TOEPLITZ OPERATORS ON WEIGHTED HARDY
AND BESOV SPACES

CARME CASCANTE, JOAN FABREGA, AND JOAQUIN M. ORTEGA

ABSTRACT. We obtain estimates of the norm of Toeplitz operators on
weighted Hardy and Besov spaces. As an application we give character-

izations of some spaces of pointwise multipliers.

1. INTRODUCTION

The main goal of this work is the study of the norms of the Toeplitz
operators in a large scale of spaces of holomorphic functions on B, which
includes weighted Hardy and Besov spaces. In order to introduce the prob-
lem and to state our results, we recall some results on Toeplitz operators in
the classical setting of the Hardy space H?.

Let B be the open unit ball in C™, B its closure and S its boundary.
By dv and do we denote the normalized Lebesgue measures on B and S
respectively. We denote by H(B) (resp. H(B)) the space of holomorphic

functions on B (resp. on B). If p > 0, a holomorphic function f on B is in
the Hardy space H?(B) if and only if

11w = sup / PO Pdo(C) < +oo.
r<l Js§

If p > 1, the operator which assigns to each f its boundary values

fQ) = li}r} f(r¢), a.e ¢ € S defines an isometry from H?(B) onto H?(S),
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the LP-closure of the restriction to S of H(B). A well known result about
operators on the Hardy spaces HP(S), 1 < p < oo, states that for any
Y € L*(do), the norm of the Toeplitz operator with symbol ¢, T, :
HP(S) — HP(B), defined by

(€)f(S)

Ty(f)(2) = g mda(@,

is equivalent to [|1)]]so-

By composing the above mentioned isometry between H?(B) and H?(S)
with T, we can obtain maps from HP(S) to itself, or from H?(B) to itself.
All these operators will be denoted by T;, and we will simply write H? to
denote either H?(S) or H?(B).

We will consider the duality (H?) = H? with respect to the pairing

(11> <f’g>S :}ai_I,I%/SngTdU’

where f,.(¢) = f(r(), in the sense that each A € (H?)' is given by A(f) =
(f,9)s, for some g € H? and ||Al|(gry = ||g|lg»- Then, we have that
the following equivalence between the norm of the bilinear Toeplitz form
Uy(f,9) = [¢¥ fgdo = (Ty(f),g)s and the norm of the operator T}, holds:

(1.2) 1Tl iy ~ I Tollcgarr—iry = 1]l

There exists an extensive literature on Toeplitz operators in spaces of
holomorphic functions. See for instance [11], [2] and the references therein.

We want to extend these results to other Banach spaces of holomorphic
functions on B. Throughout the paper we consider Banach spaces of holo-
morphic functions on B, X and Y satisfying H(B) C X,Y. We denote
by X. (resp. Y.), the space H(B) normed by | - |x (resp. | - |ly). If
X,Y C H'(B), then the functions f in X or Y, have boundary values f(¢),
a.e. ( € Sin L'(do). As in the case of HP spaces, we will identify the space

X with its space of boundary values.
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The Toeplitz form Ty, is well-defined on X, x Y, for any ¢ € L!(do), and
the associated Toeplitz operator T, defines an operator from X, to H(B).
Moreover, notice that if 1 < p < oo, ¥ f € LP(do) and g € H? (B), then

FilJ(f? g) = <T¢<f)>£_7>5

Therefore, if Y is the dual space of Y with respect to the pairing (1.1), the
norm of the Toeplitz operator T}, : X — Y’ is equivalent to the norm of
y:XxY —C.

The norm of this form I'y will be computed in terms of extensions of
to B, given by generalized Poisson-Szegd operators. This computation will
be used to obtain estimates of the norms of Toeplitz operators for different
spaces of holomorphic functions on B. For m > 0, ( € S and z € B, we
consider the integral operators

2\n+2m

|1 _ ZC|2n+2m

where ¢, ,, is a normalizing constant. If m = 0, we recover the Poisson-
Szego kernel. These operators give the solution of some generalized Dirichlet
problems (see Section 2 for more details).

The fact that for any 2z € B, f.(w) = (1 —wz) ™™ € H(B) gives that

(1.3) [P () ()] < Ty garx.xvoywm(2),
where

Win(2) = W x,v (%)

(1.4) .
= cpm(1 = [2[))" (1 = wz) "I x[I(1 = wz) "y

Inequality (1.3) gives immediately two necessary conditions on ¢ such
that I'y, : X, x Y. — C is bounded.
The first condition is just that,

15 N ADIE]

[ N
2B Win(2) < P | ixovo—cy
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The second condition is given in terms of ¢. If ¢ > 0 is a continuous
functi B and let lim inf = inf :
unction on B and ¢ € S, le nrn/lln o(r() Sl:prgtl<1(p(TC)
Let
(1.6) O (€) = lim inf w(r().

r,/'1

From (1.3), we obtain

(1.7) (O] < ITwll pacxxvg@m(C),  a-e. (€S

Now, if we assume that 0 < ©,,,(¢) < o0, a.e. ( € S, we obtain

(19 sup I < Iullper.

Since [Tyl pix.xv.—c) < ITwll piaxxv—cy it is clear that the correspond-
ing conditions (1.5) and (1.8) are also necessary to ensure that 'y, : X XY —
C is bounded. Moreover, if X, and Y, are dense in X and Y respectively,
and I'y is bounded on X, x Y., then I'y, extends to an unique operator on
X x Y also denoted by Ty,

In order to state conditions on X and Y such that

| P (1) (2)]
i T () HerBil(XCXVC_,C), or
(1 9) z€B Cdm(Z>
A I
2€B wm(z) Bil(X XY —C)>

we consider the functions 7., 7 : [0,1) — R defined by

7(r) = sup { I in(|Tgﬁ;||||il(d”); f,g€ H(B), f,g # 0} :

and

7_(7,) = sup { ”fr 9r (Wm)rHLl(da
1f11xlglly
where f,.(() = f(r(),0<r<1,(€S.

With these notations we can now state the following result.

). feX,geY,f,g%O},
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Theorem 1.1. Letm > 0 and let X andY be Banach spaces of holomorphic

functions on B, such that H(B) C X,Y.

Then
P, p
ilelg {%@b&(j)l} < Tyl pacx.xv.—c) < HTCHOO?EE{%}

Moreover, if X, Y C HY(B),
LACCINY

Follgiucxxv—o) < IT]|loosUp § —————
Tl pacxsv—cy < | Hoozeg{ W (2)

Observe that the functions 7 and 7. depend only on the spaces X and Y
and not on the function ¢. Of course the interesting case for applications
is when the functions 7 and 7, are bounded.

Notice that if X = H? and Y = H”', choosing m = 0, we have || Py(¢)||cc =
|t |loo, wo(2) = 1 (by Proposition 1.4.10 in [14]) and ||7||.c = 1 (by Hoélder’s
Inequality). Therefore, (1.2) can be obtained from Theorem 1.1. We also
remark that if p = 2, then wyg = 1 and in consequence the equivalences in
(1.2) can be replaced by identities (see for instance [8]).

