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Abstract. We obtain estimates of the norm of Toeplitz operators on

weighted Hardy and Besov spaces. As an application we give character-

izations of some spaces of pointwise multipliers.

1. Introduction

The main goal of this work is the study of the norms of the Toeplitz

operators in a large scale of spaces of holomorphic functions on B, which

includes weighted Hardy and Besov spaces. In order to introduce the prob-

lem and to state our results, we recall some results on Toeplitz operators in

the classical setting of the Hardy space Hp.

Let B be the open unit ball in Cn, B̄ its closure and S its boundary.

By dν and dσ we denote the normalized Lebesgue measures on B and S

respectively. We denote by H(B) (resp. H(B̄)) the space of holomorphic

functions on B (resp. on B̄). If p > 0, a holomorphic function f on B is in

the Hardy space Hp(B) if and only if

‖f‖Hp = sup
r<1

∫
S

|f(rζ)|pdσ(ζ) < +∞.

If p ≥ 1, the operator which assigns to each f its boundary values

f(ζ) = lim
r↗1

f(rζ), a.e ζ ∈ S defines an isometry from Hp(B) onto Hp(S),
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the Lp-closure of the restriction to S of H(B̄). A well known result about

operators on the Hardy spaces Hp(S), 1 < p < ∞, states that for any

ψ ∈ L∞(dσ), the norm of the Toeplitz operator with symbol ψ, Tψ :

Hp(S)→ Hp(B), defined by

Tψ(f)(z) =

∫
S

ψ(ζ)f(ζ)

(1− zζ̄)n
dσ(ζ),

is equivalent to ‖ψ‖∞.

By composing the above mentioned isometry between Hp(B) and Hp(S)

with Tψ we can obtain maps from Hp(S) to itself, or from Hp(B) to itself.

All these operators will be denoted by Tψ and we will simply write Hp to

denote either Hp(S) or Hp(B).

We will consider the duality (Hp)′ = Hp′ with respect to the pairing

(1.1) 〈f, ḡ〉S = lim
r→1

∫
S

frḡrdσ,

where fr(ζ) = f(rζ), in the sense that each Λ ∈ (Hp)′ is given by Λ(f) =

〈f, ḡ〉S, for some g ∈ Hp′ and ‖Λ‖(Hp)′ ≈ ‖g‖Hp′ . Then, we have that

the following equivalence between the norm of the bilinear Toeplitz form

Γψ(f, ḡ) =
∫
S
ψ fḡdσ = 〈Tψ(f), ḡ〉S and the norm of the operator Tψ holds:

(1.2) ‖Γψ‖Bil(Hp×Hp′→C)
≈ ‖Tψ‖L(Hp→Hp) ≈ ‖ψ‖∞.

There exists an extensive literature on Toeplitz operators in spaces of

holomorphic functions. See for instance [11], [2] and the references therein.

We want to extend these results to other Banach spaces of holomorphic

functions on B. Throughout the paper we consider Banach spaces of holo-

morphic functions on B, X and Y satisfying H(B̄) ⊂ X, Y . We denote

by Xc (resp. Yc), the space H(B̄) normed by ‖ · ‖X (resp. ‖ · ‖Y ). If

X, Y ⊂ H1(B), then the functions f in X or Y , have boundary values f(ζ),

a.e. ζ ∈ S in L1(dσ). As in the case of Hp spaces, we will identify the space

X with its space of boundary values.
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The Toeplitz form Γψ is well-defined on Xc×Y c for any ψ ∈ L1(dσ), and

the associated Toeplitz operator Tψ defines an operator from Xc to H(B).

Moreover, notice that if 1 ≤ p ≤ ∞, ψf ∈ Lp(dσ) and g ∈ Hp′(B), then

Γψ(f, ḡ) = 〈Tψ(f), ḡ〉S.

Therefore, if Y ′ is the dual space of Y with respect to the pairing (1.1), the

norm of the Toeplitz operator Tψ : X → Y ′ is equivalent to the norm of

Γψ : X × Y → C.

The norm of this form Γψ will be computed in terms of extensions of ψ

to B, given by generalized Poisson-Szegö operators. This computation will

be used to obtain estimates of the norms of Toeplitz operators for different

spaces of holomorphic functions on B. For m ≥ 0, ζ ∈ S and z ∈ B, we

consider the integral operators

Pm(ψ)(z) = cn,m

∫
S

ψ(ζ)
(1− |z|2)n+2m

|1− zζ̄|2n+2m
dσ(ζ),

where cn,m is a normalizing constant. If m = 0, we recover the Poisson-

Szegö kernel. These operators give the solution of some generalized Dirichlet

problems (see Section 2 for more details).

The fact that for any z ∈ B, fz(w) = (1− wz̄)−n−m ∈ H(B̄) gives that

(1.3) |Pm(ψ)(z)| ≤ ‖Γψ‖Bil(Xc×Y c)ωm(z),

where

ωm(z) = ωm,X,Y (z)

= cn,m(1− |z|2)n+2m‖(1− wz̄)−n−m‖X‖(1− wz̄)−n−m‖Y .
(1.4)

Inequality (1.3) gives immediately two necessary conditions on ψ such

that Γψ : Xc × Y c → C is bounded.

The first condition is just that,

(1.5) sup
z∈B

|Pm(ψ)(z)|
ωm(z)

≤ ‖Γψ‖Bil(Xc×Y c→C).
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The second condition is given in terms of ψ. If ϕ ≥ 0 is a continuous

function on B and ζ ∈ S, let lim inf
r↗1

ϕ(rζ) = sup
r

inf
r<t<1

ϕ(rζ).

Let

(1.6) ω̃m(ζ) = lim inf
r↗1

ω(rζ).

From (1.3), we obtain

(1.7) |ψ(ζ)| ≤ ‖Γψ‖Bil(Xc×Y c)ω̃m(ζ), a. e. ζ ∈ S.

Now, if we assume that 0 < ω̃m(ζ) <∞, a.e. ζ ∈ S, we obtain

(1.8) sup
ζ∈S

|ψ(ζ)|
ω̃m(ζ)

≤ ‖Γψ‖Bil(Xc×Y c→C).

Since ‖Γψ‖Bil(Xc×Y c→C) ≤ ‖Γψ‖Bil(X×Y→C) it is clear that the correspond-

ing conditions (1.5) and (1.8) are also necessary to ensure that Γψ : X×Y →
C is bounded. Moreover, if Xc and Yc are dense in X and Y respectively,

and Γψ is bounded on Xc × Y c, then Γψ extends to an unique operator on

X × Y also denoted by Γψ.

In order to state conditions on X and Y such that

sup
z∈B

|Pm(ψ)(z)|
ωm(z)

≈ ‖Γψ‖Bil(Xc×Y c→C), or

sup
z∈B

|Pm(ψ)(z)|
ωm(z)

≈ ‖Γψ‖Bil(X×Y→C),

(1.9)

we consider the functions τc, τ : [0, 1)→ R defined by

τc(r) = sup

{
‖fr ḡr (ωm)r‖L1(dσ)

‖f‖X‖g‖Y
; f, g ∈ H(B̄), f, g 6= 0

}
,

and

τ(r) = sup

{
‖fr ḡr (ωm)r‖L1(dσ)

‖f‖X‖g‖Y
; f ∈ X, g ∈ Y, f, g 6= 0

}
,

where fr(ζ) = f(rζ), 0 ≤ r < 1, ζ ∈ S.

With these notations we can now state the following result.
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Theorem 1.1. Let m ≥ 0 and let X and Y be Banach spaces of holomorphic

functions on B, such that H(B̄) ⊂ X, Y .

Then

sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
≤ ‖Γψ‖Bil(Xc×Y c→C) ≤ ‖τc‖∞ sup

z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
.

Moreover, if X, Y ⊂ H1(B),

‖Γψ‖Bil(X×Y→C) ≤ ‖τ‖∞ sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
.

Observe that the functions τ and τc depend only on the spaces X and Y

and not on the function ψ. Of course the interesting case for applications

is when the functions τ and τc are bounded.

Notice that ifX = Hp and Y = Hp′ , choosingm = 0, we have ‖P0(ψ)‖∞ =

‖ψ‖∞, ω0(z) ≈ 1 (by Proposition 1.4.10 in [14]) and ‖τ‖∞ = 1 (by Hölder’s

Inequality). Therefore, (1.2) can be obtained from Theorem 1.1. We also

remark that if p = 2, then ω0 = 1 and in consequence the equivalences in

(1.2) can be replaced by identities (see for instance [8]).

Theorem 1.1 can be used to improve some well known results on Toeplitz

operators in classical spaces. For instance, if Bp
s is the holomorphic Besov

space on B (defined in Section 2) and TSymb(X → Y ) denotes the set

of symbols of all the continuous Toeplitz operators Tψ from X to Y , then,

this space coincides with L∞(dσ) if X and Y satisfy one of the following

conditions:

(i) B1
n ⊂ X ⊂ H∞ and BMOA ⊂ Y ⊂ B∞0 .

