(τ1 + h))− f(µ(τ1))
h

=
f(µ(τ1 + h))− f(µ(τ1))
‖µ(τ1 + h))− µ(τ1)‖

‖µ(τ1 + h))− µ(τ1)‖
h

.

The first term is

γn(t1 + s)− γn(t1)
‖p(γ(t1 + s))− p(γ(t1))‖

=

γn(t1 + s))− γn(t1))
‖γ(t1 + s))− γ(t1)‖

‖p(γ(t1 + s))− p(γ(t1))‖
‖γ(t1 + s))− γ(t1)‖

,

having limit
Bn(t1)

‖p(B(t1)‖
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as h → 0+ (or s → 0+). The second term has limit ‖µ′(τ1)‖. Then

lim
h→0+

f(µ(τ1 + h))− f(µ(τ1))
h

=
Bn(γ−1(τ1))

‖p(B(γ−1(τ1))‖
‖µ′(τ1)‖.

The limit when h → 0− can be managed in a similar way.
Also, this parametrization has nonvanishing tangent vector, because µ′(τ) is

never 0.

The case n = 1 is trivial, and this, as first step of induction, would conclude
the assertion. Nevertheless, we begin the induction by the case of n = 2, because
it contains the basic ingredients of the general proof, and also has interest in
itself, as a standard statement in the study of the boundary regularity of the
Riemann conformal map. In this case, the usual presentation of the hypotheses
uses the function β(t) = arctan B2(t)

B1(t)
. We will use this notation for a while.

Since γ is continuous, it follows that J = γ1(t0− δ, t0 + δ) is an open interval
of the X axis, and the set {γ(t) : t ∈ (t0− δ, t0 + δ)} is the graph of the function
f(x) = γ2 ◦ γ−1

1 (x), defined in J .
Now, f is a C1 function on J : If x0 ∈ J , x0 = γ1(t1), we have

lim
h→0

{
f(x0 + h)− f(x0)

h
− tanβ(t0)

}
= lim

t→t0

{
γ2(t)− γ2(t1)
γ1(t)− γ1(t1)

− tanβ(t1)
}

= 0,

so2, since β is a continuous function, then f ∈ C1, and x → (x, f(x)) is a
C1 parametrization of the curve γ around the point γ(t0), with nonvanishing
tangent vector (1, f ′(x)).

4 Globalization of the parametrization

Now, the curves possessing a local C1 parametrization have a global one in a
natural way.

Proposition 3. If γ is continuous closed curve in Rn having a regular local
parametrization, then γ admits a regular global parametrization.

Proof. Let t0 ∈ (0, 1) and ς0 = γ(t0). By the proposition 2, there are intervals
It0 b (0, 1), J b R and µ : J → Rn a local C1 paramentrization of γ(I) with
nonvanishing derivative. We can choose τ0 ∈ J such that µ(τ0) = ς0, and
since µ′(τ0) 6= 0, there is an open interval J ′τ0

b J where µ is injective, and
µ(J ′) coincides with the image by γ of a corresponding interval I ′, like in cases A)
and B) of the definition in section 1.

(WLOG we may suppose that the first component of µ′(τ0) is strictly pos-
itive, and so the first component of µ is an homeomorphism from an open
interval J ′τ0

to an open interval, K ⊂ R, containing the image of τ0 in the inte-
rior. Then γ−1(K) contains t0 in the interior, and we choose the corresponding
interval.)

A similar procedure works for t0 = 0 or 1.

The curve γ is rectifiable: Take a finite covering of [0, 1] by intervals such
that the image admits a paramatrization µ in a neighborhood of the closure

2In fact f ′(x) = tan β(γ−1
1 (x)).
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of J (µ and as J as above). Each arc µ(J) has finite length, so γ([0, 1]) has it
too. Let L > 0 be the length of γ([0, 1]).