Theorem 1.1 can be used to improve some well known results on Toeplitz
operators in classical spaces. For instance, if B? is the holomorphic Besov
space on B (defined in Section 2) and T'Symb(X — Y') denotes the set
of symbols of all the continuous Toeplitz operators Ty, from X to Y, then,
this space coincides with L>®(do) if X and Y satisfy one of the following

conditions:

(i) B c X ¢ H*® and BMOACY C B{.
(ii) B, C X CHP CY C B, with 1 <p < o0.

This result includes the cases where X = A is the ball algebra (the space
of holomorphic functions on B and continuous on B), and generalizes the
well known result T'Symb(H* — BMOA) = T'Symb(H* — B°) = L™ in
the unit disk [9].

In addition to the results on pointwise multipliers between some classical

spaces which are a consequence of the fact that, if h € H' and f € H(B), the
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multiplication operator M, (f) = hf corresponds to the Toeplitz operator

T}, we also prove that:

(i) If Bl c X c H°*NVMOA, then M(X — VMOA) coincides with
the multiplicative algebra H* NV MOA.

(ii) Let b3 be the little Bloch space, that is the closure of H(B) in
B If B € X € H*Nbg, then M(X — b°), coincides with the
multiplicative algebra H > N bg°.

Here, M(X — Y) denotes the space of pointwise multipliers from X to
Y.

The next theorem gives conditions on X and Y such that

w10 9(0)

sup ——== = [Py | giy(x,xv. 0y
ces Wm(C) Y Bil(XcxY . —C)

Theorem 1.2. Let X and Y be Banach spaces of holomorphic functions on
B containing H(B).
If 0 < @0 (¢) < 00 a.e. ¢ €8S, and there exists a constant Cxy such that

I foller @) < Cxy |l fllxllglly, then

< HFwHBiz(ch?c_m) < ”FwHBiZ(Xx7_><C) < CX,Y

wm m

o0 o0

This result permit us to obtain results on Toeplitz operators in some class
of holomorphic weighted Hardy spaces. In order to precise these results we
consider weights in S, that for simplicity we will call admissible weights,
satisfying:

(i) 6(¢) >0 ae. (€S,
(ii) 6,07P'/? ¢ L'(do),

For this class of weights, let H?(f) denotes the closure of the restriction

of H(B) on S in LP(0).
Observe that if §77/? € L'(do), then for each ¢ € LP(6),

[ 1600100 < 171 el

Therefore, H?(f) is a subspace of H'.



TOEPLITZ OPERATORS ON WEIGHTED HARDY AND BESOV SPACES 7
With these conditions we have:

Theorem 1.3. Let 1 < p < oo, ¢ € L'(do) and 6y, 0, a pair of admissible
weights. Then,

_v
8(1)/1781/19’ N

~

Tl e o) i — )

From this last result we can obtain estimates on the norm of the corre-
sponding Toeplitz operator T, on weighted Hardy spaces, once we have a
description of the dual of H?'(;) with respect to the pairing (1.1). This is
the case when 6 is in the Muckenhoupt class A, whose the definition and
some properties of these weights will be stated in Section 4. Among them,
we remark that we give a characterization of the fact that 6 € A, in terms
of the generalized extensions P,,(#), which extend the one obtained by [12],
where it was consider the case m =0 and p = 2.

We obtain the following theorem:

Theorem 1.4. Let 1 < p < oo, ¥ € L'(do), 0y an admissible weight and
0, € .Ap/.

Then

Y

1Tyl Lerro0)—~mr00)) = || 570 —175
0070, o

In particular, if 0 = 0y = 0, € Ay, then || Ty Liar0)—mr©) = ||¥]l0o

The paper also contains some additional results on weighted Hardy spaces
and Besov spaces, that may be interesting by themselves.
If 0 € A,, then H(B) is dense in HP(f), and in this case HP(f) consists

of holomorphic functions f on B, such that

i = s [ 1FrOPOQIo(C) <

<r<1

Let (I + R)* be the linear differential operator of order k; defined by
(I +R)*z% = (1+ |al)*2%, where a = (ay,- -+ ,a,) and |a| = Z ;.
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If s € R, we denote by HP(#) the Hardy-Sobolev space of holomorphic
funtions on B such that ||(I + R)* f|| gre) < c0.

It is well known (see [10] p. 334) that if 1 < p < co and 0 € A, the dual
of H?(#) with the pairing given by (1.1) is H” ,(7%'/7).

In order to consider weighted Besov spaces related to H?(f), we introduce
an averaging function © of the weight 6 in S given by ©(z) = |I—12| Il ;, 0do. It
the weight 6 is in A, then its averaging © is in the class B,, introduced in
[5] (see Section 4 for more details). The characterizations of H?(f) in terms
of the admissible maximal function, shows that, when 6 € A, we can define

an equivalent norm in H?(#) in terms of the averaging function © given by

ey == g0 [ FGOPOEOQ),

In order to define weighted Besov spaces, as in the Hardy spaces cases,
for 1 < p < oo we consider admisible weights on B, that is weights ¥ > 0
a.e. on B such that U, U—/? ¢ [1(dv).

If1 <p<oo,seR, anon-negative integer k > s and ¥ is an admissible

weight, we denote by B, (¥) the completion of the space H(B) endowed

with the norm

oy = [ 0T+ REFEIP = 202 dn(z),

If1<p<ooand ¥ € B, then different values of k gives equivalent
norms (see [7]), and therefore in this case the space BY, (V) will be simply
denoted by BP(V). Moreover, if U € B,, then the dual of B?(¥) with
respect to the pairing (1.1) is BY (U~7"/7).

If 0 € A, the function O is in B, and consequently, if ¢ < p, the weight
©9/? is in BH%(pfl)' Since 1+ 1(p — 1) > ¢, we have that the weight Q/r
might not be in B,. If the weight 6 is in a smaller class, for instance, if
0 € A,,, where py < 1+ p/q’, we have that the weight ©7? € B, and in
particular we have that the space B;{k(@q/ P) is independent of k.
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Theorem 1.5. Let 1 < p < 00, 1 < ¢y < ¢¢ < min{p,2} and 0 € A,,,
where po = 1+p/q). For j=0,1, let s; =n/q; —n/p .

Then, B®(©%/?) C B2 (©7/7) C HP(0).

With this result we can prove the following theorem.

Theorem 1.6. Let 1 < qo < p < q1 < 00, hh € Ay, 0h € Ay where
po =1+p/q), Py =1+ /g1 and Oy and ©; the corresponding averaging
functions. Then O™/7 ¢ By, @(fll/p/ € By and

. 40 ag/p a ay /v’
B/LZ(Bn/qofn/p(eO )XBn/qi—n/p/(el )_>(C)
~ ”TwHL(qu (@%/P)_}B‘H (@—fn/p’)) ~ _1/p 1/p
n/qg—n/p\ -0 n/qp—n/p -1 90 61
o

More general results of this type can be found in Section 4.