(ii) B1
n/p′ ⊂ X ⊂ Hp ⊂ Y ⊂ B∞0 , with 1 < p <∞.

This result includes the cases where X = A is the ball algebra (the space

of holomorphic functions on B and continuous on B̄), and generalizes the

well known result TSymb(H∞ → BMOA) = TSymb(H∞ → B∞0 ) = L∞ in

the unit disk [9].

In addition to the results on pointwise multipliers between some classical

spaces which are a consequence of the fact that, if h ∈ H1 and f ∈ H(B̄), the
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multiplication operator Mh(f) = hf corresponds to the Toeplitz operator

Th, we also prove that:

(i) If B1
n ⊂ X ⊂ H∞∩VMOA, thenM(X → VMOA) coincides with

the multiplicative algebra H∞ ∩ VMOA.

(ii) Let b∞0 be the little Bloch space, that is the closure of H(B̄) in

B∞0 . If B1
n ⊂ X ⊂ H∞ ∩ b∞0 , thenM(X → b∞0 ), coincides with the

multiplicative algebra H∞ ∩ b∞0 .

Here, M(X → Y ) denotes the space of pointwise multipliers from X to

Y .

The next theorem gives conditions on X and Y such that

(1.10) sup
ζ∈S

|ψ(ζ)|
ω̃m(ζ)

≈ ‖Γψ‖Bil(Xc×Y c→C).

Theorem 1.2. Let X and Y be Banach spaces of holomorphic functions on

B containing H(B̄).

If 0 < ω̃m(ζ) <∞ a.e. ζ ∈ S, and there exists a constant CX,Y such that

‖fg‖L1(ω̃m) ≤ CX,Y ‖f‖X‖g‖Y , then∥∥∥∥ ψω̃m
∥∥∥∥
∞
≤ ‖Γψ‖Bil(Xc×Y c→C) ≤ ‖Γψ‖Bil(X×Y→C) ≤ CX,Y

∥∥∥∥ ψω̃m
∥∥∥∥
∞
.

This result permit us to obtain results on Toeplitz operators in some class

of holomorphic weighted Hardy spaces. In order to precise these results we

consider weights in S, that for simplicity we will call admissible weights,

satisfying:

(i) θ(ζ) > 0 a.e. ζ ∈ S.

(ii) θ, θ−p
′/p ∈ L1(dσ),

For this class of weights, let Hp(θ) denotes the closure of the restriction

of H(B̄) on S in Lp(θ).

Observe that if θ−p
′/p ∈ L1(dσ), then for each ϕ ∈ Lp(θ),∫

S

|ϕ(ζ)|dσ(ζ) ≤ ‖θ−p′/p‖1/p′

L1(dσ)‖ϕ‖Lp(θdσ).

Therefore, Hp(θ) is a subspace of H1.
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With these conditions we have:

Theorem 1.3. Let 1 < p <∞, ψ ∈ L1(dσ) and θ0, θ1 a pair of admissible

weights. Then,

‖Γψ‖Bil(Hp(θ0)×Hp′ (θ1))→C)
≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

1/p′

1

∥∥∥∥∥
∞

.

From this last result we can obtain estimates on the norm of the corre-

sponding Toeplitz operator Tψ on weighted Hardy spaces, once we have a

description of the dual of Hp′(θ1) with respect to the pairing (1.1). This is

the case when θ1 is in the Muckenhoupt class Ap whose the definition and

some properties of these weights will be stated in Section 4. Among them,

we remark that we give a characterization of the fact that θ ∈ Ap in terms

of the generalized extensions Pm(θ), which extend the one obtained by [12],

where it was consider the case m = 0 and p = 2.

We obtain the following theorem:

Theorem 1.4. Let 1 < p < ∞, ψ ∈ L1(dσ), θ0 an admissible weight and

θ1 ∈ Ap′.
Then

‖Tψ‖L(Hp(θ0)→Hp(θ1)) ≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

−1/p
1

∥∥∥∥∥
∞

.

In particular, if θ = θ0 = θ1 ∈ Ap, then ‖Tψ‖L(Hp(θ)→Hp(θ)) ≈ ‖ψ‖∞

The paper also contains some additional results on weighted Hardy spaces

and Besov spaces, that may be interesting by themselves.

If θ ∈ Ap, then H(B̄) is dense in Hp(θ), and in this case Hp(θ) consists

of holomorphic functions f on B, such that

‖f‖pHp(θ) =: sup
0≤r<1

∫
S

|f(rζ)|pθ(ζ)dσ(ζ) <∞.

Let (I + R)k be the linear differential operator of order k defined by

(I +R)kzα = (1 + |α|)kzα, where α = (α1, · · · , αn) and |α| =
n∑
j=1

|αj|.
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If s ∈ R, we denote by Hp
s (θ) the Hardy-Sobolev space of holomorphic

funtions on B such that ‖(I +R)sf‖Hp(θ) <∞.
It is well known (see [10] p. 334) that if 1 < p <∞ and θ ∈ Ap, the dual

of Hp
s (θ) with the pairing given by (1.1) is Hp′

−s(θ
−p′/p).

In order to consider weighted Besov spaces related to Hp(θ), we introduce

an averaging function Θ of the weight θ in S given by Θ(z) = 1
|Iz |

∫
Iz
θdσ. If

the weight θ is in Ap, then its averaging Θ is in the class Bp, introduced in

[5] (see Section 4 for more details). The characterizations of Hp(θ) in terms

of the admissible maximal function, shows that, when θ ∈ Ap we can define

an equivalent norm in Hp(θ) in terms of the averaging function Θ given by

‖f‖pHp(Θ) =: sup
0≤r<1

∫
S

|f(rζ)|pΘ(rζ)dσ(ζ).

In order to define weighted Besov spaces, as in the Hardy spaces cases,

for 1 ≤ p < ∞ we consider admisible weights on B, that is weights Ψ > 0

a.e. on B such that Ψ,Ψ−p
′/p ∈ L1(dν).

If 1 ≤ p <∞, s ∈ R, a non-negative integer k > s and Ψ is an admissible

weight, we denote by Bp
s,k(Ψ) the completion of the space H(B̄) endowed

with the norm

‖f‖p
Bps,k(Ψ)

=:

∫
B

|(I +R)kf(z)|p(1− |z|2)(k−s)p−1Ψ(z)dν(z).

If 1 < p < ∞ and Ψ ∈ Bp, then different values of k gives equivalent

norms (see [7]), and therefore in this case the space Bp
s,k(Ψ) will be simply

denoted by Bp
s (Ψ). Moreover, if Ψ ∈ Bp, then the dual of Bp

s (Ψ) with

respect to the pairing (1.1) is Bp
−s(Ψ

−p′/p).

If θ ∈ Ap the function Θ is in Bp and consequently, if q < p, the weight

Θq/p is in B1+ q
p

(p−1). Since 1 + q
p
(p − 1) > q, we have that the weight Θq/p

might not be in Bq. If the weight θ is in a smaller class, for instance, if

θ ∈ Ap0 , where p0 ≤ 1 + p/q′, we have that the weight Θq/p ∈ Bq and in

particular we have that the space Bq
s,k(Θ

q/p) is independent of k.
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Theorem 1.5. Let 1 < p < ∞, 1 ≤ q0 < q1 ≤ min{p, 2} and θ ∈ Ap0,

where p0 = 1 + p/q′0. For j = 0, 1, let sj = n/qj − n/p .

Then, Bq0
s0

(Θq0/p) ⊂ Bq1
s1

(Θq1/p) ⊂ Hp(θ).

With this result we can prove the following theorem.

Theorem 1.6. Let 1 < q0 < p < q1 < ∞, θ0 ∈ Ap0, θ1 ∈ Ap′1 where

p0 = 1 + p/q′0, p′1 = 1 + p′/q1 and Θ0 and Θ1 the corresponding averaging

functions. Then Θ
q0/p
0 ∈ Bq0, Θ

q′1/p
′

1 ∈ Bq′1 and

‖Γψ‖
Bil(B

q0
n/q0−n/p

(Θ
q0/p
0 )×B

q′1
n/q′1−n/p

′ (Θ
q′1/p

′
1 )→C)

≈ ‖Tψ‖L(B
q0
n/q0−n/p

(Θ
q0/p
0 )→Bq1

n/q1−n/p
(Θ
−q1/p′
1 ))

≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

1/p′

1

∥∥∥∥∥
∞

.

More general results of this type can be found in Section 4.

The paper is organized as follows. In Section 2, we recall some well

known properties of the unweighted holomorphic Hardy-Sobolev and Besov

spaces, and other technical results that will be needed in the next sections.

In Section 3, we prove Theorems 1.1 and 1.2, and its application to the

study of the Toepliz operators and pointwise multipliers in classical spaces

and weighted Hardy spaces (Theorem 1.3). In Section 4, we start recalling

the main properties of the weights Ap and Bp, and we extend a result of S.

Petermichl and B. Wick about characterizations of the weights in Ap of the

sphere in terms of a generalized invariant harmonic extension to the unit

ball. In the second part of this section we recall some well known properties

of the weighted Hardy spaces with weights in Ap, and of the weighted Besov

spaces with weights in Bp, and we prove Theorems 1.5 and 1.6.