Moreover, there is a finite collection of points 0 < t1 < · · · < tp < 1 and
positive numbers δ1, . . . , δp, δ

′ to which there is an associate covering of [0, 1] by
intervals

I0 = [0, δ′), . . . , Ij = (tj − δj , tj + δj), . . . , Ip+1 = (1− δ′, 1],

such that Ij only intersects Ij−1, Ij+1.
Choose points t′j ∈ Ij ∩ Ij+1, for j = 0, . . . , p, and consider the arcs Γ0 =

γ([0, t′0] ∪ [t′p, 1]) and Γj = γ([t′j , t
′
j+1]). Also call xj = γ(t′j).

For any j, we have for the corresponding Jj and µj , that Γj ⊂ µj(Jj), and
since µj is continuous and injective in Jj , we can parametrize Γj by its arc
length:

sj(τ) =
∫ τ

µ−1
j (xj)

‖µ′j(ξ)‖ dξ,

and λj(sj) = µj(τ(sj)), for sj ∈ [0, `(Γj)), where ` means length.

Then we have a global parametrization:
In [0, L] we consider the points σj =

∑j
k=1 `(Γk).

On each interval [Lj , Lj+1], we consider the parametrization λj , and define
% : [0, L] → Rn as %(s) = λj(s− Lj), for s ∈ [Lj , Lj+1].

The fact that ‖%′‖ ≡ 1 and that the direction of %′ is the same as the
corresponding µ′j , which are continuous, imply that % is globally C1.

Finally, we have as a corollary

Theorem 1. If γ : [0, 1] → Rn is a (continuous closed) curve having a contin-
uous tangent line at each point then γ admits a regular global parametrization.

Remark. The case n = 2 provides classical statement:

The Jordan curves in R2 having a continuous tangent line at each point
admit a regular global parametrization.

5 Higher order of differentibility

In the previous sections we have seen how the geometrical condition of having
a tangent line at each point implies that the curve admits a C1 parametrization
with nonvanishing derivative, and how this geometrical property is independent
of the particular parametrization γ, i. e. it can be checked from an a proiri given
parametrization γ. We will study now how the existence of reparametrizations
of higher order of differentiability can be checked by looking at the original
parametrization too.

First of all, we have that a curve satisfiying the condition limt→t±0

γ(t)−γ(t0)
‖γ(t)−γ(t0)‖=

±B(t0), with B(t) continuous, admits a parametrization by the arc length % that
is C1. Then it is an easy observation that the curve admits a Ck parametrization
if and only if ρ is Ck.
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Let us consider the case k = 2. The curve admits a C2 parametrization iff
the limit

lim
s→s0

%′(s)− %′(s0)
s− s0

= %′′(s0)

is continuous.
Fix t0 and t. Since there exists a C1 diffeomorphism θ, such that s = θ(t),

we have

%′(s)− %′(s0)
s− s0

=
%′(θ(t))− %′(θ(t0))

θ(t)− θ(t0)
=

B(t)−B(t0)
θ(t)− θ(t0)

=
1

θ(t)− θ(t0)
{σ(τ ′, t)

γ(τ ′)− γ(t)
‖γ(τ ′)− γ(t)‖

+σ(τ, t0)
γ(τ)− γ(t0)
‖γ(τ)− γ(t0)‖

+w(τ ′, τ, t, t0)},

where w = o(|θ(t)− θ(t0)|) and σ(t′, t′′) = 1 if t′′ < t′ and −1 if t′ < t′′.

Since the curve is rectifiable, we have

θ(t)− θ(t0) = s− s0 = sup

{∑
i

‖γ(τi)− γ(τi−1)‖; {τi} ⊂ P(Jt,t0)

}
,

where P(Jt,t0) is the set of partitions of the interval between t and t0. Then,
for a given 0 < ε < (s− s0)2, there is a partition {τi} such that

‖γ(t)− γ(t0)‖ ≤ s− s0 = α +
∑

i

‖γ(τi)− γ(τi−1)‖,

where |α| < ε.
The main condition on the curve implies that

γ(τi)− γ(τi−1) = (B(t0) + vi)‖γ(τi)− γ(τi−1)‖,

where ‖vi‖ = o(|s− s0|), for |t− t0| small. So

γ(t)− γ(t0) =
∑

i

γ(τi)− γ(τi−1)

= B(t0)
∑

i

‖γ(τi)− γ(τi−1)‖+
∑

i

‖γ(τi)− γ(τi−1)‖vi

= (s− s0)B(t0)− αB(t0) +
∑

i

‖γ(τi)− γ(τi−1)‖vi,

and

(γ(t)− γ(t0), B(t0)) = (s− s0)(1 + o(|s− s0|)).