The paper is organized as follows. In Section 2, we recall some well
known properties of the unweighted holomorphic Hardy-Sobolev and Besov
spaces, and other technical results that will be needed in the next sections.
In Section 3, we prove Theorems 1.1 and 1.2, and its application to the
study of the Toepliz operators and pointwise multipliers in classical spaces
and weighted Hardy spaces (Theorem 1.3). In Section 4, we start recalling
the main properties of the weights 4, and B,, and we extend a result of S.
Petermichl and B. Wick about characterizations of the weights in A, of the
sphere in terms of a generalized invariant harmonic extension to the unit
ball. In the second part of this section we recall some well known properties
of the weighted Hardy spaces with weights in 4,,, and of the weighted Besov
spaces with weights in B,, and we prove Theorems 1.5 and 1.6.

Notations: Throughout the paper, the letter C' may denote various
non-negative numerical constants, possibly different in different places. The
notation f(z) < g(z) means that there exists C' > 0, which does not depends
of z, f and g, such that f(z) < Cg(z).
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2. PRELIMINARIES

In this section we state some notations and some well known results, that

will be needed in the forthcoming sections.

2.1. Non-isotropic balls, tents and admissible regions. For ( € S
and 0 < t < 2, let Us; be the non-isotropic ball on S defined by Uy =
{nesS;|1-nl <t}, and let Us; be the non-isotropic tent on B defined
by Uey = {2z € B; |1 — 2{| < t}.

It is well known that the Lebesgue measure on S of U4, denoted by |U |,
is of order of t", and the Lebesgue measure on B of (A]w also denoted by
|Ue 4| satisfies |Up | = "+,

Toeachz=1r(,0<r <1,( €S, we consider the associated non-isotropic
ball I, = Ue (1.2 and the tent I, = U (1_j.p2).

For ¢ € L'(do), let My _1(v)) denote the non-isotropic Hardy-Littlewood
maximal, defined by

1
Mp_1(¥)(¢) = sup
>0 |Ucil Ju,

If ¢ € S, let T be the admissible region I'c = {z € B; [1—2(| < 1—|z|?}.
Observe that if z € T¢, |1 — 2| ~ 1—]z|*>. The admissible maximal function
of a function ¢ € L'(dv) is M(¥)(¢) = sup.er, [¥(2)].

If ¢ is a non-negative measurable function on B, Fubini’s Theorem gives

that
[ etier=[ [ Cgo(z)d,”[ij)do(o.

2.2. Integral operators. Let P be the Cauchy integral operator given by

f(Q)
PNE) = [ 1o, 2eB
s (1—=zQ)"
For m >0, € S and z € B, let P,, be the non-isotropic kernel defined

by

Y(n)do(n).

(1 _ |Z|2)n+2m

|1 _ Z§|2n+2m !

I'(n+m)?
(n—IT(n+2m)’

Pm(Ca Z) = Cnym where Cnym =
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Observe that for m = 0, F, is the Poisson-Szego kernel.
We also denote by P,, the corresponding integral operator on L!(do)
defined by

Puw)(:) = [ SR 2ol € B
Let A,, be the differential operator A,, defined by
Am = (1 — |Z|2) {Z ((513 — ziEj) 825] + mR + mﬁ — mQId} .
ij=1
This family of differential operators A,, generalizes the invariant Lapla-

cian, which corresponds to m = 0. It is shown in [1] that the generalized

Dirichlet problem

Apu=0, ucC(B), u=gponsS, pcC(9),

has a unique solution given by

uz) = [ OPA(C2) do(0) = Pali)(o)

It is also shown in [1] that if ¢ € L'(do), then }113% PL(p)(r¢) = ¢(C) ae.
¢eSs.

Proposition 1.4.10 in [14] gives in particular that if 1 < p < oo, m > 0
and f € H(B), then

2\n+2m P

[ 1O i mde(©)| S Pl
Finally, we also point out that || P,,(¢)|lc = |||, and that
sup, | P (V) (rQ)| S Mu-r([4])(€).

(211) |fE)PF ~

To conclude we state the following lemma, which follows easily from

Proposition 1.4.10 in [14].

Lemma 2.1. If k,m > 0, then for z,w € B,

B (S N € R 0 € 7
s L= 2GR —wgem L= warem L=zt
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2.3. Unweighted spaces of holomorphic functions. Let 0,1 = a%jw
and 0, = 2. If @ = (a1,..., ) and |a = Y7 |a,], we denote by 9
the differential operator of order || defined by 9/ - - - 95™.

We denote by R the radial derivative Z 2;0;. For s € R, we consider

j=1
the invertible linear operator (I + R)® on H(B), defined on the monomials

@ =220 by (I 4+ R)*2% = (1 + |a)®2°.
For 1 < p < oo and s € R, the holomorphic Besov space B? is the set of

z

holomorphic functions f on B such that

1= 12"+ B H) ()l ooy rantey) < +00,

for some non-negative integer £ > s. It is well known that different values
of k£ > s give equivalent norms in B?. Moreover, if we replace in the last
expression (I + R)*f by V¥ f =: > jaj<k [0 f| we also obtain an equivalent
norm.

Notice that the space Bj° is the Bloch space, and that if s > 0, then B°
coincides with the holomorphic Lipschitz space Lip;.

It is well known that if 1 < p < oo and s € R, then H(B) is dense in the
ball algebra A, in B? and also in H?. This density fails to be true for the
spaces H*, BMOA or B®. The closure of H(B) in BMOA is denoted by
VMOA, and the closure of H(B) in the Bloch space B is the little Bloch
space bg°.

The following two theorems summarize the inclusion and duality results

on the above spaces. Their proofs can be found in [3] and [4].

Theorem 2.2. Let 1 < g <p < oo ands,t € R satisfyings—n/p =t—n/q.
Then,
(i) Bf C B? and H} C HP.
(ii) If ¢ < min{p, 2}, then B} C HP.
(iii) BL Cc A, B?, . H?, C VMOA C BMOA C B.

n/p’ “n/p
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Theorem 2.3. Let 1 < p < o0 and s € R. The following duality results
with respect to the pairing (2.12) holds:

(i) (VMOA) = H', and ((B).) = By.
(ii) (H'Y = BMOA, and (B})' = Bg°.
(iii) (BY) = B, and (H?Y = H",.

We conclude this section with some remarks about the pairing (f, g)s.
The fact that any function in H? has its radial maximal function M, (f)({) =
SUPg<, <1 |f(r¢)| in LP(do) gives that

(s =tim [ fgdo = [ ado.

and hence / |f||g|do is finite.