Notations: Throughout the paper, the letter C may denote various

non-negative numerical constants, possibly different in different places. The

notation f(z) . g(z) means that there exists C > 0, which does not depends

of z, f and g, such that f(z) ≤ Cg(z).
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2. Preliminaries

In this section we state some notations and some well known results, that

will be needed in the forthcoming sections.

2.1. Non-isotropic balls, tents and admissible regions. For ζ ∈ S

and 0 < t < 2, let Uζ,t be the non-isotropic ball on S defined by Uζ,t =

{η ∈ S; |1 − ηζ̄| < t}, and let Ûζ,t be the non-isotropic tent on B defined

by Ûζ,t = {z ∈ B; |1− zζ̄| < t}.
It is well known that the Lebesgue measure on S of Uζ,t, denoted by |Uζ,t|,

is of order of tn, and the Lebesgue measure on B of Ûζ,t also denoted by

|Ûζ,t| satisfies |Ûζ,t| ≈ tn+1.

To each z = rζ, 0 < r < 1, ζ ∈ S, we consider the associated non-isotropic

ball Iz = Uζ,(1−|z|2) and the tent Îz = Ûζ,(1−|z|2).

For ψ ∈ L1(dσ), let MH−L(ψ) denote the non-isotropic Hardy-Littlewood

maximal, defined by

MH−L(ψ)(ζ) = sup
t>0

1

|Uζ,t|

∫
Uζ,t

ψ(η)dσ(η).

If ζ ∈ S, let Γζ be the admissible region Γζ = {z ∈ B; |1−zζ̄| < 1−|z|2}.
Observe that if z ∈ Γζ , |1−zζ̄| ≈ 1−|z|2. The admissible maximal function

of a function ψ ∈ L1(dν) is M(ψ)(ζ) = supz∈Γζ
|ψ(z)|.

If ψ is a non-negative measurable function on B, Fubini’s Theorem gives

that ∫
B

ϕ(z)dν(z) =

∫
S

∫
Γζ

ϕ(z)
dν(z)

|Iz|
dσ(ζ).

2.2. Integral operators. Let P be the Cauchy integral operator given by

P (f)(z) =

∫
S

f(ζ)

(1− zζ̄)n
dσ(ζ), z ∈ B.

For m ≥ 0, ζ ∈ S and z ∈ B, let Pm be the non-isotropic kernel defined

by

Pm(ζ, z) = cn,m
(1− |z|2)n+2m

|1− zζ̄|2n+2m
, where cn,m =

Γ(n+m)2

(n− 1)!Γ(n+ 2m)
.
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Observe that for m = 0, P0 is the Poisson-Szegö kernel.

We also denote by Pm the corresponding integral operator on L1(dσ)

defined by

Pm(ψ)(z) =

∫
S

ψ(ζ)Pm(ζ, z)dσ(ζ), z ∈ B.

Let ∆m be the differential operator ∆m defined by

∆m = (1− |z|2)

{
n∑

i,j=1

(δij − zizj) ∂i∂j +mR +mR−m2Id

}
.

This family of differential operators ∆m generalizes the invariant Lapla-

cian, which corresponds to m = 0. It is shown in [1] that the generalized

Dirichlet problem

∆mu = 0, u ∈ C(B), u = ϕ on S, ϕ ∈ C(S),

has a unique solution given by

u(z) =

∫
S

ϕ(ζ)Pm(ζ, z) dσ(ζ) = Pm(ϕ)(z).

It is also shown in [1] that if ϕ ∈ L1(dσ), then lim
r→1

Pm(ϕ)(rζ) = ϕ(ζ) a.e.

ζ ∈ S.

Proposition 1.4.10 in [14] gives in particular that if 1 ≤ p < ∞, m ≥ 0

and f ∈ H(B̄), then

(2.11) |f(z)|p ≈
∣∣∣∣∫
S

f(ζ)
(1− |z|2)n+2m

(1− zζ̄)n(1− ζz̄)n+2m
dσ(ζ)

∣∣∣∣p . Pm(|f |p)(z).

Finally, we also point out that ‖Pm(ψ)‖∞ ≈ ‖ψ‖∞, and that

supr |Pm(ψ)(rζ)| .MH−L(|ψ|)(ζ).

To conclude we state the following lemma, which follows easily from

Proposition 1.4.10 in [14].

Lemma 2.1. If k,m > 0, then for z, w ∈ B,∫
S

dσ(ζ)

|1− zζ̄|n+k|1− wζ̄|n+m
≈ (1− |z|2)−k

|1− wz̄|n+m
+

(1− |w|2)−m

|1− zw̄|n+k
.
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2.3. Unweighted spaces of holomorphic functions. Let ∂jψ = ∂
∂zj
ψ

and ∂jψ = ∂
∂zj
ψ. If α = (α1, . . . , αn) and |α| =

∑n
j=1 |αj|, we denote by ∂α

the differential operator of order |α| defined by ∂α1
1 · · · ∂αnn .

We denote by R the radial derivative
n∑
j=1

zj∂j. For s ∈ R, we consider

the invertible linear operator (I +R)s on H(B), defined on the monomials

zα = zα1
1 · · · zαnn by (I +R)szα = (1 + |α|)szα.

For 1 ≤ p ≤ ∞ and s ∈ R, the holomorphic Besov space Bp
s is the set of

holomorphic functions f on B such that

‖(1− |z|2)k−s((I +R)kf)(z)‖Lp((1−|z|2)−1dν(z)) < +∞,

for some non-negative integer k > s. It is well known that different values

of k > s give equivalent norms in Bp
s . Moreover, if we replace in the last

expression (I + R)kf by ∇kf =:
∑
|α|≤k |∂αf | we also obtain an equivalent

norm.

Notice that the space B∞0 is the Bloch space, and that if s > 0, then B∞s

coincides with the holomorphic Lipschitz space Lips.

It is well known that if 1 ≤ p <∞ and s ∈ R, then H(B̄) is dense in the

ball algebra A, in Bp
s and also in Hp

s . This density fails to be true for the

spaces H∞, BMOA or B∞s . The closure of H(B̄) in BMOA is denoted by

VMOA, and the closure of H(B̄) in the Bloch space B∞0 is the little Bloch

space b∞0 .

The following two theorems summarize the inclusion and duality results

on the above spaces. Their proofs can be found in [3] and [4].

Theorem 2.2. Let 1 ≤ q < p <∞ and s, t ∈ R satisfying s−n/p = t−n/q.
Then,

(i) Bq
t ⊂ Bp

s and Hq
t ⊂ Hp

s .

(ii) If q ≤ min{p, 2}, then Bq
t ⊂ Hp

s .

(iii) B1
n ⊂ A, Bp

n/p, H
p
n/p ⊂ VMOA ⊂ BMOA ⊂ B∞0 .
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Theorem 2.3. Let 1 < p < ∞ and s ∈ R. The following duality results

with respect to the pairing (2.12) holds:

(i) (VMOA)′ = H1, and ((B∞0 )c)
′ = B1

0 .

(ii) (H1)′ = BMOA, and (B1
0)′ = B∞0 .

(iii) (Bp
s )
′ = Bp′

−s, and (Hp
s )′ = Hp′

−s.

We conclude this section with some remarks about the pairing 〈f, g〉S.

The fact that any function inHp has its radial maximal functionMr(f)(ζ) =

sup0≤r<1 |f(rζ)| in Lp(dσ) gives that

〈f, g〉S = lim
r↗1

∫
S

frḡrdσ =

∫
S

fḡdσ,

and hence

∫
S

|f ||g|dσ is finite.

However, if f ∈ Bp
s and g ∈ Bp′

−s, then fg is not necessarily in L1(dσ)

and we cannot, in general, interchange the limit with the integral. In these

cases it is convenient to rewrite the pairing (2.12) as follows. The formula

(see Section 1.4 in [14])

∫
S

|ζα|2dσ =
(n+ |α|) · · · (n+ k − 1 + |α|)

n (k − 1)!

∫
B

|zα|2(1− |z|2)k−1dν(z),

the fact that Rzα = |α|zα, and the homogeneous expansion of the holomor-

phic functions f and g, give that∫
S

f(rζ)g(rζ)dσ(ζ) =

∫
B

[p(R)f ](rz)[q(R)g](rz)(1− |z|2)k−1dν(z),

where p(R) and q(R) are the differential operators associated to any of the

one variable real polynomials p(t) and q(t) satisfying

p(t)q(t) =
(n+ t) · · · (n+ k − 1 + t)

n (k − 1)!
.
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In particular, if we denote by Rl
j the differential operator of order l defined

by Rl
j = (jI +R) · · · ((j + l − 1)I +R), then for l ≤ k∫

S

fr(ζ)gr(ζ)dσ

=
1

n (k − 1)!

∫
B

[Rl
nf ](rz)[Rk−l

n+lg(rz)](1− |z|2)k−1dν(z).

(2.12)

We point out that if j > 0, then the operators Rl
j : H → H are invertible.