This implies that(
γ(t)− γ(t0)
‖γ(t)− γ(t0)‖

, B(t0)
)

=
s− s0

‖γ(t)− γ(t0)‖
(1 + o(|s− s0|))

and so
lim
t→t0

s− s0

‖γ(t)− γ(t0)‖
= 1.
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Then

lim
s→s0

%′(s)− %′(s0)
s− s0

= lim
t→t0

B(t)−B(t0)
‖γ(t)− γ(t0)‖

= lim
t→t0

σ(t, t0)
‖γ(t)− γ(t0)‖

{
σ(τ ′, t)

γ(τ ′)− γ(t)
‖γ(τ ′)− γ(t)‖

+ σ(τ, t0)
γ(τ)− γ(t0)
‖γ(τ)− γ(t0)‖

}
,

and we have the result

Theorem 2. If γ : [0, 1] → Rn is a continuous closed curve, then γ admits a
C2 paramentrization with nonvanishing first derivative if and only if there are
two vector-valued continuous functions

B(j) : [0, 1] → Rn, j = 1, 2,

such that

B(1)(t0) = lim
t→t0

1
‖γ(t)− γ(t0)‖

{σ(t, t0)(γ(t)− γ(t0))} 6= 0

and

B(2)(t0) = lim
t→t0; |τ ′−t|,|τ−t0|=o(|t−t0|)

σ(t, t0)
‖γ(t)− γ(t0)‖

{
σ(τ ′, t)

γ(τ ′)− γ(t)
‖γ(τ ′)− γ(t)‖

+σ(τ, t0)
γ(τ)− γ(t0)
‖γ(τ)− γ(t0)‖

}
,

where the precedence indicator σ(α, β) is 1 if β < α and −1 if α < β.

Remark. In this case, if γ is parametrized by the arc length, the term B(2)

corresponds to the curvature parameters, so is the curvature radius and the
normal vector.

Then, giving a priori these parameters and requireing their continuity, aside
to the tangent direction, implies that γ admits a C2 parametrization.

The corresponding statement for the Ck case is as follows:

Theorem 3. If γ : [0, 1] → Rn is a continuous closed curve, then γ admits a
Ck paramentrization with nonvanishing first derivative if and only if there are k
vector-valued continuous functions

B(N) : [0, 1] → Rn, N = 1, . . . , k,

such that

B(N)(t0) = lim
t1,...,t2N−1→t0

|tp−tq|=o(|t2N−1−t0|), ∀p,q

σ(t2N−1, t0)
‖γ(t2N−1)− γ(t0)‖

2N−1−1∑
i=0

σ(t2i+1, t2i)
γ(t2i+1)− γ(t2i)
‖γ(t2i+1)− γ(t2i)‖

N−1∏
s=2

σ(t2s(E[ 2i+1
2s ]+1)−1, t2sE[ 2i+1

2s ])
(−1)E[ 2i+1

2s ]+1

‖γ(t2s(E[ 2i+1
2s ]+1)−1)− γ(t2sE[ 2i+1

2s ])‖
,

where the precedence indicator σ(α, β) is 1 if β < α and −1 if α < β.
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Proof. The proof results from the recurrent use of arguments completely analo-
gous to the ones guiving the C2 case. The characterization is given by a similar
but more complicated formula that involves 2k points and iterated quotients of
differences of values of γ at these points, with corresponding precedence signs.
The denominators are always of the form ‖γ(t′)− γ(t′′)‖ for t′, t′′ some of these
points. The long formula in the statement is a compressed version of the natural
formula, in the Ck case.
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