However, if f € B? and g € BY ., then fg is not necessarily in L(do)

—8)
and we cannot, in general, interchange the limit with the integral. In these
cases it is convenient to rewrite the pairing (2.12) as follows. The formula

(see Section 1.4 in [14])

= DA i,
S e [ IR = =Py,

the fact that Rz® = |a|z®, and the homogeneous expansion of the holomor-

phic functions f and g, give that

/Sf(TC)E(TC)dU(O =/B[p(R)f](7‘Z)[m](TZ)(1— |2[*) " dv(2),

where p(R) and ¢(R) are the differential operators associated to any of the

one variable real polynomials p(t) and ¢(t) satisfying

p(t)a(t) = 0 n(gfnj 115!_ 1+¢)
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In particular, if we denote by Ré- the differential operator of order [ defined
by R = (jI+R)---((j +1—1)I + R), then for I < k

/ £(0)3,(C)do
S

1

(2.12) -
k1)l /B[RU J(r2)[REg(r2))(1 — |2[) " du(2).

We point out that if 7 > 0, then the operators Ré» : H — H are invertible.
The inverse will be denoted by R;l.
Formula (2.12) can be used to prove that (B?) = B

~, with the pairing
(1.1). The corresponding results on duality for the Hardy-Sobolev spaces,
ie. (H?Y = HY

—S8?

[ e = [ 10+ Ry [T+ Ryl o

can be deduced using instead the formula

3. NorMS OF TOEPLITZ OPERATORS

We will assume that X and Y are two Banach spaces of holomorphic func-
tions on B, containing both of them H(B). We start this section obtaining
necessary conditions on a functions ¢ € L!(do), such that the bilinear
Toeplitz forms I'y, : X, x Y. — C be continuous.

Since

Pu(¥)(2) = cnm(1 — !ZIQ)"”’"/SID(C) (1=¢2)™" (1 = 2¢)"""do(Q),
it is clear that for any z € B,

Pali)(2)
(1= |z em

(1 —wz)ntm

(1 . |z|2)n/p+m

(1 —wz)rtm

(3.13) < Cnml| Ty ||Bz’l(Xc><75—>(C)
X

= ||F¢HB1‘Z(XC><?C—>(C)WM<Z)'
Therefore, if I'y, is bounded on X, x Y., we have that

{|Pm(¢)(2)|

sup wm(2) } < HP?!)HBZ'Z(XCXVCH(C)'

z€B
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This condition is given in terms of the generalized Poisson-Szégo extension
of ¥. A necessary condition in terms of the boundary values of ¢ can be

obtained as follows. If z = r7n and we take liminf, ~ in (3.13), we have

(3.14) [w(n)| < ||F¢||Bil(Xc><76H(C) 1ilgl/ipfwm(m), a.e. €S,

Thus, if 0 < On(n) = lim/ilnfwm(rn) < oo a. e. n €S, weobtain as a

necessary condition

Y

E

- < HF¢||Bil(Xc><7c—>C)’

e}

m

In order to obtain conditions on X and Y that assures that

P,
(3.15) i‘elg {%@/@(}z)l} ~ ||Fw||Bﬂ(ch?ﬁ<C),
observe that if f,g € H(B) and v € L'(S), then
316)  Tu(fg) =tim [ 20D 560000 o ©)

r/1)s Wm<rg)
Therefore, if
1 fr Gr (Wim)r || L1 (do =
TC(T)Zsup{ E fge H(B). fg#0¢.
1fxlglly
is a bounded function on [0, 1) then (3.15) holds.

If X. and Y, are dense in X and Y respectively, then the bilinear form
'y can be extended to a bilinear continuous form on X x Y preserving
the norm. As usual, we also denote this extension by I'y,. However, in
some important examples these conditions of density are not satisfied (as
it happens in the case of H*, BMOA, B§°). In these cases we can modify

the above argument to also obtain conditions on X and Y such that

[P (1) (2)]
(3.17) ilelg {T(Z) ~ HFUJHBZ‘I(XX?H(C)?
is satisfied.

Assume that f,g € H', and ¢ € L!(S), then

[ 07©30as()| < [ mI2a @000l )
S S
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We also assume that the function

7_(7,) = sup { ”fr 9r (Wm)r”Ll(da)

; fEX,geY,f,g%O},
1 fllxlglly

is bounded on [0, 1).
Then, taking a sequence {r;} /" 1 and applying Fatou’s Lemma, we have

dcr(o\
< sup{ '} sup. [ 190l (€0

z€B 0<r<1

< ||T||msug{'P Bl 71l

Summarizing these conditions, we have

Theorem 3.1. Letm > 0 and let X and Y be Banach spaces of holomorphic
functions on B containing H(B).
Then,

a0}

sup { 2V < I, < el s { 120N

If in addition X,Y C H', then

P,
Lol puesr—c < 7l s {’ “”()() )l }

Now let us state conditions on X and Y such that

Y

(3.18) '

< ||Fw||Bil(ch?c—><C)‘
m {loo
is satisfied.

Assuming that 0 < @,,(¢) < 00 a. e. € S, we have

/ FllglGmdo.

Ly(f,9) <

Therefore,
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Theorem 3.2. Let X andY be Banach spaces of holomorphic functions on

B containing H(B).
If 0 < 0n(C) < 00, a.e. (€S, and there exists a constant Cxy such that

1f9llzr@m < Cxyllfllxllglly, then

Y
O

Theorem 3.2 will be used to obtain results on Toeplitz operators in

Y

< ||F¢||Bil(Xc><?c—>(C) < ||F¢||Bz’l(X><7—>(C) < CX,Y

00 m

o0

weighted Hardy spaces with weights satisfying some additional conditions
on S.

3.1. Toeplitz operators in some classical spaces. Since || P, (¢)|le =~
|t|loo, We have as immediately consequence of Theorem 3.1 the following

result.

Corollary 3.3. Let X and Y be Banach spaces of holomorphic functions on
B satisfying wy, = 1 a.e. on S, and ||7||oc < 00. Then [Tyl piyxv—c) =

[l co-

Corollary 3.4. Let 1 < p < oo. Assume that X, Y satisfy Bi/p’ Cc X CH?P
and B}L/p CY C H” respectively. Then, 'y : X x Y — C is bounded if and
only if ¥ 1s in L*°.

Proof. If I > 0, Proposition 1.4.10 in [14] gives that ||(1 — wz) ™| 11(40) &
(1 — |2|?)~". Therefore, the norms of the function f,(w) = (1 — wz) ""2™
both in B! Iy and in H?, and consequently in X, are equivalent to (1 —

|z|?)~/=™_ Analogously, the norms of the function f,(w) in B},  and

n/p
HP and consequently in Y are equivalent to (1 — |z|?)™™?~™. From these
estimates, we obtain w,, ~ 1 a.e. on S.