The inverse will be denoted by R−lj .

Formula (2.12) can be used to prove that (Bp
s )
′ = Bp′

−s with the pairing

(1.1). The corresponding results on duality for the Hardy-Sobolev spaces,

i.e. (Hp
s )′ = Hp′

−s, can be deduced using instead the formula∫
S

frḡrdσ =

∫
S

[(I +R)−sf ]r[(I +R)sg]rdσ.

3. Norms of Toeplitz operators

We will assume that X and Y are two Banach spaces of holomorphic func-

tions on B, containing both of them H(B̄). We start this section obtaining

necessary conditions on a functions ψ ∈ L1(dσ), such that the bilinear

Toeplitz forms Γψ : Xc × Y c → C be continuous.

Since

Pm(ψ)(z) = cn,m(1− |z|2)n+2m

∫
S

ψ(ζ) (1− ζz̄)−n−m(1− zζ̄)−n−mdσ(ζ),

it is clear that for any z ∈ B,

|Pm(ψ)(z)|

≤ cn,m‖Γψ‖Bil(Xc×Y c→C)

∥∥∥∥(1− |z|2)n/p
′+m

(1− wz̄)n+m

∥∥∥∥
X

∥∥∥∥(1− |z|2)n/p+m

(1− wz̄)n+m

∥∥∥∥
Y

= ‖Γψ‖Bil(Xc×Y c→C)ωm(z).

(3.13)

Therefore, if Γψ is bounded on Xc × Y c, we have that

sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
≤ ‖Γψ‖Bil(Xc×Y c→C).
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This condition is given in terms of the generalized Poisson-Szëgo extension

of ψ. A necessary condition in terms of the boundary values of ψ can be

obtained as follows. If z = rη and we take lim infr↗1 in (3.13), we have

(3.14) |ψ(η)| ≤ ‖Γψ‖Bil(Xc×Y c→C) lim inf
r↗1

ωm(rη), a.e. η ∈ S.

Thus, if 0 < ω̃m(η) = lim inf
r↗1

ωm(rη) < ∞ a. e. η ∈ S, we obtain as a

necessary condition ∥∥∥∥ ψω̃m
∥∥∥∥
∞
≤ ‖Γψ‖Bil(Xc×Y c→C).

In order to obtain conditions on X and Y that assures that

(3.15) sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
≈ ‖Γψ‖Bil(Xc×Y c→C),

observe that if f, g ∈ H(B̄) and ψ ∈ L1(S), then

(3.16) Γψ(f, ḡ) = lim
r↗1

∫
S

Pm(ψ)(rζ)

ωm(rζ)
f(rζ)ḡ(rζ)ωm(rζ)dσ(ζ).

Therefore, if

τc(r) = sup

{
‖fr ḡr (ωm)r‖L1(dσ)

‖f‖X‖g‖Y
; f, g ∈ H(B̄), f, g 6= 0

}
,

is a bounded function on [0, 1) then (3.15) holds.

If Xc and Yc are dense in X and Y respectively, then the bilinear form

Γψ can be extended to a bilinear continuous form on X × Y preserving

the norm. As usual, we also denote this extension by Γψ. However, in

some important examples these conditions of density are not satisfied (as

it happens in the case of H∞, BMOA, B∞0 ). In these cases we can modify

the above argument to also obtain conditions on X and Y such that

(3.17) sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
≈ ‖Γψ‖Bil(X×Y→C),

is satisfied.

Assume that f, g ∈ H1, and ψ ∈ L1(S), then∣∣∣∣∫
S

ψ(ζ)f(ζ)ḡ(ζ)dσ(ζ)

∣∣∣∣ ≤ ∫
S

lim
r↗1
|Pm(ψ)(rζ)||f(rζ)ḡ(rζ)|dσ(ζ).
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We also assume that the function

τ(r) = sup

{
‖fr ḡr (ωm)r‖L1(dσ)

‖f‖X‖g‖Y
; f ∈ X, g ∈ Y, f, g 6= 0

}
,

is bounded on [0, 1).

Then, taking a sequence {rj} ↗ 1 and applying Fatou’s Lemma, we have∣∣∣∣∫
S

ψ(ζ)f(ζ)ḡ(ζ)dσ(ζ)

∣∣∣∣
≤ sup

z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
sup

0≤r<1

∫
S

|fr(ζ)||gr(ζ)|(ωm)r(ζ)dσ(ζ)

≤ ‖τ‖∞ sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
‖f‖X‖g‖Y ,

Summarizing these conditions, we have

Theorem 3.1. Let m ≥ 0 and let X and Y be Banach spaces of holomorphic

functions on B containing H(B̄).

Then,

sup
z

{
Pm(ψ)(z)

ωm(z)

}
≤ ‖Γψ‖Bil(Xc×Y c→C) ≤ ‖τc‖∞ sup

z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
.

If in addition X, Y ⊂ H1, then

‖Γψ‖Bil(X×Y→C) ≤ ‖τ‖∞ sup
z∈B

{
|Pm(ψ)(z)|
ωm(z)

}
.

Now let us state conditions on X and Y such that

(3.18)

∥∥∥∥ ψω̃m
∥∥∥∥
∞
≤ ‖Γψ‖Bil(Xc×Y c→C).

is satisfied.

Assuming that 0 < ω̃m(ζ) <∞ a. e. ζ ∈ S, we have

Γψ(f, ḡ) .

∥∥∥∥ ψω̃m
∥∥∥∥
∞

∫
S

|f ||g|ω̃mdσ.

Therefore,



TOEPLITZ OPERATORS ON WEIGHTED HARDY AND BESOV SPACES 17

Theorem 3.2. Let X and Y be Banach spaces of holomorphic functions on

B containing H(B̄).

If 0 < ω̃m(ζ) <∞, a.e. ζ ∈ S, and there exists a constant CX,Y such that

‖fg‖L1(ω̃m) ≤ CX,Y ‖f‖X‖g‖Y , then∥∥∥∥ ψω̃m
∥∥∥∥
∞
≤ ‖Γψ‖Bil(Xc×Y c→C) ≤ ‖Γψ‖Bil(X×Y→C) ≤ CX,Y

∥∥∥∥ ψω̃m
∥∥∥∥
∞
.

Theorem 3.2 will be used to obtain results on Toeplitz operators in

weighted Hardy spaces with weights satisfying some additional conditions

on S.

3.1. Toeplitz operators in some classical spaces. Since ‖Pm(ψ)‖∞ ≈
‖ψ‖∞, we have as immediately consequence of Theorem 3.1 the following

result.

Corollary 3.3. Let X and Y be Banach spaces of holomorphic functions on

B satisfying ωm ≈ 1 a.e. on S, and ‖τ‖∞ < ∞. Then ‖Γψ‖Bil(X×Y→C) ≈
‖ψ‖∞.

Corollary 3.4. Let 1 ≤ p ≤ ∞. Assume that X, Y satisfy B1
n/p′ ⊂ X ⊂ Hp

and B1
n/p ⊂ Y ⊂ Hp′ respectively. Then, Γψ : X × Y → C is bounded if and

only if ψ is in L∞.

Proof. If l > 0, Proposition 1.4.10 in [14] gives that ‖(1− wz̄)−n−l‖L1(dσ) ≈
(1 − |z|2)−l. Therefore, the norms of the function fz(w) = (1 − wz̄)−n−2m

both in B1
n/p′ and in Hp, and consequently in X, are equivalent to (1 −

|z|2)−n/p
′−m. Analogously, the norms of the function fz(w) in B1

n/p and

Hp′ and consequently in Y are equivalent to (1 − |z|2)−n/p−m. From these

estimates, we obtain ωm ≈ 1 a.e. on S.

Since ‖frḡr(ωr)‖L1(dσ) . ‖frḡr‖L1(dσ) . ‖f‖Hp‖g‖Hp′ . ‖f‖X‖g‖Y , we

have that the function τ is bounded. Consequently, the result follows from

Corollary 3.3. �
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Examples of spaces X and Y satisfying the conditions in the above corol-

lary are the Hardy-Sobolev spaces Hp0
s0

with 1 ≤ p0 < p and s0 − n/p0 =

−n/p, or more generaly the scale of Besov spaces Bp0,q0
s0

and the scale of

Triebel-Lizorkin spaces F p0,q0
s0

satisfying 1 ≤ p0 ≤ p, 1 ≤ q0 ≤ 2, and

s0 − n/p0 = −n/p (see H. Triebel’s book [18] and the references therein for

a more complete list of embeddings between these spaces).

Corollary 3.5. Let X and Y be Banach spaces of holomorphic functions

on B. Assume that ωm(rζ) → 0 as r ↗ 1, a.e. ζ ∈ S. Then the only

bounded bilinear Toeplitz forms Γψ are the ones corresponding to the trivial

case where ψ = 0 a.e. ζ ∈ S.

Proof. By Theorem 3.1, |Pm(ψ)(rζ)| ≤ cn,m‖Γψ‖L(Xc×Y c→C)ωm(rζ), and

consequently Pm(ψ)(rζ)→ 0 as r ↗ 1, a.e. ζ ∈ S. Therefore, ψ(ζ) = 0 a.e.