Since || frgr(wr)llzrwo)y S 1fr@rllcran S 1 laellgllme S I Ixlglly, we
have that the function 7 is bounded. Consequently, the result follows from

Corollary 3.3. |
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Examples of spaces X and Y satisfying the conditions in the above corol-
lary are the Hardy-Sobolev spaces H?° with 1 < py < p and sy —n/py =
—n/p, or more generaly the scale of Besov spaces B% and the scale of
Triebel-Lizorkin spaces FI™% satisfying 1 < py < p, 1 < ¢o < 2, and
so —n/py = —n/p (see H. Triebel’s book [18] and the references therein for

a more complete list of embeddings between these spaces).

Corollary 3.5. Let X and Y be Banach spaces of holomorphic functions
on B. Assume that w,(r() — 0 asr /1, a.e. ( € S. Then the only
bounded bilinear Toeplitz forms I'y are the ones corresponding to the trivial

case where 9 =0 a.e. ( € S.

Proof. By Theorem 3.1, |P,(¢¥)(r¢)| < cn,mHFw\]L(chycqc)wm(r(’), and
consequently P, (¥)(r¢) — 0asr /1, a.e. ¢ € S. Therefore, (¢) =0 a.e.
Ces. ]

Corollary 3.6. Let 1 < p < q < oo. Assume that X, Y satisfy B}L/p, C
X C H? and Bi/q CY C HY respectively. Then, [y o Xe X Y. — C is not

bounded except for the trivial case where 1(¢) =0 a.e. ( € S.

Proof. The arguments used in the proof of Corollary 3.4, give that w,,(r({) ~
(1 —r2)n/p=/a — 0asr /1. |

Corollary 3.4 permit us to obtain easily some well known characteriza-
tions on the symbols of Toeplitz operators. Among them we have that
if 1 < p < +oo, then T'Symb(H? — HP) = L*>. It also can be obtained
some improvements of the classical results that we sumarize in the following

theorem.

Theorem 3.7. Let X and Y two Banach spaces of holomorphic functions
satisfying one of the following conditions:

(i) B € X C H® and BMOA CY C Bg.

(ii) B}L/p, CXCHPCY CBY%,,, forsomel<p<co.
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Then TSymb(X — Y) = L.
Proof. Assume that (i) is satisfied. In this case, we only need to show that
TSymb(B) — B{°) C L C TSymb(H™ — BMOA).

The second embedding is a consequence of the fact that the Cauchy pro-
jection maps L> into BMOA.

In order to prove the first embedding, we need to show that ||[¢|e S
| TyllL(B1—Bz). And that is a consequence of the duality (Bj)" = Bg®, of
the Corollary 3.4 with p = oo and ||Ty||r(B1—Bge) ~ HFqﬁ”Bil(B}LxBT%—AC)'

If X and Y satisfy (ii), then the result is a consequence of the fact that

TSymb(B,,,, — B%,,,) C L* = T'Symb(H? — H?),

where the first embedding is a consequence of (B} Jp

3.4. |

)’ = B%,,, and Corollary

Remark 3.8. In the unit disk the equalities
TSymb(H*® — BMOA) =TSymb(H* — Bg°®) = L™

were proved in [9].

Examples of spaces X satisfying the hypothesis of Theorem 3.7 are for in-
stance the ball algebra A, the Hardy-Sobolev space H) and the multiplicative
algebras Bz/p NH>. AsY we can consider all the scale of Triebel-Lizorkin

spaces Fy9, 2 < q < oo. We recall that BMOA = Fy* and B = F3>™.

3.1.1. Pointwise multipliers. Let X and Y be Banach spaces of holo-
morphic functions on B, both of them containing H(B). We denote by
M(X — Y) the space of pointwise multipliers from X to Y, that is the
space of holomorphic functions h on B such that the map M, (f) = hf is
continuous from X to Y.

It is clear that if h € H(S) and f € H(B) then My(f) = Ty(f). There-
fore, the results on Toeplitz operators lead easily to results on pointwise

multipliers.
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We then have:

Theorem 3.9. Let 1 < p < oo and let X and Y Banach spaces satisfying

B,y CX CHPCY C B

—n/p

Then M(X —Y)=H>™
Proof. Observe that

H® = M(H? — H?) C M(X —Y) C M(B},, — B%,, )= H",

—n/p

where the last identity is a consequence of Theorem 3.7. [

It is also possible to obtain other characterizations of spaces of pointwise

multipliers.

Theorem 3.10. Let X and Y Banach spaces of holomorphic functions on
B, and let 1 < p < 0.

(i) If B c X C H°NVMOA CY C VMOA, then M(X — Y)
coincides with the multiplicative algebra H* NV MOA.

(ii) If BL C X € H*NbF CY C by, then M(X — Y), coincides
with the multiplicative algebra H> N bg°.

(bg° denotes the little Bloch space, that is the closure of H(B) in B°.)

Proof. We recall that a holomorphic function f € BMOA is in VMOA, if
liml |IRf(2)]2(1 — |2)*)dv(z) =0 ae. (€S.
=0 8" s 1-2C|<t}

Therefore, it is clear that H>* N VMOA is a multiplicative algebra,
and (H*NVMOA)- X C H°NVMOA CY, which proves that H>* N
VMOACM(X —=Y).

In order to prove the converse, observe that M(X — Y) CY C VMOA,
and that M(X — YY) C M(X — VMOA) C M(X — BMOA) = H™,

where the last equality is a consequence of Theorem 3.9 with p = oc.
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The same arguments and the fact that a holomorphic function f € Bg°
is in by° if h}l}(l —r)|Rf(r¢)] = 0 ae. ¢ €S gives (ii). |

3.2. Toeplitz operators on weighted Hardy spaces. Let us conclude
this section with an application of Theorem 3.2 to the study of Toeplitz
operators on weighted Hardy spaces.

We will consider weighted Hardy spaces for the class of admissible

weights consisting of measurable functions 6 on S such that

(i) 0(¢) >0 ae. C€ S,
(ii) 9,077/P ¢ L'(do).

For this class of weights, H?(¢) will denote the closure of H(B)s in L?(6).
Observe that since §77'/? € L'(do), then for each ¢ € LP(0do),

/s (O ldo(C) < 107 I 1ol oo

Therefore, LP(0) C L'(do), and if {f;} C H(B) and lim; f; = ¢ in LP(6),
then {f;} converges in L' to a function f € H', whose boundary values
coincide with ¢ a.e. on S. Therefore, H?(0) is a subspace of H'.

If (n+m)p—2n > 0, and f, is the test function defined by f.(¢) =
(1 — [&?)rrpim

¢z

1 — [z[2)(n/P +m)p 1/p
o = [ S0 )

(;P(Mm)p—%(@)(z))l/p,

Cn,(n+m)p—2n

, we have that

gL/p
which has radial limit Ny ae on S.
cn,(n+m)p72n

We then have:
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Theorem 3.11. Let be 1 < p < oo, ¥ € L'(do) and 6y,0, admissible
weights. Then,

Y

08/109%/10’

Hrw\|Bu(Hp(90)Xpr(gl)ﬂ<C) =

[e.9]

Proof. Observe that the above computations give that @,,(0) ~ 03/ P Qi/ " ae.

on S, and that, by Hélder’s Inequality,

/S Fllglade < [ ool o).

Therefore H?(6y) and H” (6, ) satisfy the conditions in Theorem 3.2, which

proves the result. [ |

The estimates on the norm of the bilinear form I'y, on H?(6y) x H? (6;)
give estimates on the norm of the corresponding Toeplitz operator T3, once
we can identify the dual of H? (6;) with respect to the pairing (1.1). This
is the case when 6, is in the Muckenhoupt class A,. The next section is
devoted to give the properties we will need on this class of weights and the

associated weighted Hardy spaces.

4. WEIGHTED HARDY AND BESOV SPACES AND TOEPLITZ OPERATORS

The main goal of this section is to prove a weighted version of the embed-
ding B} € H?, 1 < ¢ < min{p,2}, t —n/q = s —n/p. The proof will rely
on properties of weights in the Muckenhoupt class A, on S and weights in

the class B, on B.

4.1. A, and B, weights. Given a non negative weight 6 € L'(do) and W

a measurable set in S, let 6(W) = [, 0do. For z=r(,( € S,0<r <1, we
0(12)
11|

consider the average function on B associated to € defined by O(z) =
where I, = Usy 2 ={n € S;|1 —n¢| <1—r}
The Muckenhoupt class A, on S, 1 < p < oo, consists of the non-negative

weights 0 € L'(do) satisfying
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(4.19) A,(0) = sup (0(2))7 (6 ()" < o0
zeB
o : 0'(1) . :
where ' = 07P/? and ©'(z) = AR Observe that 6 € A,, if and only if,

0 e Ay.

If p =1, the class A; on S is the set of non-negative weights 6 € L'(do)
satisfying
(4.20) A;(0) = sup Mu—(6)(©) < o0.

¢es 9(0

An immediate consequence of Hoélder’s Inequality is that if 1 < ¢ < p,
then A; C A, C A, that A,(0) > 1, and that if 0 < XA < 1, 6* is in A,,
with ¢ =1+ A(p—1) < p (see [16] pag. 218). In particular, for any 6 € A,
and 0 < A < 1, the weight 6* is also in A,.

Weights in the class A, appear in the study of the boundedness of singular
operators on weighted spaces. In particular, we have that if 1 < p < oo
and 6 € A,, then the Cauchy projection maps LP(f) in HP(f), and as a
consequence of this fact, the dual of H?(6) can be identified with H? (#")
with the pairing given by (f, g)s (see [10] p.334).

The following characterization of the class A, (see [16] p.195), will be
considered in the following sections.

8 € A,, if and only if for any measurable set U C S and ¢ > 0 in LP(do),

(4.21) (|—é| /U goda)pg “;lz’((f)) /U ©Podo.

From the above characterization we deduce that if V' C U are measurable

sets on S, and ¢ is the characteristic function of V', then

V1" o(v)
(|U|) = 4050

Therefore, for any 6 € A,, the measure 6do is a doubling measure, in the

sense that there exists a constant Dg such that

O(Ucat) < DgB(Ucy), forall (€S, 0<t<2.
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By Proposition 5.1.4 in [14], we have that Dg < 2"P.
An immediate consequence of this doubling property is the following

lemma.

Lemma 4.1. Letl <p<oocandf c A, Ifz=1r(,(€S,0<r <1, and
N > 0 satisfies Dg < 2"V then

(=[P 0(1.)
d N ———— x0O(z2).
i taietn = 2 0
Proof. Let I, ; = U¢oj-1(1—ry. Then,
9(fz) — 0L\ L)
7j=2

Therefore, the estimate follows from (1, ; \ 1. ;-1) < DgQ(Iz) and Dg <
2n+N' [ |

Observe that the above lemma permit us to rewrite the .A,-condition

(4.19) on @ in terms of its extension P,,(0):
0 € A, ifandonlyif, sup P (0)(2)Y? P, (0") ()Y < o0

for any m satisfying 22"*?™ > Dg, DY. In particular for any m such that
2n + 2m > max(np, np’).

The next theorem shows that in fact the above characterization holds for
any m > 0. This characterization extends the results of Section 5 in [12]

where it was considered the invariant harmonic case m = 0 and p = 2.

Theorem 4.2. Let 1 < p < oo and m > 0 and let 0 be a non-negative

function on S. The following conditions are equivalent:

(i) 0 is in A,.
(1) Ayon(6) = 50D Po(6)(2)177 Pa(6)(2)! < oo,

Moreover, if m >0, A,(0) = A, ,,(0), and A,(0) < A,0(0) < A,(0)%
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Proof. Fix z =r( # 0 and let j, be the integer part of |logy(1 — |z|*)|. If
0<j<jsletI,; =Ucoii_r2 and I ;, = S. For 0 < j < j,, we consider

1 / / 1 / /
fdo, and O (z)=— 0'do.
’[zJ’ Iz,j ]( ) ’[ZJ’ ]z,j

Now, assume that (ii) is satisfied. Clearly

0;(2) =

o< [ W= 2 s dotn) < Po0)(2),

‘ 1 — Zﬁ|2n+2m

and analogously ©'(z) < P,(6')(z2).

Therefore,
A, (0) = sup O(2)/7@/ (2)V¥
S sup Pou(0)(2) Pou(6')(2) %" = Apm(6).

Let us prove that if 6 € A,, then (ii) is satisfied. Assume that m > 0.
Since |1, ;] ~ 2/™(1 — |2]?)" and |1 — 2¢| ~ 2/(1 — |2|?) on I.; \ L 1, we

have
1/p
Pr(0)(2)'7 S ( >, Qj(("+m)”")@j(2)>
(4.22) 1<j<ye
< Z 9 i(mAn/)Q ()17,
1<5<j=
Analogously,
Pm(elxz)l/p’s Z 27k(m+n/p)61k(z>l/p’.
1<k<j.
Therefore,
Po(0)(2)"/7 P (8)(2) "7
(4.23)

< Z 2—j(m+n/p’)—k(m+n/p)@j(Z)l/p@’k(z)l/p"

1<5,k<j=



26 CARME CASCANTE, JOAN FABREGA, AND JOAQUIN M. ORTEGA

Next, we observe that

|]z k|
0,(z) < =
’ |]z,j|

O,(2) < % 0(2) S 207 Pme/(2), if k <j.
z,k

Ok(2) S207"Ok(2),  ifj <k, and

Therefore, the left term in (4.23) is bounded by

Z Q*j(m+n/p’)*k(m+n/p)@j(Z)l/p@/k(z)l/p’

1<j<k<j-
£y aritmnl) ket () rey ()1
1<k<j<j=

S ST grdm )k ) =D/, ()1 re ()17
1<j<k<j-
w30 gk R/ ()Y () Y
1<k<j<j=

5Ap<9>< > e 3 ij_k(mm)

1<j<k<0o0 1<k<j<00
S Ay (0).