ζ ∈ S. �

Corollary 3.6. Let 1 ≤ p < q ≤ ∞. Assume that X, Y satisfy B1
n/p′ ⊂

X ⊂ Hp and B1
n/q ⊂ Y ⊂ Hq′ respectively. Then, Γψ : Xc × Y c → C is not

bounded except for the trivial case where ψ(ζ) = 0 a.e. ζ ∈ S.

Proof. The arguments used in the proof of Corollary 3.4, give that ωm(rζ) ≈
(1− r2)n/p−n/q → 0 as r ↗ 1. �

Corollary 3.4 permit us to obtain easily some well known characteriza-

tions on the symbols of Toeplitz operators. Among them we have that

if 1 < p < +∞, then TSymb(Hp → Hp) = L∞. It also can be obtained

some improvements of the classical results that we sumarize in the following

theorem.

Theorem 3.7. Let X and Y two Banach spaces of holomorphic functions

satisfying one of the following conditions:

(i) B1
n ⊂ X ⊂ H∞ and BMOA ⊂ Y ⊂ B∞0 .

(ii) B1
n/p′ ⊂ X ⊂ Hp ⊂ Y ⊂ B∞−n/p, for some 1 < p <∞.
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Then TSymb(X → Y ) = L∞.

Proof. Assume that (i) is satisfied. In this case, we only need to show that

TSymb(B1
n → B∞0 ) ⊂ L∞ ⊂ TSymb(H∞ → BMOA).

The second embedding is a consequence of the fact that the Cauchy pro-

jection maps L∞ into BMOA.

In order to prove the first embedding, we need to show that ‖ψ‖∞ .
‖Tψ‖L(B1

n→B∞0 ). And that is a consequence of the duality (B1
0)′ = B∞0 , of

the Corollary 3.4 with p =∞ and ‖Tψ‖L(B1
n→B∞0 ) ≈ ‖Γψ‖Bil(B1

n×B1
0→C)

.

If X and Y satisfy (ii), then the result is a consequence of the fact that

TSymb(B1
n/p′ → B∞−n/p) ⊂ L∞ = TSymb(Hp → Hp),

where the first embedding is a consequence of (B1
n/p)

′ = B∞−n/p and Corollary

3.4. �

Remark 3.8. In the unit disk the equalities

TSymb(H∞ → BMOA) = TSymb(H∞ → B∞0 ) = L∞

were proved in [9].

Examples of spaces X satisfying the hypothesis of Theorem 3.7 are for in-

stance the ball algebra A, the Hardy-Sobolev space H1
n and the multiplicative

algebras Bp
n/p ∩H∞. As Y we can consider all the scale of Triebel-Lizorkin

spaces F∞,q0 , 2 ≤ q ≤ ∞. We recall that BMOA = F∞,20 and B∞0 = F∞,∞0 .

3.1.1. Pointwise multipliers. Let X and Y be Banach spaces of holo-

morphic functions on B, both of them containing H(B̄). We denote by

M(X → Y ) the space of pointwise multipliers from X to Y , that is the

space of holomorphic functions h on B such that the map Mh(f) = hf is

continuous from X to Y .

It is clear that if h ∈ H1(S) and f ∈ H(B̄) then Mh(f) = Th(f). There-

fore, the results on Toeplitz operators lead easily to results on pointwise

multipliers.



20 CARME CASCANTE, JOAN FÀBREGA, AND JOAQUIN M. ORTEGA

We then have:

Theorem 3.9. Let 1 ≤ p ≤ ∞ and let X and Y Banach spaces satisfying

B1
n/p′ ⊂ X ⊂ Hp ⊂ Y ⊂ B∞−n/p.

Then M(X → Y ) = H∞

Proof. Observe that

H∞ =M(Hp → Hp) ⊂M(X → Y ) ⊂M(B1
n/p′ → B∞−n/p) = H∞,

where the last identity is a consequence of Theorem 3.7. �

It is also possible to obtain other characterizations of spaces of pointwise

multipliers.

Theorem 3.10. Let X and Y Banach spaces of holomorphic functions on

B, and let 1 ≤ p <∞.

(i) If B1
n ⊂ X ⊂ H∞ ∩ VMOA ⊂ Y ⊂ VMOA, then M(X → Y )

coincides with the multiplicative algebra H∞ ∩ VMOA.

(ii) If B1
n ⊂ X ⊂ H∞ ∩ b∞0 ⊂ Y ⊂ b∞0 , then M(X → Y ), coincides

with the multiplicative algebra H∞ ∩ b∞0 .

(b∞0 denotes the little Bloch space, that is the closure of H(B̄) in B∞0 .)

Proof. We recall that a holomorphic function f ∈ BMOA is in VMOA, if

lim
t→0

1

tn

∫
|{z∈B; |1−zζ̄|<t}

|Rf(z)|2(1− |z|2)dν(z) = 0 a.e. ζ ∈ S.

Therefore, it is clear that H∞ ∩ VMOA is a multiplicative algebra,

and (H∞ ∩ VMOA) ·X ⊂ H∞ ∩ VMOA ⊂ Y , which proves that H∞ ∩
VMOA ⊂M(X → Y ).

In order to prove the converse, observe thatM(X → Y ) ⊂ Y ⊂ VMOA,

and that M(X → Y ) ⊂ M(X → VMOA) ⊂ M(X → BMOA) = H∞,

where the last equality is a consequence of Theorem 3.9 with p =∞.
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The same arguments and the fact that a holomorphic function f ∈ B∞0
is in b∞0 if lim

r↗1
(1− r2)|Rf(rζ)| = 0 a.e. ζ ∈ S gives (ii). �

3.2. Toeplitz operators on weighted Hardy spaces. Let us conclude

this section with an application of Theorem 3.2 to the study of Toeplitz

operators on weighted Hardy spaces.

We will consider weighted Hardy spaces for the class of admissible

weights consisting of measurable functions θ on S such that

(i) θ(ζ) > 0 a.e. ζ ∈ S,

(ii) θ, θ−p
′/p ∈ L1(dσ).

For this class of weights, Hp(θ) will denote the closure of H(B̄)|S in Lp(θ).

Observe that since θ−p
′/p ∈ L1(dσ), then for each ϕ ∈ Lp(θdσ),∫

S

|ϕ(ζ)|dσ(ζ) ≤ ‖θ−p′/p‖1/p′

L1(dσ)‖ϕ‖Lp(θ).

Therefore, Lp(θ) ⊂ L1(dσ), and if {fj} ⊂ H(B̄) and limj fj = ϕ in Lp(θ),

then {fj} converges in L1 to a function f ∈ H1, whose boundary values

coincide with ϕ a.e. on S. Therefore, Hp(θ) is a subspace of H1.

If (n + m)p − 2n ≥ 0, and fz is the test function defined by fz(ζ) =
(1− |z|2)n/p

′+m

(1− ζz̄)n+m
, we have that

‖fz‖Hp(θ) =

(∫
S

(1− |z|2)(n/p′+m)p

|1− ζz̄|(n+m)p
θ(ζ)dσ(ζ)

)1/p

=

(
1

cn,(n+m)p−2n

P(n+m)p−2n(θ)(z)

)1/p

,

which has radial limit
θ1/p

c
1/p
n,(n+m)p−2n

a.e. on S.

We then have:
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Theorem 3.11. Let be 1 < p < ∞, ψ ∈ L1(dσ) and θ0, θ1 admissible

weights. Then,

‖Γψ‖Bil(Hp(θ0)×Hp′ (θ1)→C)
'

∥∥∥∥∥ ψ

θ
1/p
0 θ

1/p′

1

∥∥∥∥∥
∞

.

Proof. Observe that the above computations give that ω̃n(θ) ≈ θ
1/p
0 θ

1/p′

1 a.e.

on S, and that, by Hölder’s Inequality,∫
S

|f ||g|ω̃dσ . ‖f‖Hp(θ0)‖g‖Hp′ (θ1).

ThereforeHp(θ0) andHp′(θ1) satisfy the conditions in Theorem 3.2, which

proves the result. �

The estimates on the norm of the bilinear form Γψ on Hp(θ0) ×Hp′(θ1)

give estimates on the norm of the corresponding Toeplitz operator Tψ once

we can identify the dual of Hp′(θ1) with respect to the pairing (1.1). This

is the case when θ1 is in the Muckenhoupt class Ap. The next section is

devoted to give the properties we will need on this class of weights and the

associated weighted Hardy spaces.

4. Weighted Hardy and Besov spaces and Toeplitz operators

The main goal of this section is to prove a weighted version of the embed-

ding Bq
t ⊂ Hp

s , 1 ≤ q ≤ min{p, 2}, t − n/q = s − n/p. The proof will rely

on properties of weights in the Muckenhoupt class Ap on S and weights in

the class Bp on B.