We finally consider the case m = 0. In order to prove that (i) implies (ii),

we observe that for 1 < j < j, there exist constants 0 < A\, A’ < 1 such that

|]z,k’
|Iz,k71|

(4.24) ©;_1(2) <A Lex] 0;(z), and ©O)_(z) <N

Q.(2).
|Iz,j71| k( )

Indeed, the constant A can be obtained from the inequality (4.21) applied
to the function ¢ = x; — x;j—1, where x; denotes the characteristic function
of I ;.

To be precise, we have

|[z j71| P flz j—1 Odo
11— 2222 < 1= Heimn
(=) = a0 (=T )

2,7
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1. 51

and since 0 < ¢ = sup < 1, we obtain the first inequality in (4.24)

21<i<j. |24

choosing A = 1— (g;(ce); ) < 1. Analogously, we obtain the second inequality

choosing \' =1 — <(,14_pf();)) ) < 1.

These estimates and an argument like the one used in the proof of the

case m > 0, give

wo(z)ﬁAp(Q)( ST gk N gan(j—kvp')

1<j<k<oo 1<k<j<oo

Ap(9) Ap(9) 2
S 1—\/p Y S Ap(0)” < 0.

We have associated in a natural way to any weight € on S its average
weight © on B. It was proved in [6] that if § in A, then the weight © is
in the class B,. We recall that this class of weights have been introduced
in [5], where it has been proved that the weights © for which the Bergman
projection is bounded in LP(©) are the ones in B,,.

B, is the class of the non-negative weights ¥ € L'(dv) satisfying

1 1/p 1 1/p'
(4.25)  B,(¥)=sup | — / Udy - / e < 00.
z€B |Iz| IZ |IZ| Iz

The class B, appears in the study of the boundedness of the Bergman

projection on weighted LP spaces on B (see [5]). From now on, for a mea-
surable set V on B, we will write ¥(V) = / Ydv. This class B, has similar
properties to the class A,, replacing the no‘;l—isotropic balls I, on S by the
non-isotropic tents I, on B. In particular, Holder’s Inequality gives that
B,(¥) > 1, B, C By, ¢ < p, and that if 0 < X\ < 1, then ¥* is also in the
class B,, ¢ = 1+ A(p — 1). Moreover, if ¢ € B,, Vdv is a doubling measure

on tents, that is there is a constant Dp such that

\I/(Uggt) < Dpg \I/(Ugt), for all C S S, 0<t <.
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As an immediate consequence we have that:

Lemma 4.3. Letl <p<ooand ¥V € B,. If z=7r(, (€S, 0<r<1. If

Dg < 2N then
U(l,
et~ =
4.2. Holomorphic weighted Hardy-Sobolev and Besov spaces. Let
us start recalling some well known facts on the weighted Hardy-Sobolev
spaces HP(#) with weights 6 in A,,.
If 1 <p< ooand s € R, the space HP() consists of the holomorphic

functions on B such that

1/p
=||({ + R)*fller(o) = (sup/ (I + R)Sf|p0da) < 00.
T S

As in the unweighted case, these spaces can be characterized in terms of
maximal radial functions, maximal admissible functions [10] and area func-
tions [6].

In particular, if T = {z € B; |1 — (z| < 1 — |2|*} is an admissible region
and M (f)(¢) is the maximal admissible function M (f)(¢) = sup{|f(z)];z €
I'c}, we have

Nl ze oy = (IM(f) ey = | Mu—(f)||zeo)-

Our next observation is that the space HP(f) can also be described in

terms of the averaging function ©, with an equivalent norm. Indeed, since
lim |F(r)[PO(r¢) = IF(OFF(C), ae. ¢ € S, we have
1) < f e = sup / Q) PO(r¢)da(C),
and by Fubini’s Theorem,
(4.26) 1o S / M (0AT(C) S 1o

As in the unweighted case, it is possible to obtain pointwise estimates for

the derivatives of the functions in H?(6) (see Lemma 2.12 in [6]).
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Lemma 4.4. If 6 € A, and f € H?(0), then for any positive integer k > s

(01"

(1= VP FrQ) S IS IL.|

120 (0(L)) P ~ || fll o)
(the last inequality is an immediate consequence of the fact that 0 € A,.)

We next introduce weighted Besov spaces. For 1 < p < 00, s € R, a
non-negative integer k > s and a weight 0 < ¥ € L!(B), the weighted holo-

morphic Besov space BY, (V) is the completion of the space H(5) endowed

with the norm

s = ([ 90w

In [7] it is proved that if ¢ € B, provided 1 < p < oo, different values

1f1

of k give equivalent norms. From now on we will simply write B?(¥).
Moreover, as it happens in the unweighted case, we can replace |V* f(z)| by
|(I + R)*f(z)] in the definition of £ 1|57, ).

For s = —1/p the space BP(¥) is the space of holomorphic function on
B intersection LP(Wdr). Several properties of these space can be found in
[10].

In particular, Theorem 2.1 in [10] with = (k—s)p—1,v = (k+s)p'+1
together with (1.1), gives the following result on duality.

Theorem 4.5. Let 1 < p < 00, s € R, U € B, and V' = UV /P. Then
(Bf‘;(\IJ))/ = B’ils(\lf’) with the pairing given by (f, g)p = / fgdv.
B

The next theorem extends the embedding Bg Jg—np C HP, 1 < ¢ <

min{p, 2} to the weighted case.

Theorem 4.6. Let 1 <p < oo, 1 <qyo<q <min{p,2} and 0 € A,. For
j=0,1, let s; =n/q; —n/p and let k > sy be a non-negative integer.
Then, BX ,(©%/?) C B" ,(69/7) C H?().

Proof. In order to prove the theorem, we will show that:
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(i) If 1 < ¢ < min{p,2} and k > n/q — n/p a non-negative integer,
then B}, n/pk(@q/p) C H?(0).
() For f € B, 1155 imy S 151011500 iy
In order to show (i), we use Theorem 2.10 in [6], Wthh gives an embed-

ding between weighted Triebel-Lizorkin spaces. To be precise, if 1 < ¢ <
min{p, 2}, then F"'(6) c FPY(0) c FP*(9) = H?(#). Consequently,

||f||HP(9) R~ ||f||F(§”2(0)

1/p

Q

p/2
/S ( 7R - |z|2>2’ﬂ-1-"dv<z>> 6(C)dv(C)
(4.27) C

1/p

AN

p/q
/S ( [ vre - |z|2>kq1"du<z>) 6(C)dv(C)

~ [ fllrpae)-

By duality, we can replace the last term in (4.27) by

1/q
sup (/S : \V’“f(Z)\q(l—\ZIQ)kq1”dV(2)w(C)9(C)dV(C)) :

11, /a9y =1

Fubini’s Theorem gives that this last expression is equivalent to

(1.28) ( [t sera—zppe [ w<<>9<<>do<<>dv<z>)l/q,

and by Holder’s Inequality

a/p
i (€)O(¢)do(C) < (/1 G(C)da(é)) S (1= |2 Pe(z)r.

z

Therefore (4.28) is bounded by

1/q
(/ |Vk 91 — |z| ) —(n/q—n/p))a— 1@( )‘””dy(z)) ’

which proves (i).
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In order to prove (ii), observe that if f € H?(#), then by Lemma 4.4

a1 g0 q1—qo0 (1_ |Z’2)_ e
IVEF)™ S IVEFIP 1A @) (W)

o (LRI
st (S0 .
Therefore,

[VEFI (L= [£f2) /ot

SIS @IVEFR)0 (L = [/ otn/plo=tg(z)w/r,
Integrating both terms on B, we conclude the proof. [ |

Proposition 4.7. Let 1 <p < oo, k >n+1 and § in A,. If Ds < 2P,
and f, are the test functions defined by f.(w) = (1 —wz)~N, then

g([z)l/p
1£:Nss , @m) = 1 fellmie) ~ A=~

Proof. The fact that the norms in B}, (©'/) and H?(6) of the test func-

tions are equivalent, will be deduced from Theorem 4.6 and the estimate
10wz e o) S 10— w2 e

In order to prove the above estimate, it is enough to show that if & > n+1,

then
(1 - |Z| )k: n/p' — 1@1/17 1/p
L e ([ rgm©)

Holder’s Inequality give that if € > 0 the left term in the above inequality

is bounded, up a constant depending of ¢, by
1— 2 kpfnp/p’flfsp@ 1/p 1— 2\ep’'—1 1/p
[ U=k 00 ) ([ U
B |1 _ wz|Np+kp—np/p —2ep B |1 _ wz|n+2ap

)y —1— /p
e O PN
< _ 2\—¢ (
~ (1 |Z| ) (/B |1 _ wg‘Nm—kp—np/p’—%P dz/(w) ’
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Since k > n+1, let ¢ > 0 be small enough such that kp—np/p'—1—ep—n >
0. By Fubini’s Theorem, the last term is bounded by

1_ Z| kp np/p'—1—ep—n 1/p
-t | f I T stz 0Q()

1/p
(1 12P) ( [y Epe@)da(o)
1/p
sl ()

Since Dg < 2V?, Lemma 4.1 gives that, provided € > 0 is small enough,

(/ 1 —CZINP Ep)l/p MERL |Z! (/ 1 —CZ\NP) )

which concludes the proof. [ |

we have

4.3. Toeplitz operators. The results of the above section together Theo-

rem 3.2 gives the following result, which generalizes Corollary 3.4.

Theorem 4.8. Let 1 <p < oo, k>n+1 and let 0y € A, and 0, € A,.
Let ©g and ©1 be the corresponding averaging functions.

If X and'Y are two Banach spaces satisfying,

(i) B, (6%) C X C H?(6)), and
(i) B}, (©&1'7) C Y C H”(6y),

Y

then ||Fw||Bil(Xx?—><C) ~ Qé/pei/p/

Proof. We want to prove that X and Y satisfy the conditions in Theorem
3.2.

By Proposition 4.7 it is clear that, if m > 0, then we have wy, xy(2) ~
Wy 170(00), 117 (01)(#). Therefore, as in the proof of Theorem 3.11, in both cases

the corresponding functions w,, are equivalent to 0(1)/ P 91/ ” a.e. on S.
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Hence, if f € X and g € Y, then
/ ’fy,g,ﬁbm,x,yda =~ / ‘f|‘g‘gé/p9}/p’da
S s

S W lav @ lgllar o) < 1 xllglly-
and as a consequence of Theorem 3.2

Y

||F¢”Bil(X><7H<C)% eé/pei/pf .

If the weights 6y and 6; are in smaller classes, we can drop the k in the

last theorem and we have the following corollary.

Corollary 4.9. Let 1 < g0 < p < q1 < 00, by € Ay, h € Ay where
po=14+p/q), P} =1+ 9'/q1 and Oy and O, the corresponding averaging
functions. Then, OL'" € B O ¢ By and

q0

Y

98/109%/10’ N

1Tyl ; 7 ~
. q0 q0/P a7y ql/P/ N
BB O3 IXBY 07 )—0)

As we stated in the introduction, the results on Toeplitz forms together
duality results lead to results on Toeplitz operators. For instance, we have

the following theorem.

Theorem 4.10. Let 1 < p < oo, ¢ € LY(do), 0y an admissible weight and
0, € .Ap/.
Then

1Tyl er o)~ o) = || =77
006,

o

In particular, if § = 60y = 01, then || Ty Lrr0)—mr©0) = ||V ]|oo-

Proof. This result is a consequence of

(0
93/1091*1/10 N

|’Tw’|L(HP(90)~>HP(91)) ~ Hl—‘d)HB'[:I(HP(QO)XHp/(efp//p)) ~~

The last equivalence is a consequence of Theorem 4.8. [ |
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In the case of Besov spaces, we can state simmilar results once we have
a description of the dual of the Besov spaces involved. In general, if 6 €
A, the weight ©%/7 is not necessarily in By . In order to ensure that
CLINS By, we can take for instance a weight 6 € A, with p satisfying
that 1+ (py —1)q1/p" < q1.

We then have:

Theorem 4.11. Let 1 < g <p<q, k>n+1,0, € A, and 0, € Ay,
Py <1+9p'/qi. Then, @({i/p/ € B, and

_v
Qé/pgl—l/p .

~
~

1T / —_—
MGG R AN C R

Proof. By hypothesis, we have p| < p’, and by Theorem 4.6 the spaces
X = BZ(}qo_n/pk(Ggo/p) and YV = Bzaqi,n/p,(@zi/p/) satisfy the conditions in
Theorem 4.8. Since 0, € Ay, ©1 € By, and @(fi/p/ € Biy(y—1)q,/p- Since
p1 < 1+p'/qi, this class is included in By, .
’ w / ’
Therefore, <le/qi_n/p,(@‘fl/1’)> = Bfll/ql_n/p(@;ql/p» Consequently we
have

1Tyl o a1 /0’
0 q0/p q1 q1/p
LB, gy —n/p (90 )= Bygy —yp(©1777))

n/qo—n/p,k n/q’lfn/p’

~ ||’ .
|| w”Bil(qu (@go/p)XBqll (elllll/p,)—%:)

Theorem 4.8 ends the proof. [ |
If in addition the weight 6, is in the smaller class A, with py < 1+p/q(,

the Besov space involved in the last theorem does not depend on k, and we

deduce that the following corollary holds.

Corollary 4.12. Let 1 < qo < p < q1, 0 € Ay, po < 1+p/qy and 0, € Ay,
Py <1+9p'/q. Then, @30/7’ € By, @‘fl/p € By and

Y

1Tl 17
eo/pel /p

q q0/p q —q1/p'\y 2
L(Bn‘}qo_n/p(eoo )—’Bnl/ql—n/p(@1 /7y
o
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