4.1. Ap and Bp weights. Given a non negative weight θ ∈ L1(dσ) and W

a measurable set in S, let θ(W ) =
∫
W
θdσ. For z = rζ, ζ ∈ S, 0 < r < 1, we

consider the average function on B associated to θ defined by Θ(z) =
θ(Iz)

|Iz|
,

where Iz = Uζ,1−r2 = {η ∈ S; |1− ηζ̄| < 1− r2}.
The Muckenhoupt class Ap on S, 1 < p <∞, consists of the non-negative

weights θ ∈ L1(dσ) satisfying
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(4.19) Ap(θ) = sup
z∈B

(Θ(z))1/p (Θ′(z))
1/p′

<∞

where θ′ = θ−p
′/p and Θ′(z) =

θ′(Iz)

|Iz|
. Observe that θ ∈ Ap, if and only if,

θ′ ∈ Ap′ .
If p = 1, the class A1 on S is the set of non-negative weights θ ∈ L1(dσ)

satisfying

(4.20) A1(θ) = sup
ζ∈S

MH−L(θ)(ζ)

θ(ζ)
<∞.

An immediate consequence of Hölder’s Inequality is that if 1 < q < p,

then A1 ⊂ Aq ⊂ Ap, that Ap(θ) ≥ 1, and that if 0 ≤ λ ≤ 1, θλ is in Aq,
with q = 1 + λ(p− 1) ≤ p (see [16] pag. 218). In particular, for any θ ∈ Ap
and 0 < λ ≤ 1, the weight θλ is also in Ap.

Weights in the classAp appear in the study of the boundedness of singular

operators on weighted spaces. In particular, we have that if 1 < p < ∞
and θ ∈ Ap, then the Cauchy projection maps Lp(θ) in Hp(θ), and as a

consequence of this fact, the dual of Hp(θ) can be identified with Hp′(θ′)

with the pairing given by 〈f, ḡ〉S (see [10] p.334).

The following characterization of the class Ap (see [16] p.195), will be

considered in the following sections.

θ ∈ Ap, if and only if for any measurable set U ⊂ S and ϕ ≥ 0 in Lp(dσ),

(4.21)

(
1

|U |

∫
U

ϕdσ

)p
≤ Ap(θ)

θ(U)

∫
U

ϕpθdσ.

From the above characterization we deduce that if V ⊂ U are measurable

sets on S, and ϕ is the characteristic function of V , then(
|V |
|U |

)p
≤ Ap(θ)

θ(V )

θ(U)
.

Therefore, for any θ ∈ Ap, the measure θdσ is a doubling measure, in the

sense that there exists a constant DS such that

θ(Uζ,2t) ≤ DSθ(Uζ,t), for all ζ ∈ S, 0 < t < 2.
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By Proposition 5.1.4 in [14], we have that DS ≤ 2np.

An immediate consequence of this doubling property is the following

lemma.

Lemma 4.1. Let 1 < p <∞ and θ ∈ Ap. If z = rζ, ζ ∈ S, 0 < r < 1, and

N > 0 satisfies DS < 2n+N , then∫
S

(1− |z|2)N

|1− zη̄|n+N
θ(η)dσ(η) ≈ θ(Iz)

(1− |z|2)n
≈ Θ(z).

Proof. Let Iz,j = Uζ,2j−1(1−r). Then,∫
S

θ(η)

|1− zη̄|n+N
dσ(η) ≈ θ(Iz)

(1− |z|2)n+N
+
∞∑
j=2

θ(Iz,j \ Iz,j−1)

2j(n+N)(1− |z|2)n+N
.

Therefore, the estimate follows from θ(Iz,j \ Iz,j−1) ≤ Dj
Sθ(Iz) and DS <

2n+N . �

Observe that the above lemma permit us to rewrite the Ap-condition

(4.19) on θ in terms of its extension Pm(θ):

θ ∈ Ap, if and only if, sup
z
Pm(θ)(z)1/p Pm(θ′)(z)1/p′ <∞

for any m satisfying 22n+2m > DS, D
′
S. In particular for any m such that

2n+ 2m > max(np, np′).

The next theorem shows that in fact the above characterization holds for

any m ≥ 0. This characterization extends the results of Section 5 in [12]

where it was considered the invariant harmonic case m = 0 and p = 2.

Theorem 4.2. Let 1 < p < ∞ and m ≥ 0 and let θ be a non-negative

function on S. The following conditions are equivalent:

(i) θ is in Ap.
(ii) Ap,m(θ) = sup

z
Pm(θ)(z)1/p Pm(θ′)(z)1/p′ <∞.

Moreover, if m > 0, Ap(θ) ≈ Ap,m(θ), and Ap(θ) . Ap,0(θ) . Ap(θ)2.
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Proof. Fix z = rζ 6= 0 and let jz be the integer part of | log2(1 − |z|2)|. If

0 ≤ j < jz, let Iz,j = Uζ,2j(1−r2) and Iz,jz = S. For 0 ≤ j ≤ jz, we consider

Θj(z) =
1

|Iz,j|

∫
Iz,j

θdσ, and Θ′j(z) =
1

|Iz,j|

∫
Iz,j

θ′dσ.

Now, assume that (ii) is satisfied. Clearly

Θ(z) .
∫
Iz

(1− |z|2)n+2m

|1− zη̄|2n+2m
θ(η)dσ(η) . Pm(θ)(z),

and analogously Θ′(z) . Pm(θ′)(z).

Therefore,

Ap(θ) = sup
z

Θ(z)1/pΘ′(z)1/p′

. sup
z
Pm(θ)(z)1/p Pm(θ′)(z)1/p′ = Ap,m(θ).

Let us prove that if θ ∈ Ap, then (ii) is satisfied. Assume that m > 0.

Since |Iz,j| ≈ 2jn(1 − |z|2)n and |1 − zζ̄| ≈ 2j(1 − |z|2) on Iz,j \ Iz,j−1, we

have

Pm(θ)(z)1/p .

( ∑
1≤j≤jz

2−j((n+m)p−n)Θj(z)

)1/p

.
∑

1≤j≤jz

2−j(m+n/p′)Θj(z)1/p.

(4.22)

Analogously,

Pm(θ′)(z)1/p′ .
∑

1≤k≤jz

2−k(m+n/p)Θ′k(z)1/p′ .

Therefore,

Pm(θ)(z)1/pPm(θ′)(z)1/p′

.
∑

1≤j,k≤jz

2−j(m+n/p′)−k(m+n/p)Θj(z)1/pΘ′k(z)1/p′ .
(4.23)
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Next, we observe that

Θj(z) ≤ |Iz,k|
|Iz,j|

Θk(z) . 2(k−j)nΘk(z), if j ≤ k, and

Θ′k(z) ≤ |Iz,j|
|Iz,k|

Θ′j(z) . 2(j−k)nΘ′j(z), if k ≤ j.

Therefore, the left term in (4.23) is bounded by

∑
1≤j≤k≤jz

2−j(m+n/p′)−k(m+n/p)Θj(z)1/pΘ′k(z)1/p′

+
∑

1≤k≤j≤jz

2−j(m+n/p′)−k(m+n/p)Θj(z)1/pΘ′k(z)1/p′

.
∑

1≤j≤k≤jz

2−j(m+n/p′)−k(m+n/p)+(k−j)n/pΘk(z)1/pΘ′k(z)1/p′

+
∑

1≤k≤j≤jz

2−j(m+n/p′)−k(m+n/p)+(j−k)n/p′Θj(z)1/pΘ′j(z)1/p′

. Ap(θ)

( ∑
1≤j≤k<∞

2−j(m+n)−km +
∑

1≤k≤j<∞

2−jm−k(m+n)

)
. Ap(θ).

We finally consider the case m = 0. In order to prove that (i) implies (ii),

we observe that for 1 ≤ j ≤ jz there exist constants 0 < λ, λ′ < 1 such that

(4.24) Θj−1(z) ≤ λ
|Iz,j|
|Iz,j−1|

Θj(z), and Θ′k−1(z) ≤ λ′
|Iz,k|
|Iz,k−1|

Θ′k(z).

Indeed, the constant λ can be obtained from the inequality (4.21) applied

to the function ϕ = χj − χj−1, where χj denotes the characteristic function

of Iz,j.

To be precise, we have

(
1− |Iz,j−1|

|Iz,j|

)p
≤ Ap(θ)

(
1−

∫
Iz,j−1

θdσ∫
Iz,j

θdσ

)
,



TOEPLITZ OPERATORS ON WEIGHTED HARDY AND BESOV SPACES 27

and since 0 < c = sup
z,1≤j≤jz

|Iz,j−1|
|Iz,j|

< 1, we obtain the first inequality in (4.24)

choosing λ = 1−
(

(1−c)p
Ap(θ)

)
< 1. Analogously, we obtain the second inequality

choosing λ′ = 1−
(

(1−c)p′

Ap(θ)

)
< 1.

These estimates and an argument like the one used in the proof of the

case m > 0, give

ω0(z) . Ap(θ)

( ∑
1≤j≤k<∞

2−jnλ(k−j)/p +
∑

1≤k<j<∞

2−knλ′
(j−k)/p′

)

.
Ap(θ)

1− λ1/p
+
Ap(θ)

1− λ′1/p′
. Ap(θ)2 <∞.

�

We have associated in a natural way to any weight θ on S its average

weight Θ on B. It was proved in [6] that if θ in Ap, then the weight Θ is

in the class Bp. We recall that this class of weights have been introduced

in [5], where it has been proved that the weights Θ for which the Bergman

projection is bounded in Lp(Θ) are the ones in Bp.
Bp is the class of the non-negative weights Ψ ∈ L1(dν) satisfying

(4.25) Bp(Ψ) = sup
z∈B

(
1

|Îz|

∫
Îz

Ψdν

)1/p(
1

|Îz|

∫
Îz

Ψ−p
′/pdν

)1/p′

<∞.

The class Bp appears in the study of the boundedness of the Bergman

projection on weighted Lp spaces on B (see [5]). From now on, for a mea-

surable set V on B, we will write Ψ(V ) =

∫
V

ψdν. This class Bp has similar

properties to the class Ap, replacing the non-isotropic balls Iz on S by the

non-isotropic tents Îz on B. In particular, Hölder’s Inequality gives that

Bp(Ψ) ≥ 1, Bq ⊂ Bp, q < p, and that if 0 ≤ λ ≤ 1, then Ψλ is also in the

class Bq, q = 1 + λ(p− 1). Moreover, if ψ ∈ Bp, Ψdν is a doubling measure

on tents, that is there is a constant DB such that

Ψ(Ûζ,2t) ≤ DB Ψ(Ûζ,t), for all ζ ∈ S, 0 < t < 2.
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As an immediate consequence we have that:

Lemma 4.3. Let 1 < p < ∞ and Ψ ∈ Bp. If z = rζ, ζ ∈ S, 0 ≤ r < 1. If

DB < 2N , then ∫
B

Ψ(w)

|1− zw̄|N
dν(w) ≈ Ψ(Îz)

(1− |z|2)N
.

4.2. Holomorphic weighted Hardy-Sobolev and Besov spaces. Let

us start recalling some well known facts on the weighted Hardy-Sobolev

spaces Hp
s (θ) with weights θ in Ap.

If 1 ≤ p < ∞ and s ∈ R, the space Hp
s (θ) consists of the holomorphic

functions on B such that

‖f‖Hp
s (θ) = ‖(I +R)sf‖Hp(θ) =

(
sup
r

∫
S

|(I +R)sf |pθdσ
)1/p

<∞.

As in the unweighted case, these spaces can be characterized in terms of

maximal radial functions, maximal admissible functions [10] and area func-

tions [6].

In particular, if Γζ = {z ∈ B; |1− ζz̄| < 1− |z|2} is an admissible region

and M(f)(ζ) is the maximal admissible function M(f)(ζ) = sup{|f(z)|; z ∈
Γζ}, we have

‖f‖Hp(θ) ≈ ‖M(f)‖Lp(θ) ≈ ‖MH−L(f)‖Lp(θ).

Our next observation is that the space Hp(θ) can also be described in

terms of the averaging function Θ, with an equivalent norm. Indeed, since

lim
r↗1
|f(rζ)|pΘ(rζ) = |f(ζ)|pθ(ζ), a.e. ζ ∈ S, we have

‖f‖Hp(θ) ≤ ‖f‖pHp(Θ) =: sup
r

∫
S

|f(rζ)|pΘ(rζ)dσ(ζ),

and by Fubini’s Theorem,

(4.26) ‖f‖pHp(Θ) .
∫
S

M(f)p(ζ)θ(ζ)dσ(ζ) . ‖f‖pHp(θ).

As in the unweighted case, it is possible to obtain pointwise estimates for

the derivatives of the functions in Hp
s (θ) (see Lemma 2.12 in [6]).
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Lemma 4.4. If θ ∈ Ap and f ∈ Hp
s (θ), then for any positive integer k > s

(1− r2)k−s|∇kf(rζ)| . ‖f‖Hp
s (θ)(θ(Iz))

−1/p ≈ ‖f‖Hp(θ)
(θ′(Iz))

1/p′

|Iz|
.

(the last inequality is an immediate consequence of the fact that θ ∈ Ap.)

We next introduce weighted Besov spaces. For 1 ≤ p < ∞, s ∈ R, a

non-negative integer k > s and a weight 0 < Ψ ∈ L1(B), the weighted holo-

morphic Besov space Bp
s,k(Ψ) is the completion of the space H(B̄) endowed

with the norm

‖f‖Bps,k(Ψ) =

(∫
B

|∇kf(z)|p(1− |z|2)(k−s)p−1Ψ(z)dν(z)

)1/p

.

In [7] it is proved that if ψ ∈ Bp, provided 1 ≤ p < ∞, different values

of k give equivalent norms. From now on we will simply write Bp
s (Ψ).

Moreover, as it happens in the unweighted case, we can replace |∇kf(z)| by

|(I +R)kf(z)| in the definition of ‖f‖Bps,k(Ψ).

For s = −1/p the space Bp
s (Ψ) is the space of holomorphic function on

B intersection Lp(Ψdν). Several properties of these space can be found in

[10].

In particular, Theorem 2.1 in [10] with β = (k− s)p−1, γ = (k+ s)p′+ 1

together with (1.1), gives the following result on duality.

Theorem 4.5. Let 1 < p < ∞, s ∈ R, Ψ ∈ Bp and Ψ′ = Ψ−p
′/p. Then

(Bp
s (Ψ))′ = Bp′

−s(Ψ
′) with the pairing given by 〈f, g〉B =

∫
B

fḡdν.

The next theorem extends the embedding Bq
n/q−n/p ⊂ Hp, 1 ≤ q ≤

min{p, 2} to the weighted case.

Theorem 4.6. Let 1 < p < ∞, 1 ≤ q0 < q1 ≤ min{p, 2} and θ ∈ Ap. For

j = 0, 1, let sj = n/qj − n/p and let k > s0 be a non-negative integer.

Then, Bq0
s0,k

(Θq0/p) ⊂ Bq1
s1,k

(Θq1/p) ⊂ Hp(θ).

Proof. In order to prove the theorem, we will show that:
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(i) If 1 ≤ q ≤ min{p, 2} and k > n/q − n/p a non-negative integer,

then Bq
n/q−n/p,k(Θ

q/p) ⊂ Hp(θ).

(ii) For f ∈ Hp(θ), ‖f‖q1
B
q1
s1,k

(Θq1/p)
. ‖f‖q1−q0Hp(θ)‖f‖

q0
B
q0
s0,k

(Θq0/p)
.

In order to show (i), we use Theorem 2.10 in [6], which gives an embed-

ding between weighted Triebel-Lizorkin spaces. To be precise, if 1 ≤ q ≤
min{p, 2}, then F p,1

0 (θ) ⊂ F p,q
0 (θ) ⊂ F p,2

0 (θ) = Hp(θ). Consequently,

‖f‖Hp(θ) ≈ ‖f‖F p,20 (θ)

≈

∫
S

(∫
Γζ

|∇kf(z)|2(1− |z|2)2k−1−ndν(z)

)p/2

θ(ζ)dν(ζ)

1/p

.

∫
S

(∫
Γζ

|∇kf(z)|q(1− |z|2)kq−1−ndν(z)

)p/q

θ(ζ)dν(ζ)

1/p

≈ ‖f‖F p,q0 (θ).

(4.27)

By duality, we can replace the last term in (4.27) by

sup
‖ψ‖

L(p/q)′ (θ)
=1

(∫
S

∫
Γζ

|∇kf(z)|q(1− |z|2)kq−1−ndν(z)ψ(ζ)θ(ζ)dν(ζ)

)1/q

.

Fubini’s Theorem gives that this last expression is equivalent to

(4.28)

(∫
B

|∇kf(z)|q(1− |z|2)kq−1−n
∫
Iz

ψ(ζ)θ(ζ)dσ(ζ)dν(z)

)1/q

,

and by Hölder’s Inequality∫
Iz

ψ(ζ)θ(ζ)dσ(ζ) ≤
(∫

Iz

θ(ζ)dσ(ζ)

)q/p
. (1− |z|2)nq/pΘ(z)q/p.

Therefore (4.28) is bounded by(∫
B

|∇kf(z)|q(1− |z|2)(k−(n/q−n/p))q−1Θ(z)q/pdν(z)

)1/q

,

which proves (i).
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In order to prove (ii), observe that if f ∈ Hp(θ), then by Lemma 4.4

|∇kf(z)|q1 . |∇kf(z)|q0‖f‖q1−q0Hp(θ)

(
(1− |z|2)−k

θ(Iz)1/p

)q1−q0
. ‖f‖q1−q0Hp(θ)|∇

kf(z)|q0
(

(1− |z|2)−k−n/p

Θ(z)1/p

)q1−q0
.

Therefore,

|∇kf(z)|q1(1− |z|2)(k−n/q1+n/p)q1−1Θ(z)q1/p

. ‖f‖q1−q0Hp(θ)|∇
kf(z)|q0(1− |z|2)(k−n/q0+n/p)q0−1Θ(z)q0/p.

Integrating both terms on B, we conclude the proof. �

Proposition 4.7. Let 1 < p < ∞, k > n + 1 and θ in Ap. If DS < 2Np,

and fz are the test functions defined by fz(w) = (1− wz̄)−N , then

‖fz‖B1
n/p′,k(Θ1/p) ≈ ‖fz‖Hp(θ) ≈

θ(Iz)
1/p

(1− |z|2)N
.

Proof. The fact that the norms in B1
n/p′,k(Θ

1/p) and Hp(θ) of the test func-

tions are equivalent, will be deduced from Theorem 4.6 and the estimate

‖(1− wz̄)−N‖B1
n/p′,k(Θ1/p) . ‖(1− wz̄)−N‖Hp(θ).

In order to prove the above estimate, it is enough to show that if k > n+1,

then ∫
B

(1− |z|2)k−n/p
′−1Θ1/p(z)

|1− wz̄|N+k
dν(w) .

(∫
S

θ(ζ)

|1− ζz̄|Np
dσ(ζ)

)1/p

.

Hölder’s Inequality give that if ε > 0 the left term in the above inequality

is bounded, up a constant depending of ε, by(∫
B

(1− |z|2)kp−np/p
′−1−εpΘ(z)

|1− wz̄|Np+kp−np/p′−2εp
dν(w)

)1/p(∫
B

(1− |w|2)εp
′−1

|1− wz̄|n+2εp′
dν(w)

)1/p′

. (1− |z|2)−ε
(∫

B

(1− |z|2)kp−np/p
′−1−εpΘ(z)

|1− wz̄|Np+kp−np/p′−2εp
dν(w)

)1/p

.
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Since k > n+1, let ε > 0 be small enough such that kp−np/p′−1−εp−n >
0. By Fubini’s Theorem, the last term is bounded by

(1− |z|2)−ε

(∫
S

∫
Γζ

(1− |z|2)kp−np/p
′−1−εp−n

|1− wz̄|Np+kp−np/p′−2εp
dν(w)θ(ζ)dσ(ζ)

)1/p

. (1− |z|2)−ε

(∫
S

∫
Γζ

dν(w)

|1− wz̄|n+1+Np−εp θ(ζ)dσ(ζ)

)1/p

. (1− |z|2)−ε
(∫

S

θ(ζ)dσ(ζ)

|1− ζz̄|Np−εp

)1/p

.

Since DS < 2Np, Lemma 4.1 gives that, provided ε > 0 is small enough,

we have

(1− |z|2)−ε
(∫

S

θ(ζ)dσ(ζ)

|1− ζz̄|Np−εp

)1/p

≈ θ(Iz)

(1− |z|2)N
≈
(∫

S

θ(ζ)dσ(ζ)

|1− ζz̄|Np

)1/p

which concludes the proof. �

4.3. Toeplitz operators. The results of the above section together Theo-

rem 3.2 gives the following result, which generalizes Corollary 3.4.

Theorem 4.8. Let 1 < p < ∞, k > n + 1 and let θ0 ∈ Ap and θ1 ∈ Ap′.
Let Θ0 and Θ1 be the corresponding averaging functions.

If X and Y are two Banach spaces satisfying,

(i) B1
n/p′,k(Θ

1/p
0 ) ⊂ X ⊂ Hp(θ0), and

(ii) B1
n/p,k(Θ1

1/p′) ⊂ Y ⊂ Hp′(θ1),

then ‖Γψ‖Bil(X×Y→C) ≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

1/p′

1

∥∥∥∥∥
∞

.

Proof. We want to prove that X and Y satisfy the conditions in Theorem

3.2.

By Proposition 4.7 it is clear that, if m > 0, then we have ωm,X,Y (z) ≈
ωm,Hp(θ0),Hp′ (θ1)(z). Therefore, as in the proof of Theorem 3.11, in both cases

the corresponding functions ω̃m are equivalent to θ
1/p
0 θ

1/p′

1 a.e. on S.
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Hence, if f ∈ X and g ∈ Y , then∫
S

|f ||g|ω̃m,X,Y dσ ≈
∫
S

|f ||g|θ1/p
0 θ

1/p′

1 dσ

. ‖f‖Hp(θ0)‖g‖Hp′ (θ1) . ‖f‖X‖g‖Y .

and as a consequence of Theorem 3.2

‖Γψ‖Bil(X×Y→C) ≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

1/p′

1

∥∥∥∥∥
∞

.

�

If the weights θ0 and θ1 are in smaller classes, we can drop the k in the

last theorem and we have the following corollary.

Corollary 4.9. Let 1 < q0 < p < q1 < ∞, θ0 ∈ Ap0, θ1 ∈ Ap′1 where

p0 = 1 + p/q′0, p′1 = 1 + p′/q1 and Θ0 and Θ1 the corresponding averaging

functions. Then, Θ
q0/p
0 ∈ Bq0, Θ

q′1/p
′

1 ∈ Bq′1 and

‖Γψ‖
Bil(B

q0
n/q0−n/p

(Θ
q0/p
0 )×B

q′1
n/q′1−n/p

′ (Θ
q′1/p

′
1 )→C)

≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

1/p′

1

∥∥∥∥∥
∞

.

As we stated in the introduction, the results on Toeplitz forms together

duality results lead to results on Toeplitz operators. For instance, we have

the following theorem.

Theorem 4.10. Let 1 < p <∞, ψ ∈ L1(dσ), θ0 an admissible weight and

θ1 ∈ Ap′.
Then

‖Tψ‖L(Hp(θ0)→Hp(θ1)) ≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

−1/p
1

∥∥∥∥∥
∞

.

In particular, if θ = θ0 = θ1, then ‖Tψ‖L(Hp(θ)→Hp(θ)) ≈ ‖ψ‖∞.

Proof. This result is a consequence of

‖Tψ‖L(Hp(θ0)→Hp(θ1)) ≈ ‖Γψ‖
Bil(Hp(θ0)×Hp′ (θ

−p′/p
1 ))

≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

−1/p
1

∥∥∥∥∥
∞

.

The last equivalence is a consequence of Theorem 4.8. �
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In the case of Besov spaces, we can state simmilar results once we have

a description of the dual of the Besov spaces involved. In general, if θ ∈
Ap′ , the weight Θq′1/p

′
is not necessarily in Bq′1 . In order to ensure that

Θq′1/p
′ ∈ Bq′1 , we can take for instance a weight θ ∈ Ap′1 with p′1 satisfying

that 1 + (p′1 − 1)q′1/p
′ ≤ q′1.

We then have:

Theorem 4.11. Let 1 < q0 < p < q1, k > n + 1, θ0 ∈ Ap and θ1 ∈ Ap′1 ,
p′1 ≤ 1 + p′/q1. Then, Θ

q′1/p
′

1 ∈ Bq′1 and

‖Tψ‖L(B
q0
n/q0−n/p,k

(Θ
q0/p
0 )→Bq1

n/q1−n/p
(Θ
−q1/p′
1 ))

≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

−1/p
1

∥∥∥∥∥
∞

.

Proof. By hypothesis, we have p′1 < p′, and by Theorem 4.6 the spaces

X = Bq0
n/q0−n/p,k(Θ

q0/p
0 ) and Y = B

q′1
n/q′1−n/p′

(Θ
q′1/p

′

1 ) satisfy the conditions in

Theorem 4.8. Since θ1 ∈ Ap′1 , Θ1 ∈ Bp′1 , and Θ
q′1/p

′

1 ∈ B1+(p′1−1)q′1/p
′ . Since

p′1 ≤ 1 + p′/q1, this class is included in Bq′1 .

Therefore,
(
B
q′1
n/q′1−n/p′

(Θ
q′1/p

′

1 )
)′

= Bq1
n/q1−n/p(Θ

−q1/p′
1 ). Consequently we

have

‖Tψ‖L(B
q0
n/q0−n/p,k

(Θ
q0/p
0 )→Bq1

n/q1−n/p
(Θ
−q1/p′
1 ))

≈ ‖Γψ‖
Bil

(
B
q0
n/q0−n/p,k

(Θ
q0/p
0 )×B

q′1
n/q′1−n/p

′ (Θ
q′1/p

′
1 )→C

).
Theorem 4.8 ends the proof. �

If in addition the weight θ0 is in the smaller class Ap0 with p0 ≤ 1 + p/q′0,

the Besov space involved in the last theorem does not depend on k, and we

deduce that the following corollary holds.

Corollary 4.12. Let 1 < q0 < p < q1, θ0 ∈ Ap0, p0 ≤ 1+p/q′0 and θ1 ∈ Ap′1 ,
p′1 ≤ 1 + p′/q1. Then, Θ

q0/p
0 ∈ Bq0, Θ

q′1/p
′

1 ∈ Bq′1 and

‖Tψ‖L(B
q0
n/q0−n/p

(Θ
q0/p
0 )→Bq1

n/q1−n/p
(Θ
−q1/p′
1 ))

≈

∥∥∥∥∥ ψ

θ
1/p
0 θ

−1/p
1

∥∥∥∥∥
∞

.
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